1. Trang chủ
  2. » Tất cả

On a shock problem involving a linear vi

27 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 257,91 KB

Nội dung

() Nonlinear Analysis 63 (2005) 198–224 www elsevier com/locate/na On a shock problem involving a linear viscoelastic bar Nguyen Thanh Longa,∗, Le Van Utb, Nguyen Thi Thao Trucc aDepartment of Mathema[.]

Nonlinear Analysis 63 (2005) 198 – 224 www.elsevier.com/locate/na On a shock problem involving a linear viscoelastic bar Nguyen Thanh Longa,∗ , Le Van Utb , Nguyen Thi Thao Trucc a Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University HoChiMinh City, 227 Nguyen Van Cu Str., Dist.5, HoChiMinh City, Vietnam b Department of Natural Sciences, Can Tho In-serviced University, 256 Nguyen Van Cu Street, Ninh Kieu District, Can Tho City, Vietnam c Department of Mathematics, School of Education, Can Tho University, 3-2 Street, Ninh Kieu District, Can Tho City, Vietnam Received June 2004; accepted May 2005 Abstract The paper deals with the initial-boundary value problem for the linear wave equation  utt − (t)uxx + Ku + ut = f (x, t), < x < 1, < t < T ,   u(0, t) = 0,  −(t)ux (1, t) = Q(t),  u(x, 0) = u0 (x), ut (x, 0) = u1 (x), (1) where K,  are given constants and u0 , u1 , f ,  are given functions, the unknown function u(x, t) and the unknown boundary value Q(t) satisfy the following linear integral equation  t Q(t) = K1 (t)u(1, t) + 1 (t)ut (1, t) − g(t) − k(t − s)u(1, s) ds, (2) where g, k, K1 , 1 are given functions The paper consists of four parts In Part we prove a theorem of global existence and uniqueness of a weak solution (u, Q) of problem (1)–(2) The proof is based on a Galerkin type approximation associated to various energy estimates-type bounds, weakconvergence and compactness arguments In Part 2, it is devoted to the study of the regularity of the solution (u, Q) with respect to the functions (, 1 , f, g, k, K1 ) In Part we prove that the solution ∗ Corresponding author E-mail addresses: longnt@hcmc.netnam.vn (N.T Long), utlev@yahoo.com (L.V Ut), ntthaotruc@ctu.edu.vn (N.T.T Truc) 0362-546X/$ - see front matter 䉷 2005 Elsevier Ltd All rights reserved doi:10.1016/j.na.2005.05.007 N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 199 (u, Q) of this problem is stable with respect to the data (K, , , 1 , f, g, k, K1 ) Finally, in Part we obtain an asymptotic expansion of the solution (u, Q) of this problem up to order N + in (K, ), for (K, ) sufficiently small 䉷 2005 Elsevier Ltd All rights reserved MSC: 35L20; 35L70 Keywords: Shock; Integral equations; Energy-type estimates; Compactness; Regularity of solutions; Stability of the solutions; Asymptotic expansion Introduction In this paper, we consider the following problem: Find a pair (u, Q) of functions satisfying utt − (t)uxx + F (u, ut ) = f (x, t), < x < 1, < t < T , (1.1) u(0, t) = 0, (1.2) −(t)ux (1, t) = Q(t), (1.3) u(x, 0) = u0 (x), (1.4) ut (x, 0) = u1 (x), where F (u, ut )=Ku+ ut , with K,  are given constants and u0 , u1 , f,  are given functions satisfying conditions specified later, and the unknown function u(x, t) and the unknown boundary value Q(t) satisfy the following integral equation  t Q(t) = K1 (t)u(1, t) + 1 (t)ut (1, t) − g(t) − k(t − s)u(1, s) ds, (1.5) where g, k, K1 , 1 are given functions In [8] Santos studied the asymptotic behavior of solution of problem (1.1), (1.2), (1.4) associated with a boundary condition of memory type at x = as follows  t g(t − s)(s)ux (1, s) ds = 0, t > (1.6) u(1, t) + / (0) , 1 (t) = g(0) are positive Santos transformed (1.6) into (1.3), (1.5) with K1 (t) = gg(0) constants In the case of 1 (t) ≡ 0, K1 (t) = h  0, (t) = 1, the problem (1.1)–(1.5) is formed from the problem (1.1)–(1.4) wherein, the unknown function u(x, t) and