1. Trang chủ
  2. » Tất cả

Đề ôn thi thử môn hóa (756)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Nội dung

e1 References 1 Bellomo R, Ronco C, Kellum JA, et al Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs the Second International Consensus[.]

e1 References Bellomo R, Ronco C, Kellum JA, et al Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group Crit Care 2004;8:R204-R212 Kaddourah A, Basu RK, Bagshaw SM, et al Epidemiology of Acute Kidney Injury in Critically Ill Children and Young Adults N Engl J Med 2017;376(1):11-20 Hoste EAJ, Kellum JA, Selby NM, et al Global epidemiology and outcomes of acute kidney injury Nat Rev Nephrol 2018;14(10): 607-625 Susantitaphong P, et al World incidence of AKI: a meta-analysis Clin J Am Soc Nephrol 2013;8(9):1482-1493 Mehta RL, Kellum JA, Shah SV, et al Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury Crit Care 2007;11:R31 Kellum JA, Lameire N, KDIGO AKI Guideline Work Group Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1) Crit Care 2013;17:204 Selewski DT, Cornell TT, Heung M, et al Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population Intensive Care Med 2014;40:1481-1488 Akcan-Arikan A, Zappitelli M, Loftis LL, et al Modified RIFLE criteria in critically ill children with acute kidney injury Kidney Int 2007;71:1028-1035 Chertow GM, Burdick E, Honour M, et al Acute kidney injury, mortality, length of stay, and costs in hospitalized patients J Am Soc Nephrol 2005;16:3365-3370 10 Jetton JG, Askenazi DJ Update on acute kidney injury in the neonate Curr Opin Pediatr 2012;24:191-196 11 Mian AN, Guillet R, Ruck L, et al Acute kidney injury in premature, very low birth-weight infants J Pediatr Intensive Care 2016;5:69-78 12 Andreoli SP Acute kidney injury in children J Pediatr Intensive Care 2016;5:69-78 13 Bellomo R, Chapman M, Finfer S, et al Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group Lancet 2000;356:2139-2143 14 Allgren RL, Marbury TC, Rahman SN, et al Anaritide in acute tubular necrosis Auriculin Anaritide Acute Renal Failure Study Group N Engl J Med 1997;336:828-834 15 Bosch JP Renal reserve: a functional view of glomerular filtration rate Semin Nephrol 1995;15:381-385 16 Rodriguez-Iturbe B, Herrera J, Garcia R Response to acute protein load in kidney donors and in apparently normal postacute glomerulonephritis patients: evidence for glomerular hyperfiltration Lancet 1985;2:461-464 17 Smith H The Kidney: Structure and Function in Health and Disease New York, NY: Oxford University Press; 1951 18 Heilbron DC, Holliday MA, al-Dahwi A, Kogan BA Expressing glomerular filtration rate in children Pediatr Nephrol 1991;5:5-11 19 Zappitelli M, Parikh CR, Akcan-Arikan A, Washburn KK, Moffett BS, Goldstein SL Ascertainment and epidemiology of acute kidney injury varies with definition interpretation Clin J Am Soc Nephrol 2008;3(4):948–954 20 Cohen ML, Smith Jr FG, Mindell RS, Vernier RL A simple, reliable method of measuring glomerular filtration rate using single, low dose sodium iothalamate I-131 Pediatrics 1969;43:407-415 21 Elwood CM, Sigman EM, Treger C The measurement of glomerular filtration rate with 125I-sodium iothalamate (Conray) Br J Radiol 1967;40:581-583 22 Odlind B, Hallgren R, Sohtell M, Lindstrom B Is 125I iothalamate an ideal marker for glomerular filtration? Kidney Int 1985;27:9-16 23 Hellerstein S, Berenbom M, Alon US, Warady BA Creatinine clearance following cimetidine for estimation of glomerular filtration rate Pediatr Nephrol 1998;12:49-54 24 Levey AS, Coresh J, Balk E, et al National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification Ann Intern Med 2003;139:137-147 25 Hogg RJ, Furth S, Lemley KV, et al National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification Pediatrics 2003;111(6 Pt 1): 1416-1421 26 Schnurr E, Lahme W, Kuppers H Measurement of renal clearance of inulin and PAH in the steady state without urine collection Clin Nephrol 1980;13:26-29 27 Bajaj G, Alexander SR, Browne R, et al 125Iodine-iothalamate clearance in children A simple method to measure glomerular filtration Pediatr Nephrol 1996;10:25-28 28 Brochner-Mortensen