the unknown boundary value Q(t) satisfy the following Cauchy problem for ordinary differential equation:  // Q (t) + 2 Q(t) = hutt (1, t), < t < T , (1.7) Q(0) = Q0 , Q/ (0) = Q1 , where h  0,  > 0, Q0 , Q1 are given constants [6] 200 N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 In [1], An and Trieu have studied a special case of problem (1.1)–(1.4), (1.7) with u0 = u1 = Q0 = and F (u, ut ) = Ku + ut , with K  0,  are given constants In the later case the problem (1.1)–(1.4) and (1.7) is a mathematical model describing the shock of a rigid body and a linear viscoelastic bar resting on a rigid base [1] From (1.7) we represent Q(t) in terms of Q0 , Q1 , , h, utt (1, t) and then by integrating by parts, we have  t Q(t) = hu(1, t) − g(t) − k(t − s)u(1, s) ds, (1.8) where g(t) = −(Q0 − hu0 (1)) cos t − (Q1 − hu1 (1)) sin t,  k(t) = h sin t (1.9) (1.10) In [2] Bergounioux et al studied problem (1.1), (1.4) with the mixed boundary conditions (1.2), (1.3) standing for  t ux (0, t) = hu(0, t) + g(t) − k(t − s)u(0, s) ds, (1.11) ux (1, t) + K1 u(1, t) + 1 ut (1, t) = 0, (1.12) where g(t) = (Q0 − hu0 (0)) cos t + (Q1 − hu1 (0)) sin t,  k(t) = h sin t, (1.13) (1.14) where h  0,  > 0, Q0 , Q1 , K, , K1 , 1 are given constants The present paper consists of four main parts In Part we prove a theorem of global existence and uniqueness of a weak solution (u, Q) of problem (1.1)–(1.5) The proof is based on a Galerkin type approximation associated to various energy estimates-type bounds, weak-convergence and compactness arguments The main difficulty encountered here is the boundary condition at x = In order to solve this particular difficulty, stronger assumptions on the initial conditions u0 and u1 will be made We remark that the linearization method in the papers [3,7] can not be used in [2,5,6] Part is devoted to the study of the regularity of the solution (u, Q) with respect to the functions (, 1 , f, g, k, K1 ) In Part we prove that the solution (u, Q) of this problem is stable with respect to the data (K, , , 1 , f, g, k, K1 ) Finally, in Part we obtain an asymptotic expansion of the solution (u, Q) of this problem up to order N + in (K, ), for (K, ) sufficiently small The results obtained here may be considered as generalizations of those in An and Trieu [1] and in Long and Dinh [2,3,5–8] The existence and uniqueness theorem Put  = (0, 1), QT =  × (0, T ), T > We omit the definitions of usual function spaces: C m (), Lp (), W m,p () N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 201 We denote W m,p = W m,p (), Lp = W 0,p (), H m = W m,2 (),  p  ∞, m = 0, 1, The norm in L2 is denoted by  ·  We also denote by ·, · the scalar product in L2 or pair of dual scalar product of a continuous linear functional with an element of a function space We denote by  · X the norm of a Banach space X and by X / the dual space of X We denote by Lp (0, T ; X),  p  ∞ for the Banach space of the real functions u : (0, T ) → X measurable, such that uLp (0,T ;X) =  T p u(t)X dt 1/p < ∞ for  p < ∞, and uL∞ (0,T ;X) = ess sup u(t)X 0 0, f, ft ∈ L2 (QT ) Then, we have the following theorem (2.3) 202 N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 Theorem Let (H1 ) − (H6 ) hold Then, for every T > 0, there exists a unique weak solution (u, Q) of problem (1.1)–(1.5) such that  u ∈ L∞ (0, T ; V ∩ H ), ut ∈ L∞ (0, T ; H ), utt ∈ L∞ (0, T ; L2 ), (2.4) u(1, ·) ∈ H (0, T ), Q ∈ H (0, T ) Remark It follows from (2.1), (2.4) that the component u in the weak solution (u, Q) of problem (1.1)–(1.5) satisfies u ∈ C (0, T ; V ) ∩ C (0, T ; L2 ) ∩ L∞ (0, T ; V ∩ H ) Proof of Theorem The proof consists of Steps 1–4 Step 1: The Galerkin approximation Let {wj } be a denumerable base of V ∩ H We find the approximate solution of problem (1.1)–(1.5) in the form um (t) = m cmj (t)wj , (2.5) j =1 where the coefficient functions cmj satisfy the system of ordinary differential equation // / um (t), wj + (t) umx (t), wj x + Qm (t)wj (1) + F (um (t), um (t)), wj = f (t), wj ,  j  m,  t / Qm (t) = K1 (t)um (1, t) + 1 (t)um (1, t) − k(t − s)um (1, s) ds − g(t), (2.6) (2.7)  m  mj wj → u0 u (0) = u =  m 0m   /   um (0) = u1m = j =1 m j =1 mj wj → u1 strongly in H , (2.8) strongly in H From the assumptions of Theorem 1, system (2.6)–(2.8) has solution (um , Qm ) on some interval [0, Tm ] The following estimates allow one to take Tm = T for all m Step 2: A priori estimates A priori estimates I Substituting (2.7) into (2.6), then multiplying the jth equation of / (2.6) by cmj (t) and summing up with respect to j, we get d / / / Sm (t) = − K um (t)2 − 2um (t)2 + / (t)umx (t)2 + K1 (t)u2m (1, t) dt  t  / / +2 k(t − s)um (1, s) ds + g(t) um (1, t) + f (t), um (t) , (2.9) where / Sm (t) ≡ um (t)2 + (t)umx (t)2 + K1 (t)u2m (1, t)  t / +2 1 (s)|um (1, s)|2 ds (2.10) N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 203 Integrating by parts with respect to the time variable, we get  t / Sm (t) = Sm (0) + Ku0m 2 − 2g(0)u0m (1) − Kum (t)2 − 2 um (s)2 ds  t  t / + / (s)umx (s)2 ds + [K1 (s) − 2k(0)]u2m (1, s) ds 0    t + um (1, t) k(t − s)um (1, s) ds + g(t)um (1, t)    t   −2 um (1, ) d g / () + k / ( − s)um (1, s) ds 0 t / + f (s), um (s) ds (2.11) Using the inequality 2ab a + b ,  ∀a, b ∈ R, ∀ > 0, (2.12) and the following inequalities / Sm (t)  um (t)2  t / + 0 umx (t) + 20 um (1, s) ds, (2.13) |um (1, t)|  um (t)C ()  umx (t)  Sm (t) , 0 (2.14) we shall estimate, respectively the following terms on the right-hand side of (2.11)  t  t / 2 um (t) = um (0) + um (s) ds  2u0m  + 2t Sm (s) ds, (2.15) 0  t  t / (s)umx (s)2 ds  |/ (s)|Sm (s) ds,  0  t  t / (K / (s) − 2k(0))u2 (1, s) ds  |K1 (s) − 2k(0)|Sm (s) ds, m  (2.16) 0 (2.17)  t  t  t k () d Sm (s) ds, um (1, t) k(t − s)um (1, s) ds Sm (t) + 0 0 (2.18) g (t), 0  t  t  t / Sm () d + g ()um (1, ) d  |g / ()|2 d, 0 0 2|g(t)um (1, t)| Sm (t) + (2.19) (2.20) 204 N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224  t   / um (1, ) d k ( − s)um (1, s) ds 0  t  t  t |k / ()|2 d Sm (s) ds,  Sm () d + t 0 0  t  t  t / f (s), um (s) ds  f (s)2 ds + Sm (s) ds 0 (2.21) (2.22) Combining (2.11), (2.15)–(2.22), we obtain Sm (t)  Sm (0) + 3|K|u0m 2 + 2|g(0)u0m (1)|    t / g (t) + |g (s)| ds +   t  t0 / (|/ (s)| + |K1 (s) − 2k(0)|)Sm (s) ds + f (s) ds + 0 0  t  t / (k () + t|k ()| ) d Sm (s) ds + 0 0  t + [2 + + 2|| + 2t|K|] Sm (s) ds + 2Sm (t) (2.23) Choosing  = 1/4, it follows from (2.23), that Sm (t)  2Sm (0) + 6|K|u0m 2 + 4|g(0)u0m (1)|    t  t / + g (t) + |g (s)| ds + f (s)2 ds 0 0  t / (|/ (s)| + |K1 (s) − 2k(0)|)Sm (s) ds + 0  t  t / + (k () + t|k ()| ) d Sm (s) ds 0 0  t + (3 + 4|| + 4t|K|) Sm (s) ds (2.24) Using assumptions (H1 ).(H3 ), (H5 ), it follows from (2.8), (2.10), that 2Sm (0) + 6|K|u0m 2 + 4|g(0)u0m (1)|  C1 for all m, where C1 is a constant depending only on (0), K1 (0), g(0), K, u0 , u1 On the other hand, we have    t  t (1) / g (t) + C1 + |g (s)| ds + f (s)2 ds  MT 0 0 for all t ∈ [0, T ],  t (2) (k () + t|k / ()|2 ) d MT (3 + 4|| + 4t|K|) + 0 for all t ∈ [0, T ], (2.25) (2.26) (2.27) N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 205 (i) where MT , i = 1, 2, is a constant depending only on T Therefore, it follows from (2.24)–(2.27), that  t (1) (1) Sm (t)  MT + NT (s)Sm (s) ds, (2.28) where (1) NT (s) = / (2) (|/ (s)| + |K1 (s) − 2k(0)|) + MT , 0 By Gronwall’s lemma, we obtain  t  (1) (1) Sm (t)  MT exp NT (s) ds  MT , (1) NT ∈ L1 (0, T ) for all t ∈ [0, T ] (2.29) (2.30) A priori estimates II Now differentiating (2.6) with respect to t we have /// / um (t), wj + (t) umx (t), wj x + / (t) umx (t), wj x / / // + Qm (t)wj (1) + Kum + um (t), wj = f / (t), wj , (2.31) for all  j  m // Multiplying the jth equation of (2.31) by cmj (t), summing up with respect to j and then integrating with respect to the time variable from to t, we have after some rearrangements Xm (t) = Xm (0) + 2/ (0) u0mx , u1mx + Ku1m 2  t / / // − 2/ (t) umx (t), umx (t) − Kum (t)2 − 2 um (s)2 ds  t / / / // − [(K1 (s) + 1 (s))um (1, s) + (K1 (s) − k(0))um (1, s)]um (1, s) ds   t  s // / / +2 k (s − )um (1, ) d + g (s) um (1, s) ds  t 0 t / / // (s) umx (s), umx (s) ds +3 / (s)umx (s)2 ds + 0 t // / + f (s), um (s) ds, (2.32) where // Xm (t) = um (t)2 / + (t)umx (t)2 +2  t // 1 (s)|um (1, s)|2 ds (2.33) Using inequality (2.12) and the following inequalities:  t // / // Xm (t)  um (t)2 + 0 umx (t)2 + 20 |um (1, s)|2 ds, (2.34) |um (1, t)|  um (t)C ()  umx (t)  Sm (t)  0 Xm (t) , 0 (2.36) we estimate without difficulty the following terms in the right-hand side of (2.32) as follows / | − 2/ (t) umx (t), umx (t) | Xm (t) + / um (t)2  2u1m 2 + 2t  MT |/ (t)|2 , 20 t Xm (s) ds, (2.38)  t  / / // −2 K1 (s) + 1 (s) um (1, s)um (1, s) ds  t 1 / Xm (t), |K1 (s) + 1 (s)|2 Xm (s) ds +   0 0  t −2 (K / (s) − k(0))um (1, s)u// (1, s) ds m  t MT / |K1 (s) − k(0)|2 ds +  Xm (t),  0 0  t  // um (1, s) ds 0 s k / (s − )um (1, ) d MT  Xm (t) + t 0 0 (2.37)  t / |k ()| d 2 ,  t  1 t / // / g (s)um (1, s) ds  Xm (t) + |g (s)|2 ds, 0  0 (2.39) (2.40) (2.41) (2.42)  t  t / |/ (s)|Xm (s) ds, (2.43) / (s)umx (s)2 ds   0  t  t  t / |// (s)|2 ds + // (s) umx (s), umx (s) ds  MT Xm (s) ds, (2.44) 0 0  t   t t / // f (s)2 ds (2.45) f / (s), um (s) ds  Xm (s) ds +  0 N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 207 It follows from (2.32), (2.37)–(2.45) that Xm (t)  Xm (0) + 2|/ (0)|u0m V u1m V + 3|K|u1m 2  MT t / / + MT | (t)| + |K1 (s) − k(0)|2 ds 0 0 2  t  t MT |// (s)|2 ds t |k / ()| d + MT + 0  0   t / t / 2 + |g (s)| ds f (s) ds +     t / |K1 (s) + 1 (s)|2 + |/ (s)| +  + 2T |K| + 2|| + +  0   Xm (t) (2.46) Xm (s) ds +  + 0 Choosing  > with (1 + 2 ) < 1/2, hence, we obtain from (2.46), that (2) Xm (t)  2Xm (0) + 4|/ (0)|u0m V u1m V + 6|K|u1m 2 + NT (t)  t (1) (s)Xm (s) ds, + N T (2.47) where (2) NT (t) =  2MT t / / |K1 (s) − k(0)|2 ds M |  (t)| + T 0 20  t 2  t 2MT / |// (s)|2 ds t |k ()| d + MT + 0 0 0   t / t / + f (s)2 ds + |g (s)|2 ds,   (2.48) (1) (s) = 4T |K| + 4|| + |K1 (s) + / (s)|2 + |/ (s)| + 2 + 2, N T 0 0 (1) ∈ L1 (0, T ) N T (2.49) First, we deduce from (2.8) and (H1 ).(H2 ), (H5 ), that 2Xm (0) + 4|/ (0)|u0m V u1m V + 6|K|u1m 2 //  2um (0)2 + C2 , for all m, (2.50) where C2 is a constant depending only on , u0 , u1 , K But by (2.6)–(2.8), we have // // // // um (0)2 − (0) u0mxx , um (0) + Ku0m + u1m , um (0) = f (0), um (0) (2.51) 208 N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 Therefore, // um (0) (0)u0m  + |K|u0m  + ||u1m  + f (0) (2.52) It follows from (2.8), (2.52), that // um (0)  C3 , (2.53) where C3 is a constant depending only on , u0 , u1 , f, K,  Noting that H (0, T ) ֒→ C ([0, T ]), it follows from (2.48), that (2)  (1) , 2C32 + C2 + NT (t)  M T a.e., t ∈ [0, T ], (2.54)  (1) is a constant depending only on T Therefore, it follows from (2.47), (2.50), where M T (2.53), (2.54), that  t  (1) + (1) (s)Xm (s) ds Xm (t)  M N (2.55) T T By Gronwall’s lemma, we deduce from (2.55), that  t  (1) (1)   T ∀t ∈ [0, T ] Xm (t)  MT exp NT (s) ds  M (2.56) On the other hand, we deduce from (2.7), (2.30), (2.34)–(2.36) and (2.56), that / Qm 2L2 (0,T )  T  T  5M / MT 1 2∞ + |K1 (s) + 1 (s)|2 ds 0 0  T 2  5T M T 5MT T / / + |K1 (s) − k(0)| ds + |k ()| d 0 0  T +5 |g / (s)|2 ds, (2.57) where 1 ∞ = 1 L∞ (0,T ) Hence Qm H (0,T )  MT (2.58) Step 3: Limiting process From (2.13), (2.30), (2.34), (2.56) and (2.58), we deduce the existence of a subsequence of {(um , Qm )} still also so denoted, such that  um → u in L∞ (0, T ; V ) weak ∗,   / /  in L∞ (0, T ; V ) weak ∗,  um → u // // (2.59) um → u in L∞ (0, T ; L2 ) weak ∗,    um (1, ·) → u(1, ·) in H (0, T ) weakly,   Qm → Q in H (0, T ) weakly N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 209 By the compactness lemma of Lions [4, p 57] we can deduce from (2.59) the existence of a subsequence still denoted by {(um , Qm )} such that  um → u strongly in L2 (QT ),    /  strongly in L2 (QT ),  um → u/ (2.60) um (1, ·) → u(1, ·) strongly in H (0, T ),    u/m (1, ·) → u/ (1, ·) strongly in C [0, T ],    Qm → Q strongly in C [0, T ] From (2.7) and (2.60)3−4 we have Qm (t) → K1 (t)u(1, t) + 1 (t)u/ (1, t)  t − k(t − s) u(1, s) ds − g(t) ≡ Q(t) (2.61) strongly in C [0, T ] Hence, we deduce from (2.60)5 and (2.61), that  Q(t) = Q(t) (2.62) Passing to the limit in (2.6)–(2.8) by (2.59)–(2.60) and (2.61)–(2.62) we have (u, Q) satisfying the problem u// (t), v + (t) ux (t), vx + Q(t)v(1) + Ku(t) + u/ (t), v = f (t), v , ∀v ∈ H , u(0) = u0 , u/ (0) = u1 , Q(t) = K1 (t)u(1, t) + 1 (t)ut (1, t) − (2.63) (2.64)  t k(t − s)u(1, s) ds − g(t), (2.65) in L2 (0, T ) weakly On the other hand, we have from (2.63) and assumptions (H5 ).(H6 ) that uxx = [u// + Ku(t) + u/ (t) − f ] ∈ L∞ (0, T ; L2 ) (t) (2.66) Hence u ∈ L∞ (0, T ; V ∩ H ) and the existence proof is completed Step 4: Uniqueness of the solution Let u1 , u2 be two weak solutions of problem (1.1)–(1.5) such that   ui ∈ L∞ (0, T ; V ∩ H ), / // u ∈ L∞ (0, T ; H ), ui ∈ L∞ (0, T ; L2 ), (2.67)  i ui (1, ·) ∈ H (0, T ), Qi ∈ H (0, T ), i = 1, Then (u, Q) with u = u1 − u2 and Q = Q1 − Q2 satisfy the variational problem  // u (t), v +(t) ux (t), vx +Q(t)v(1) + Ku + u/ , v =0 ∀v ∈ H , u(0) = u/ (0) = 0, (2.68) 210 N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 where Q(t) = K1 (t)u(1, t) + 1 (t)u/ (1, t) −  t k(t − s)u(1, s) ds We take v = u/ in (2.68)1 , afterwards integrating in t, we get  t  t / / S(t) =  (s)ux (s) ds + K1 (s)u2 (1, s) ds 0  t  s / +2 u (1, s) ds k(s − )u(1, ) d − Ku(t)2 0  t − 2 u/ (s)2 ds, (2.69) (2.70) where / 2 S(t)=u (t) +(t)ux (t) +K1 (t)u (1, t)+2  t 1 (s)|u/ (1, s)|2 ds (2.71) Noting that S(t)  u/ (t)2 + 0 ux (t)2 + 20 |u(1, t)|  u(t)C ()  ux (t)  u(t)2   t u/ (s) ds 2 t   t t |u/ (1, s)|2 ds, S(t)  (t) S(t) , 0 u/ (s)2 ds We again use inequality (2.12), then, it follows from (2.70)–(2.74), that  t  t / [|/ (s)| + |K1 (s)|]S(s) ds + (|K|t + 2||) S(s) ds S(t)  0 0  t  t t S(t) + k () d + S() d 0 0 0 (2.72) (2.73) (2.74) (2.75) Choosing  > 0, such that  21  1/2, we obtain from (2.75), that S(t)   t q1 (s)S(s) ds, (2.76) where  2T  T / k () d, (|/ (s)| + |K1 (s)|) + 2|K|T + 4|| + 0 0 q1 ∈ L1 (0, T ) q1 (s) = By Gronwall’s lemma, we deduce that S ≡ and Theorem is completely proved (2.77)  N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 211 Remark In the case of K =K(t),  = (t), k =k(t, s), we consider the following problem utt − (t)uxx + K(t)u + (t)ut = f (x, t), < x < 1, < t < T , (1.1′ ) u(0, t) = 0, (1.2) −(t)ux (1, t) = Q(t), (1.3) u(x, 0) = u0 (x), (1.4) ut (x, 0) = u1 (x), where K, , u0 , u1 , f,  are given functions and the unknown functions (u(x, t), Q(t)) satisfy the following integral equation:  t Q(t) = K1 (t)u(1, t) + 1 (t)ut (1, t) − k(t, s)u(1, s) ds − g(t), (1.5′ ) where g, k, K1 and 1 are given functions Now, we assume that 1 ) (H K ∈ H (0, T ), 4 ) k, D1 k = (H  ∈ H (0, T ), jk ∈ L2 (Q∗T ), jt  k∗ ∈ L2 (0, T ), where  k∗ (t) = k(t, t) and Q∗T = {(t, s) :  s  t  T } By an argument analogous to that used to the proof of Theorem 1, we get the following result 1 ) and (H 4 ) hold Then, there exists Theorem Let T > Let (Hi ),  i  6, i = 4, (H / a unique weak solution (u, Q) of problem (1.1 ), (1.2)–(1.4), (1.5/ ) such that  u ∈ C (0, T ; V ) ∩ C (0, T ; L2 ) ∩ L∞ (0, T ; V ∩ H ), (2.78) ut ∈ L∞ (0, T ; H ), utt ∈ L∞ (0, T ; L2 ), u(1, ·) ∈ H (0, T ), Q ∈ H (0, T ) Regularity of solutions In this part, we study the regularity of solution of problem (1.1)–(1.5) corresponding to the data (, 1 , K, , u0 , u1 , f, g, k, K1 ) From here, we assume that (, 1 , K, , u0 , u1 , f, g, k, K1 ) satisfy assumptions (H1 ).