J Current status on assessment and measurement of glomerular filtration rate Clin Physiol 1985;5:1-17 29 Piepsz A, Colarinha P, Gordon I, et al Guidelines for glomerular filtration rate determination in children Eur J Nucl Med 2001; 28:BP31-BP36 30 Blaufox MD, Aurell M, Bubeck B, et al Report of the Radionuclides in Nephrourology Committee on renal clearance J Nucl Med 1996;37:1883-1890 31 Schwartz GJ, Abraham AG, Furth SL, et al Optimizing iohexol plasma disappearance curves to measure the glomerular filtration rate in children with chronic kidney disease Kidney Int 2010;77:65-71 32 Stabin M, Taylor Jr A, Eshima D, Wooter W Radiation dosimetry for technetium-99m-MAG3, technetium-99m-DTPA, and iodine131-OIH based on human biodistribution studies J Nucl Med 1992;33:33-40 33 Perrone RD, Steinman TI, Beck GJ, et al Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin The Modification of Diet in Renal Disease Study Am J Kidney Dis 1990;16:224-235 34 Carlsen JE, Moller ML, Lund JO, Trap-Jensen J Comparison of four commercial Tc-99m(Sn)DTPA preparations used for the measurement of glomerular filtration rate: concise communication J Nucl Med 1980;21:126-129 35 Isaka Y, Fujiwara Y, Yamamoto S, et al Modified plasma clearance technique using nonradioactive iothalamate for measuring GFR Kidney Int 1992;42:1006-1011 36 Gaspari F, Mosconi L, Vigano G, et al Measurement of GFR with a single intravenous injection of nonradioactive iothalamate Kidney Int 1992;41:1081-1084 37 Back SE, Krutzen E, Nilsson-Ehle P Contrast media as markers for glomerular filtration: a pharmacokinetic comparison of four agents Scand J Clin Lab Invest 1988;48:247-253 38 Gaspari F, Perico N, Ruggenenti P, et al Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate J Am Soc Nephrol 1995;6:257-263 39 Nilsson-Ehle P, Grubb A New markers for the determination of GFR: iohexol clearance and cystatin C serum concentration Kidney Int Suppl 1994;47:S17-S19 40 Dixon J, Lane K, Dalton R, et al Validation of a continuous infusion of low dose Iohexol to measure glomerular filtration rate: randomised clinical trial J Transl Med 2015;13:58 41 Vicente FB, Vespa GK, Carrara F, et al Determination of iohexol in human serum by a semi-automated liquid chromatography tandem mass spectrometry method Clin Biochem 2015;48:679-685 42 Stake G, Monn E, Rootwelt K, Monclair T The clearance of iohexol as a measure of the glomerular filtration rate in children with chronic renal failure Scand J Clin Lab Invest 1991;51:729-734 43 Schwartz GJ, Furth S, Cole SR, et al Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children Kidney Int 2006;69:2070-2077 44 Erley CM, Bader BD, Berger ED, et al Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients Crit Care Med 2001;29:1544-1550 e2 45 Brown SC, O’Reilly PH Iohexol clearance for the determination of glomerular filtration rate in clinical practice: evidence for a new gold standard J Urol 1991;146:675-679 46 Wyatt CM, Schwartz GJ, Owino Ong’or W, et al Estimating kidney function in HIV-infected adults in Kenya: comparison to a direct measure of glomerular filtration rate by iohexol clearance PLoS One 2013;8:e69601 47 Hingorani S, Pao E, Schoch G, et al Estimating GFR in adult patients with hematopoietic cell transplant: comparison of estimating equations with an iohexol reference standard Clin J Am Soc Nephrol 2015;10:601-610 48 Soveri I, Berg UB, Bjork J, et al Measuring GFR: a systematic review Am J Kidney Dis 2014;64:411-424 49 Perrone RD, Madias NE, Levey AS Serum creatinine as an index of renal function: new insights into old concepts Clin Chem 1992; 38:1933-1953 50 Schwartz GJ, Munoz A, Schneider MF, et al New equations to estimate GFR in children with CKD J Am Soc Nephrol 2009;20: 629-637 51 Schwartz GJ, Schneider MF, Maier PS, et al Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C Kidney Int 2012;82:445-453 52 Schwartz GJ Height: the missing link in estimating glomerular filtration rate in children and adolescents Nephrol Dial Transplant 2014;29:944-947 53 Bauer JH, Brooks CS, Burch RN Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate Am J Kidney Dis 