(H6 ) Henceforth, we shall impose the following stronger assumptions: (1) (H1 ) (1) (H2 ) (1) (H3 ) (1) (H4 ) K,  ∈ R, u0 ∈ H and u1 ∈ H , g, K1 , 1 ∈ H (0, T ), 1 (t) 0 > 0, K1 (t)  0, k ∈ H (0, T ), 212 (1) N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 / (H5 )  ∈ H (0, T ), (t) 0 > 0, (t)1 (t) − / (t)1 (t)  0, (1) (H6 ) f, ft , ftt ∈ L2 (0, T ; L2 ) and f (·, 0) ∈ H  ≡ Formally differentiating problem (1.1) with respect to time and letting  u = ut and Q(t) /  of problem (P (1) ) as follows: (t)( Q(t) ) we are led to consider the solution ( u , Q) (t)   u + L u ≡ utt − (t) uxx + K(t) (t) ut = f(x, t), < x < 1, < t < T ,     u (0, t) = 0,   (P (1) ) B u ≡ −(t) ux (1, t) = Q(t),      u (x, 0) = u (x), u (x, 0) =  u1 (x),   t  t  =K 1 (t) k(t, s) u(1, s) ds −  g (t), Q(t) u(1, t) + 1 (t) ut (1, t) −  where  / / (t)  = K −   (t) ,   (t) =  − ,  K(t) (t) (t)   f / (t)   f(x, t) = (t) j u, +K jt (t) (t)   u0 (x) = u1 (x),  u1 (x) = (0)u0xx (x) − Ku0 (x) − u1 (x) + f (x, 0),  /  1    K1 (t) = K1 (t) + (t) ,          K1 (t) / / (t)   k(t, s) = −(t) − k1 (t − s) + k(t − s), (t)  t (t)   with  k1 (t) = k() d,      /  /   / g K1    − k1 (t) + k(t) u0 (1) +  g (t) = −    (3.1) (3.2) (3.3) (1) (1)  Let (, 1 , K, , u0 , u1 , f, g, k, K1 ) satisfy assumptions (H1 ).(H6 ) Then (, 1 , K, , 1 ) satisfy assumptions (Hi ),  i  6, i = 4, (H 1 ) and (H 4 ) By Theorem  u0 ,  u1 , f,  g,  k, K  such that 2, the problem (P (1) ) there exists a unique weak solution ( u, Q)  u ∈ C (0, T ; V ) ∩ C (0, T ; L2 ) ∩ L∞ (0, T ; V ∩ H ),  (3.4) ut ∈ L∞ (0, T ; H ),  utt ∈ L∞ (0, T ; L2 ),   u(1, ·) ∈ H (0, T ), Q ∈ H (0, T ) Moreover, from the uniqueness of weak solution we have   Q(t) /   u = ut , Q(t) = (t) (t) From the equalities    Q(t) / Q/ (t)(t) − Q(t)/ (t)    = ,  Q(t) = (t) (t) (t) / // / /   / +  Q/ +   − ( ) Q,  +  Q, Q// = Q  Q/ = Q    (3.5) (3.6) N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 213 it follows that Q/ , Q// ∈ L2 (0, T ), i.e., Q ∈ H (0, T ) (3.7) Then, we deduce from (3.4)–(3.5), (3.7), that  u ∈ C (0, T ; V ∩ H ) ∩ C (0, T ; V ∩ H ) ∩ C (0, T ; L2 ), ut ∈ L∞ (0, T ; V ∩ H ), utt ∈ L∞ (0, T ; H ), uttt ∈ L∞ (0, T ; L2 ), u(1, ·) ∈ H (0, T ), Q ∈ H (0, T ) (3.8) We then have the following theorem (1) (1) Theorem Let (, 1 , K, , u0 , u1 , f, g, k, K1 ) satisfy assumptions (H1 ).(H6 ) Then there exists a unique weak solution (u, Q) of problem (1.1)–(1.5) satisfying (3.8) Similarly, formally differentiating problem (1.1)–(1.5) with respect to time up to order [r−1] jr u r, (r  1) and letting u[r] = jt r and Q[r] (t) = (t) dtd ( Q (t)(t) ) we are led to consider the solution (u[r] , Q[r] ) of problem (P (r) ):  [r] [r] [r] + K [r] (t)u[r] + [r] (t)ut[r] = f [r] (x, t), L u ≡ utt[r] − (t)uxx    < x < 1, < t < T ,    [r]    u (0, t) = 0, [r] [r] ≡ −(t)u (1, t) = Q[r] (t), (r) Bu x (P ) [r]  [r]  (x), ut[r] (x, 0) = u1[r] (x), (x, 0) = u u    [r] [r] [r]   Q (t) = K1 (t)u (1, t) + 1 (t)ut[r] (1, t)  t  − k [r] (t, s) u[r] (1, s) ds − g [r] (t), where the functions K [r] , [r] , u0[r] , u1[r] , f [r] , g [r] , k [r] , K1[r] , r  1, are defined by the recurrence formulas u[0] = u0 , , u0[r] = u[r−1] r  1, j [j ] (3.9) u[0] = u1 , u1[r] = r−1 j =0 )+ , u[r−1] Cr−1 (r−1−j ) (0)u0xx − F (u[r−1] jr−1 f (·, 0), jt r−1 r  1, (3.10) j r! where Cr = j !