1982;2:337-346 54 Mitch WE, Walser M A proposed mechanism for reduced creatinine excretion in severe chronic renal failure Nephron 1978;21:248-254 55 Dunn SR, Gabuzda GM, Superdock KR, et al Induction of creatininase activity in chronic renal failure: timing of creatinine degradation and effect of antibiotics Am J Kidney Dis 1997;29:72-77 56 Stanski N, Menon S, Goldstein SL, Basu RK Integration of urinary neutrophil gelatinase-associated lipocalin with serum creatinine delineates acute kidney injury phenotypes in critically ill children J Crit Care 2019;53:1-7 57 Haase M, Devarajan P, Haase-Fielitz A, et al The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies J Am Coll Cardiol 2011;57(17):1752-1761 58 Basu RK, Wong HR, Krawczeski CD, et al Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery J Am Coll Cardiol 2014;64:2753-2762 59 Schwartz GJ, Kwong T, Erway B, et al Validation of creatinine assays utilizing HPLC and IDMS traceable standards in sera of children Pediatr Nephrol 2009;24:113-119 60 Cobbaert CM, Baadenhuijsen H, Weykamp CW Prime time for enzymatic creatinine methods in pediatrics Clin Chem 2009;55: 549-558 61 Srivastava T, Alon US, Althahabi R, Garg U Impact of standardization of creatinine methodology on the assessment of glomerular filtration rate in children Pediatr Res 2009;65:113-116 62 Speeckaert MM, Wuyts B, Stove V, et al Compensating for the influence of total serum protein in the Schwartz formula Clin Chem Lab Med 2012;50:1597-1600 62a Schwartz GJ, Brion LP, Spitzer A The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents Pediatr Clin North Am 1987;34:571-590 62b Myers GL, Miller WG, Coresh J, et al Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program Clin Chem 2006;52:5-18.[IQA10] 63 Basu RK, Andrews A, Krawczeski C, Manning P, Wheeler DS, Goldstein SL Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation Pediatr Crit Care Med 2013;14(5):e218 64 Macedo E, Bouchard J, Soroko SH, et al Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients Crit Care 2010;14(3):R82 65 Tenstad O, Roald AB, Grubb A, Aukland K Renal handling of radiolabelled human cystatin C in the rat Scand J Clin Lab Invest 1996;56:409-414 66 Jacobsson B, Lignelid H, Bergerheim US Transthyretin and cystatin C are catabolized in proximal tubular epithelial cells and the proteins are not useful as markers for renal cell carcinomas Histopathology 1995;26:559-564 67 Finney H, Newman DJ, Thakkar H, et al Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children Arch Dis Child 2000;82:71-75 68 Bokenkamp A, Domanetzki M, Zinck R, et al Reference values for cystatin C serum concentrations in children Pediatr Nephrol 1998;12:125-129 69 Bokenkamp A, Domanetzki M, Zinck R, et al Cystatin C—a new marker of glomerular filtration rate in children independent of age and height Pediatrics 1998;101:875-881 70 Bokenkamp A, Dieterich C, Dressler F, et al Fetal serum concentrations of cystatin C and beta2-microglobulin as predictors of postnatal kidney function Am J Obstet Gynecol 2001;185:468-475 71 Andersen TB, Eskild-Jensen A, Frokiaer J, et al Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review Pediatr Nephrol 2009;24:929-941 72 Schwartz GJ, Work DF Measurement and estimation of GFR in children and adolescents Clin J Am Soc Nephrol 2009;4:1832-1843 73 Dworkin LD Serum cystatin C as a marker of glomerular filtration rate Curr Opin Nephrol Hypertens 2001;10:551-553 74 Keevil BG, Kilpatrick ES, Nichols SP, Maylor PW Biological variation of cystatin C: implications for the assessment of glomerular filtration rate Clin Chem 1998;44:1535-1539 75 Dharnidharka VR, Kwon C, Stevens G Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis Am J Kidney Dis 2002;40:221-226 76 Roos JF, Doust J, Tett SE, Kirkpatrick CM Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children—a meta-analysis Clin Biochem 2007;40:383-391 77 Morgan C, Senthilselvan A, Bamforth F, et al Correlation between cystatin C- and renal scan-determined glomerular filtration rate in children with spina bifida Pediatr Nephrol 2008;23:329-332 78 Pham-Huy A, Leonard M, Lepage N, et al Measuring glomerular filtration rate with cystatin C and beta-trace protein in children with spina bifida J Urol 2003;169:2312-2315 79 Harmoinen A, Lehtimaki T, Korpela M, et al Diagnostic accuracies of plasma creatinine, cystatin C, and glomerular filtration rate calculated by the Cockcroft-Gault and Levey (MDRD) formulas Clin Chem 2003;49:1223-1225 80 Herget-Rosenthal S, Marggraf G, Husing J, et al Early detection of acute renal failure by serum cystatin C Kidney Int 2004;66:1115-1122 81 Zhang Z, Lu B, Sheng X, Jin N Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis Am J Kidney Dis 2011;58:356-365 82 Hassinger AB, Backer CL, Lane JC, et al Predictive power of serum cystatin C to detect acute kidney injury and pediatric-modified RIFLE class in children undergoing cardiac surgery Pediatr Crit Care Med 2012;13:435-440 83 Lagos-Arevalo P, Palijan A, Vertullo L, et al Cystatin C in acute kidney injury diagnosis: early biomarker or alternative to serum creatinine? Pediatr Nephrol 2015;30:665-676 84 Cockcroft DW, Gault MH Prediction of creatinine clearance from serum creatinine Nephron 1976;16:31-41 85 Counahan R, Chantler C, Ghazali S, et al Estimation of glomerular filtration rate from plasma creatinine concentration in children Arch Dis Child 1976;51:875-878 86 Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine Pediatrics 1976;58:259-263 e3 87 Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease Kidney Int Suppl 2013;3:1-150 88 Deleted in review 89 Levey AS, Inker LA, Coresh J GFR estimation: from physiology to public health Am J Kidney Dis 2014;63:820-834 90 Azzi A, Cachat F, Faouzi M, et al Is there an age cutoff to apply adult formulas for GFR estimation in children? J Nephrol 2015; 28:59-66 91 Pierrat A, Gravier E, Saunders C, et al Predicting GFR in children and adults: a comparison of the Cockcroft-Gault, Schwartz, and modification of diet in renal disease formulas Kidney Int 2003; 64:1425-1436 92 Chehade H, Girardin E, Iglesias K, et al Assessment of adult formulas for glomerular filtration rate estimation in children Pediatr Nephrol 2013;28:105-114 93 Selistre L, De Souza V, Cochat P, et al GFR estimation in adolescents and young adults J Am Soc Nephrol 2012;23:989-996 94 Gao A, Cachat F, Faouzi M, et al Comparison of the glomerular filtration rate in children by the new revised Schwartz formula and a new generalized formula Kidney Int 2013;83:524-530 95 Staples A, LeBlond R, Watkins S, et al Validation of the revised Schwartz estimating equation in a predominantly non-CKD population Pediatr Nephrol 2010;25:2321-2326 96 Bacchetta J, Cochat P, Rognant N, et al Which creatinine and cystatin C equations can be reliably used in children? Clin J Am Soc Nephrol 2011;6:552-560 97 Deng F, Finer G, Haymond S, et al Applicability of estimating glomerular filtration rate equations in pediatric patients: comparison with a measured glomerular filtration rate by iohexol clearance Transl Res 2015;165:437-445 98 Rink N, Zappitelli M Estimation of glomerular filtration rate with and without height: effect of age and renal function level Pediatr Nephrol 2015;30:1327-1336 99 Pottel H, Hoste L, Martens F A simple height-independent equation for estimating glomerular filtration rate in children Pediatr Nephrol 2012;27:973-979 100 Hoste L, Dubourg L, Selistre L, et al A new equation to estimate the glomerular filtration rate in children, adolescents and young adults Nephrol Dial Transplant 2014;29:1082-1091 101 Fadrowski JJ, Neu AM, Schwartz GJ, Furth SL Pediatric GFR estimating equations applied to adolescents in the general population Clin J Am Soc Nephrol 2011;6:1427-1435 102 Levey AS, Fan L, Eckfeldt JH, Inker LA Cystatin C for glomerular filtration rate estimation: coming of age Clin Chem 2014;60: 916-919 103 Nehus EJ, Laskin BL, Kathman TI, Bissler JJ Performance of cystatin C-based equations in a pediatric cohort at high risk of kidney injury Pediatr Nephrol 2013;28:453-461 104 Erlandsen EJ, Hansen RM, Randers E, et al Estimating the glomerular filtration rate using serum cystatin C levels in patients with spinal cord injuries Spinal Cord 2012;50:778-783 105 Laskin