(r−j )! ,  /  [r] (t) = [r−1] (t) −  (t) , r  1, (t)  [0]  (t) = ,   /  [r−1] (t)  [r] [r−1] K (t) = K (t) + (t) , (t)   [0] K (t) = K, (3.11) r  1, (3.12) 214 N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224       j K [r−1] (t) j f [r−1] [r−1] , r  1, −u = (t) (3.13) jt (t) jt (t)  [0] f = f,    1 (t) /  [r] [r−1] (t) + (t) , r  1, K1 (t) = K1 (3.14) (t)  [0] K1 (t) = K1 (t),  k [r] (t, s) = k [r−1] (t, t) + k [r−1] (t, t) − k [r−1] (t, s) 2   [r−1] /   /   (t) K1  (t) [r−1] [r−1]   − (t, s)) − (t) (t, t) − k1 , r  2, (k   (t) (t)  s  s jk [r−1]   k1[r−1] (t, s) = k [r−1] (t, ) d, k2[r−1] (t, s) = (t, ) d, r  2,   jt       K1 (t) / / (t)  t−s   k [1] (t, s) =  k(t, s) = −(t) − (t) k() d + k(t − s), (t) (3.15)   [r−1] /   /  (t)  [r] (t) = k [r−1] (t, t) + k [r−1] (t, t) −  (t) k [r−1] (t, t) − (t) K1   g    (t)  (t)       [r−1] /   g (t)   , r  2, (1) +  (t) ×u[r−1] (t)       K1 (t) / / (t)  t  [1]   g (t) = −(t) − k() d + k(t) u0 (1)  g (t) =   (t) (t)        g(t) /   +(t) (t) (3.16) f [r]  Assume that the data (, 1 , K, , u0 , u1 , f, g, k, K1 ) satisfy the following assumptions: (r) (H1 ) (r) (H2 ) (r) (H3 ) (r) (H4 ) (r) (H5 ) (r) K,  ∈ R, u0 ∈ H r+2 and u1 ∈ H r+1 , r  1, g, K1 , 1 ∈ H r+1 (0, T ), 1 (t) 0 > 0, K1 (t)  0, r  1, k ∈ H r+1 (0, T ), r  1, /  ∈ H r+2 (0, T ), (t) 0 > 0, (t)1 (t) − / (t)1 (t)  0, r  1, j f j f (H6 ) jt ∈ L2 (0, T ; L2 ), (0   r + 1) and jt  (·, 0) ∈ H ,  r − Then (, 1 , K [r] , [r] , u0[r] , u1[r] , f [r] , g [r] , k [r] , K1[r] ) satisfy assumptions (Hi ),  i  6, 1 ) and (H 4 ) Applying again Theorem for problem (P (r) ), there exists a unique i = 4, (H [r] weak solution (u , Q[r] ) satisfying (2.4) and the inclusion from Remark 1, i.e., such that  [r] u ∈ C (0, T ; V ) ∩ C (0, T ; L2 ) ∩ L∞ (0, T ; V ∩ H ), (3.17) ut[r] ∈ L∞ (0, T ; H ), utt[r] ∈ L∞ (0, T ; L2 ), u[r] (1, ·) ∈ H (0, T ), Q[r] ∈ H (0, T ) N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 Moreover, from the uniqueness of weak solution we have  r   j u d Q[r−1] [r] [r] , (u , Q ) = jt r dt  Hence we obtain from (3.17), (3.18) that  u ∈ C r−1 (0, T ; V ∩ H ) ∩ C r (0, T ; H ) ∩ C r+1 (0, T ; L2 ), u(1, ·) ∈ H r+2 (0, T ), Q ∈ H r+1 (0, T ) 215 (3.18) (3.19) We then have the following theorem (r) (r) Theorem Let (H1 ).(H6 ) hold Then there exists a unique weak solution (u, Q) of problem (1.1)–(1.5) satisfying (3.19) and jr u ∈ L∞ (0, T ; V ∩ H ), jt r jr+2 u ∈ L∞ (0, T ; L2 ) jt r+2 jr+1 u ∈ L∞ (0, T ; H ), jt r+1 (3.20) Stability of the solutions In this part, we assume that the functions u0 , u1 satisfy (H2 ) By Theorem 1, problem (1.1)–(1.5) has a unique weak solution (u, Q) depending on K, , , 1 , f, g, k, K1 u = u(K, , , 1 , f, g, k, K1 ), Q = Q(K, , , 1 , f, g, k, K1 ), (4.1) where (K, , , 1 , f, g, k, K1 ) satisfy the assumptions (H1 ), (H3 ).(H6 ) and u0 , u1 are fixed functions satisfying (H2 ) We put I(0 , 0 ) = {(K, , , 1 , f, g, k, K1 ) : (K, , , 1 , f, g, k, K1 ) satisfy the assumptions (H1 ), (H3 ).(H6 )}, where 0 > 0, 0 > are given constants Then we have the following theorem Theorem Let T > Let (H1 ).(H6 ) hold Then, for every T > 0, solutions of the problems (1.1)–(1.5) are stable with respect to the data (K, , , 1 , f, g, k, K1 ), i.e., j j If (K, , , 1 , f, g, k, K1 ), (K j , j , j , 1 , f j , g j , k j , K1 ) ∈ I(0 , 0 ), such that  j j j j  |K − K| + | − | → 0,  − H (0,T ) → 0, 1 − 1 H (0,T ) → 0, j f j − f L2 (0,T ;L2 ) + ft − ft L2 (0,T ;L2 ) → 0, g j − gH (0,T ) → 0, (4.2)  j k j − kH (0,T ) → 0, K1 − K1 H (0,T ) → 0, as j → +∞, then / (uj , uj , uj (1, ·), Qj ) → (u, u/ , u(1, ·), Q) (4.3) 216 N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 in L∞ (0, T ; V ) × L∞ (0, T ; L2 ) × H (0, T ) × L2 (0, T ) strongly, as