BL, Nehus E, Goebel J, et al Estimated versus measured glomerular filtration rate in children before hematopoietic cell transplantation Biol Blood Marrow Transplant 2014;20: 2056-2061 106 Braat E, Hoste L, De Waele L, et al Renal function in children and adolescents with Duchenne muscular dystrophy Neuromuscul Disord 2015;25:381-387 107 Miall LS, Henderson MJ, Turner AJ, et al Plasma creatinine rises dramatically in the first 48 hours of life in preterm infants Pediatrics 1999;104:e76 108 Filler G A step forward towards accurately assessing glomerular filtration rate in newborns Pediatr Nephrol 2015;30:1209-1212 109 Abitbol CL, Seeherunvong W, Galarza MG, et al Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr 2014;164:1026-1031.e2 110 Treiber M, Pecovnik Balon B, Gorenjak M A new serum cystatin C formula for estimating glomerular filtration rate in newborns Pediatr Nephrol 2015;30:1297-1305 111 Ronco C, Legrand M, Goldstein SL, et al Neutrophil gelatinaseassociated lipocalin: ready for routine clinical use? An international perspective Blood Purif 2014;37:271-285 112 Cowland JB, Borregaard N Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans Genomics 1997;45:17-23 113 Mishra J, Ma Q, Prada A, et al Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury J Am Soc Nephrol 2003;14:2534-2543 114 Mishra J, Dent C, Tarabishi R, et al Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery Lancet 2005;365:1231-1238 115 Zappitelli M, Washburn KK, Arikan AA, et al Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study Crit Care 2007;11:R84 116 Bagshaw SM, Bennett M, Haase M, et al Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness Intensive Care Med 2010; 36:452-461 117 Haase M, Bellomo R, Devarajan P, et al Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis Am J Kidney Dis 2009;54:1012-1024 118 Katz NM, Kellum JA, Ronco C Acute kidney stress and prevention of acute kidney injury Crit Care Med, 2019;47(7): 993-996 119 Varnell Jr CD, Goldstein SL, Devarajan P, Basu RK Impact of near real-time urine neutrophil gelatinase-associated lipocalin assessment on clinical practice Kidney Int Rep, 2017;2(6): 1243-1249 120 Ostermann M, McCullough PA, Forni LG, et al Kinetics of urinary cell cycle arrest markers for acute kidney injury following exposure to potential renal insults Crit Care Med 2018;46(3): 375-383 121 Vanmassenhove J, Vanholder R, Nagler E, Van Biesen W Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature Nephrol Dial Transplant 2013;28(2):254-273 122 Kashani K, Al-Khafaji A, Ardiles T, et al Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury Crit Care 2013;17(1):R25 123 Parikh CR, Devarajan P New biomarkers of acute kidney injury Crit Care Med 2008;36(suppl 4):S159-S165 124 Xu Y, Xie Y, Shao X, et al L-FABP: a novel biomarker of kidney disease Clin Chim Acta 2015;445:85-90 125 Alge JL, Arthur JM Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications Clin J Am Soc Nephrol 2015;10(1):147-155 126 Endre ZH, Kellum JA, Di Somma S, et al Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference Contrib Nephrol 2013;182: 30-44 127 McCullough PA, Bouchard J, Waikar SS, et al Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney injury: executive summary from the Tenth Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Contrib Nephrol 2013;182:5-12 128 Huen SC, Parikh CR Molecular phenotyping of clinical AKI with novel urinary biomarkers Am J Physiol Renal Physiol 2015; 309:F406-F413 129 Chawla LS, Bellomo R, Bihorac A, et al Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup Nat Rev Nephrol 2017;13:241-257 e4 130 Basu RK, Zappitelli M, Brunner L, et al Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children Kidney Int 2014;85(3):659-667 131 Basu RK, Kaddourah A, Goldstein SL Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study Lancet Child Adolesc Health 2018;2(2):112-120 132 Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G Classifying AKI by Urine Output versus Serum Creatinine Level J Am Soc Nephrol 2015;26:2231-2238 133 Kaddourah A, Basu RK, Goldstein SL, Sutherland SM, Assessment of Worldwide Acute Kidney Injury, Renal Angina and, Epidemiology (AWARE) Investigators Oliguria and acute kidney injury in critically ill children: implications for diagnosis and outcomes Pediatr Crit Care Med 2019;20(4):332-339 134 Koyner JL, Chawla LS Use of stress tests in evaluating kidney disease Curr Opin Nephrol Hypertens 2017;26(1):31-35 135 Koyner JL, Davison DL, Brasha-Mitchell E, et al Furosemide stress test and biomarkers for the prediction of AKI severity J Am Soc Nephrol 2015;26:2023-2031 136 Penk J, Gist KM, Wald EL, et al Furosemide response predicts acute kidney injury in children after cardiac surgery J Thorac Cardiovasc Surg 2019;157(6):2444-2451 137 Rewa OG, Bagshaw SM, Wang X, et al The furosemide stress test for prediction of worsening acute kidney injury in critically ill patients: a multicenter, prospective, observational study J Crit Care 2019;52:109-114 138 Alobaidi R, Morgan C, Basu RK, et al Association between fluid balance and outcomes in critically ill children: a systematic review and meta-analysis JAMA Pediatr 2018;172(3):257-268 139 Selewski DT, Goldstein SL The role of fluid overload in the prediction of outcome in acute kidney injury Pediatr Nephrol 2018; 33(1):13-24 140 Kamel KS, Ethier JH, Richardson RM, et al Urine electrolytes and osmolality: when and how to use them Am J Nephrol 1990;10:89-102 141 Nolan CR III, Anger MS, Kelleher SP Eosinophiluria—a new method of detection and definition of the clinical spectrum N Engl J Med 1986;315:1516-1519 142 Weichselbaum TE An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma Am J Clin Pathol 1946;10:40-49 143 Mogensen CE Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes N Engl J Med 1984; 310:356-360 144 Sulyok E, Guignard JP Relationship of urinary anion gap to urinary ammonium excretion in the neonate Biol Neonate 1990;57:98-106 145 Halperin ML, Margolis BL, Robinson LA, et al The urine osmolal gap: a clue to estimate urine ammonium in “hybrid” types of metabolic acidosis Clin Invest Med 1988;11:198-202 146 DuBose TDJ Disorders of acid base balance In: Brenner BMLS, ed Brenner and Rector’s The Kidney 8th ed Philadelphia: Saunders, Elsevier; 2008:505-546 147 Walsh SB, Shirley DG, Wrong OM, Unwin RJ Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride Kidney Int 2007;71: 1310-1316 148 Rodriguez-Soriano J, Ubetagoyena M, Vallo A Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children Pediatr Nephrol 1990;4: 105-110 e5 Abstract: Acute kidney injury (AKI) and progressive renal dysfunction are common in critically ill children Precise and accurate estimates of renal function are crucial for understanding how both direct and indirect effects of AKI associate with patient outcome To date, serum creatinine has been the focal point of diagnostics related to renal function In this chapter, we review the available historical standards relating glomerular filtration to creatinine Subsequently, limitations of creatinine-based estimations of renal function are discussed as well as the need for integration of novel diagnostics Only with a combination approach—incorporating tests of filtration (creatinine based) with tubular reserve (urine output)—and novel diagnostics reflective of tubular injury related to different aspects of timing, location, and mechanism in the context of a patient can a refined and sophisticated phenotype of renal function be created Key words: acute kidney injury, glomerular filtration rate, Schwartz formula, biomarkers, risk stratification, renal reserve ... dysfunction in adults and children—a meta-analysis Clin Biochem 2007;40:383-391 77 Morgan C, Senthilselvan A, Bamforth F, et al Correlation between cystatin C- and renal scan-determined glomerular... the prediction of outcome in acute kidney injury Pediatr Nephrol 2018; 33(1):13-24 140 Kamel KS, Ethier JH, Richardson RM, et al Urine electrolytes and osmolality: when and how to use them Am J... To date, serum creatinine has been the focal point of diagnostics related to renal function In this chapter, we review the available historical standards relating glomerular filtration to creatinine

Ngày đăng: 28/03/2023, 12:16

w