j → +∞, where j j j j uj = u(K j , j , j , 1 , f j , g j , k j , K1 ), Qj = Q(K j , j , j , 1 , f j , g j , k j , K1 ) Proof First, we note that, if the data (K, , , 1 , f, g, k, K1 ) satisfy  |K|  K ∗ , || ∗ ,   f L2 (0,T ;L2 ) + ft L2 (0,T ;L2 )  f ∗ , gH (0,T )  g ∗ , ∗ ∗   kH (0,T )  k ∗, 1 H (0,T ) 1 ,∗ H (0,T )  , K1 H (0,T )  K1 , (4.4) where K ∗ , ∗ , g ∗ , k ∗ , ∗1 , ∗ , f ∗ , K1∗ , are fixed positive constants, then, the a priori estimates of the sequences {um } and {Qm } in the proof of Theorem satisfy  t / / um (t)2 + 0 umx (t)2 + 20 |um (1, s)|2 ds  MT , ∀t ∈ [0, T ], (4.5) // / um (t)2 + 0 umx (t)2 + 20  t // |um (1, s)|2 ds  MT , ∀t ∈ [0, T ], Qm H (0,T )  MT , (4.6) (4.7) where MT is a constant depending only on T, u0 , u1 , 0 , 0 , K ∗ , ∗ , f ∗ , g ∗ , ∗ , ∗1 , k ∗ , K1∗ (independent of K, , , 1 , f, g, k, K1 ) Hence, the limit (u, Q) in suitable function spaces of the sequence {(um , Qm )} defined by (2.6)–(2.8) is a weak solution of problem (1.1)–(1.5) satisfying the a priori estimates (4.5)–(4.7) Now, by (4.2) we can assume that, there exist positive constants K ∗ , ∗ , f ∗ , g ∗ , ∗ , ∗1 , j j ∗ k , K1∗ such that the data (K j , j , j , 1 , f j , g j , k j , K1 ) satisfy (4.4) with (K, , , 1 , j j f, g, k, K1 ) =(K j , j , j , 1 , f j , g j , k j , K1 ) Then, by the above remark, we have that the solutions (uj , Qj ) of problem (1.1)–(1.5) corresponding to (K, , , 1 , f, g, k, K1 ) =(K j , j j j , j , 1 , f j ,g j , k j , K1 ) satisfy / uj (t)2 // + 0 uj x (t) + 20 /  uj (t)2 + 0 uj x (t)2 + 20 t  / |uj (1, s)|2 ds  MT , t Qj H (0,T )  MT , // |uj (1, s)|2 ds  MT , ∀t ∈ [0, T ], ∀t ∈ [0, T ], (4.8) (4.9) (4.10) Put  Kj = K j − K,  j = j − ,   j  j = j − , 1j = 1 − 1 ,  f = f j − f,  gj = g j − g,   j  1j = K j − K1 kj = k j − k, K (4.11) N.T Long et al / Nonlinear Analysis 63 (2005) 198 – 224 Then, vj = uj − u and Pj = Qj − Q satisfy the variational problem  // /   vj (t), v + (t) vj x (t), vx + Pj (t)v(1) + Kv j + vj , v / j uj +  = fj , v −  j (t) uj x (t), vx − K j uj , v , ∀v ∈ H ,   / vj (0) = vj (0) = 0, 217 (4.12) where Pj (t) = Qj (t) − Q(t) = K1 (t)vj (1, t) + 1 (t)vj t (1, t) −  t k(t − s)vj (1, s) ds −  gj (t), 1j (t)uj (1, t)−1j (t)uj t (1, t)+  gj (t)= gj (t)−K /  t  kj (t − s)uj (1, s) ds (4.13) (4.14) Substituting Pj (t) into (4.12), then taking v = vj in (4.12)1 , afterwards integrating in t, we obtain  t  t / / Sj (t) = − Kvj (t)2 − 2 vj (s)2 ds + K1 (s)|vj (1, s)|2 ds 0   t  r / +2 k(r − s)vj (1, s) ds +  gj (r) vj (1, r) dr  t0  t / / +  (s)vj x (s) ds + fj , vj (s) ds 0  t  t / / / j uj +   −2 j (s) uj x (s), vj x (s) ds − K j uj , vj (s) ds, (4.15) 0 where / Sj (t) = vj (t)2 + (t)vj x (t)2 + K1 (t)|vj (1, t)|2  t / 1 (s)|vj (1, s)|2 ds +2 (4.16) Using inequalities (2.12), (4.8), (4.9) and / Sj (t)  vj (t)2 + 0 vj x (t)2 + 20  t / |vj (1, s)|2 ds, (4.17) then, we can prove the following inequality in a similar manner:   t  T Sj (t)  Sj (t) + + (|K|T + 2||) + T k () d Sj (s) ds 20 0 0  t / (|K1 (s)| + |/ (s)|)Sj (s) ds + 0   T t MT +  ∞ | gj (r)|2 dr + fj (s)2 ds + 4T   0 j MT  √ (|Kj | + 0 | j |), (4.18) + 4T 0 for all  > and t ∈ [0, T ] ... 0,  are given constants In the later case the problem (1.1)–(1.4) and (1.7) is a mathematical model describing the shock of a rigid body and a linear viscoelastic bar resting on a rigid base... condition at x = In order to solve this particular difficulty, stronger assumptions on the initial conditions u0 and u1 will be made We remark that the linearization method in the papers [3,7] can... We also denote by ·, · the scalar product in L2 or pair of dual scalar product of a continuous linear functional with an element of a function space We denote by  · X the norm of a Banach space

Ngày đăng: 27/03/2023, 11:18