SCi GD & DT NAM DINH CUM CAC TRIF G THPT HUYEN NAM TRJC DE C NH TH°tfC (Dé thi câ 06 trough Hp, tén thi sinh So bao danh DE THI THtf TN THPT NAM 2023 Bñi thi mon TOP Thki gian lâm bâi 90 phut; khong k[.]
SCi GD & DT NAM DINH CUM CAC TRIF G THPT HUYEN NAM TRJC DE C NH TH°tfC (Dé thi câ 06 trough Hp, tén thi sinh: DE THI THtf TN THPT NAM 2023 Bñi thi mon: TOP Thki gian lâm bâi: 90 phut; khong ké thki gian giao dé Ma dé thi: 501 So bao danh: Can Trong khñng gian Ops , vécto nao sau day la mot véc to phap tuyén cua mp(P) : — v + I = 0? A (4; —3; 0) B (4; —3; I) C (4; —3; — I) D (—3; 4; 0) Can Tap xac dinh cua hâm SO y —- x' — 3s — 4)* la: A D —— p—I; 4) B D —— B C D —— B \ (—I, 4t D D —— ( ,— I) (4;+ ) Can Tap nghiem cua phirnng trinh log $x' +1J = la: C S —— —1;1 D S —— $1$ Can Goi S la dien tich cua hinh phang giñi han bñi cac du g y — 3‘ , y — 0, x = 0, x = Menh dé nâo ditñi day dung? B S —— cJ3"dx C N = vJ 3‘dr D S = J3"dx 0 Can S Cho cap so nhân (ii„ ) cñ sñ hang daum l = va cñng boi q = So hang thit nam cua cap so nhân (ii„) la A it, = 96 B it, = 32 Can Tiem can diing cua thi hâm so y = —1 —3 C u, = 48 D = 24 la dit g thang cñ phimng trinh C.a———3 D x —— Can Trong khñng giano - , cho mat cau pS ) cñ phirnng trinh (.v —1)' + ( v + 2)' + (- + 1)' = Mat cau pS) cñ tpa cua tâm la: A (—1; 2;1) B (1;—2;—1) Can Cho hinh chñp S.ABC cñ day DC SA —— 2o Thé tich khñi chñp S.DC' bang: A 3a’ B ' C (1; —2;1) D (1; 2; 2) la tarn giac vuñng tai A ; M = 3s , AC —— a va duñng cao C D — Can Cho hinh chñp S.ABCD cñ day ABCD la hinh chit nhât tâm I , canh bén SA vuñng gñc vñi day Khang dinh nâo sau day ding? A {SCD) (SAD ) B (SBC ) ( SIA ) C (SDC ) (6M) D (SBD) (SAC ) Can 10 Cho hâm sñ f px) = ax’ + A' + c(n,f ,c e B) va cñ bâng bién thién nhu hinh vé Tr n l a de 01 So nghieni thitc dirnng cua phirnng trinh 2f(x) —3 = la: A B C D Can 11 Cho mot hinh tru cñ duñng sinh bang 3r va bân kinh day bang r Dien tich xung quanh cua hinh tru da cho la: Can 12 Mot nguyén hâm cua hâm so f(x) = C 3d —— 6c r' — la D Sql —— 2cr' (x) bang: (2a—3)' B i 2(2z — 3)' C 21n 2z — 3J D — In Can 13 Hâm sñ y — z' — 3z' — 9z + dđng bién trén không nâo ditđi day? B.(—2;+x) C.(3;+x) D.(—xQ) Can 14 Trong khñng gian vñi he truc tpa Op- , cho a = —i + 2y — 3k Tpa cua vecto n la: A (2;—3; —1) B (—1; 2;—3) C (2;—1;—3) D (—3; 2; — 1) Can 15 Dirñng cong hinh bén la dñ thi cua mot hâm sñ bon hâm so dupe liet ké ñ bon phunng ân A,B,C,D duñi day Hfii hâm sñ dñ lâ hâm sñ nao? A y -— —x' + 3z +1 B y —— x’ — x' + I Can 16 Clio hinh chñp S ABC cñ SA thang SC va mât phang (6M) A C y —— x’ — 3x + I D y —- —x°" + x — I p ABC), SA — a , bABC déu canh a Tinh tang gñc giiia dung c ' D Can 17 Cho tarn giac ABC vuñng cân tai A , cñ canh AB —— a Gpi H la trung diém cua BC Thé tich cua khoi non tao thânh quay hinh tarn giac MC xung quanh trucla: va’ A B ‘°' c °' 12 12 12 '' d' thi hâm sñ dao hâm v = f’(x) utter hinh ve bén Hâm so v = f(x) dñng Cen 8n o g nao ditñi day Trang 3, - Ma dé A (—1; 3) B (0; 2) C (1; +m) D (—1; 0) Can 19 Gia In nho nhat cua hâm sñ /(x) = x’ — 24a’ —4 trén [0;19] bang: A —110 B —148 C —149 D —144 Can 20 Sñ giao diém cua dung cong $C) : v = a-’ — 2x +1 va dir g thang rf : y = z —1 la: A B Can 21 Biéu thiic P —— C D x , (.x > 0) viét duñi dang fury thira vñi sñ mii him la: A P — x" B P — x" Can 22 Cho hâm sñ v = f{.x ) xac dinh trén C P — x’ va cñ bâng xét dau: Hâm sñ f ‹x) cñ bao nhiéu diém cuc tri? A B C Can 23 Tim nguyén hâm cua hâm sñ f(.x)= e’ i D 2e Can 24 Trong khñng gian vñi he truc tpa duo fi.yc , cho meat cau cñ phuong trinh (.v — 1)" + ( y — 1)" + (- +1)" = 36 cat truc On- tai diém N, B Tpa trung diém cua doan AB la: A (0, 0, —I) B (0, 0, I) C (1,1, 0) D (—1, —1, 0) Can 25 Trong cac hâm sñ sau, ham sñ nao dñng bién trén ii ? 2z —1 A /(x) = ' — 4s + B f x ) - C /(z) = ' — 3z' + 3z — D /(z) = z’ — 2z' — Can 26 Trong kliñng gian O - , phunng trinh mat phang pP) cat ba truc toa lan lent tai A,B,C clio H(1; 2; 3) lâm trpng tâm tarn giac DC la: A 6x + 3v + 2- — 18 = C 6.x — v + 2- — 18 = B .v + i' + - = D 6.x + y + 2- — 18 = hoac+ v + 3- = Can 27 Cho khoi chñp S ID cñ day la hinh binh hânh tâm O, biét thé tich khoi chñp 6.Of bang 10 cv' Thé tich khoi chñp S.ABD bang: A 20 cm’ Trang 2/6 - Ma dé B 30ciii’ D.40rm' Can 28 Trap nghiem cua bat phunng trinh B 3 —2 la: C Can 29 So cac gia tri nguyén cua tham so m thuoc $—2023; 2023a dé thi hâm so y ding nam bén trâi truc tung la: A.4046 B.4044 Can 30 Cho C 2022 2‘ + co tiem can D 2023 fax)dx va J 3f( ) — ((.x)) ‹lx 10 Khi dñ J g p.x) kx bang: A B —4 C 17 D —1 Can 31 Cho hinh chop tarn giac déu S.ABC co canh day bang e va canh bén bang o cau ngoai tiép hinh chop N.MC la: a 3a A B — Can 32 Goi dien tich hinh phang giñi han bñi dñ thi hâm so (C) : Bân kinh meat va hai truc toa duo la N Tinli A S = 4ln4 B.S in4 i c s —— i in4 A 2o’ B 3ri’ C o’ D 6o’ n S= 4hi4 3 Can 33 Cho ling tru ditng ABC.A B’C’ cñ day MC la tarn giac vuñng tai C, CA —— CB —— ri va W’ = 6s Thé tich khoi lâng tru ABC.AB’C’ bang Can 34 Trap nghiem cua phirong trinh log $r' +1) = la Can 35 Mot hop chiia 11 qua cau gñm qua cau mau xanh va qua cau mau Lay ngau nhién dñng thñi qua cau tu hop Tinh xac suat dé lay du c qua cau khac mau A — B — C — D 11 11 11 22 Can 36 Tim tat ca cac gia tri thitc cua m dé phirnng trinh x’ — 2.v' — = 2nl —1 co ding nghiem thuc phân biet C < D < < 2 Can 37 Cho hinh leap phunng ABCD A B’C’D’ cñ canh bang a Goi U,, U,, U, lan lull la thé tich cua khoi tru A < < B < ngoai tiép, khoi cau noi tiép, khoi cau ngoai tiép hinh leap phunng ABCD.A B’C’D’ Tinh gia tri P —— ' A P B P 3 Can 38 Co bao nhiéu gia tri nguyén cua tham so m e [—20; 20a dé bat phunng trinh Trang - Ma dé log, x' + mlow A 23 Trang 4, - Ma dé + m +l co khñng qua 20 nghiem nguyén? B 20 C 21 D 22 Can 39 Cho khoi chñp S.ABCD cñ day la hinh binh hânh Goi M , N la hai diém nam trén hai canh Sh ,SD clio SM SN =—, = biét G la tâm tarn giac SAB Tinh ti sñ thé tich SC ND 16 B 18 Can 40 Biét J A 13 p c 20 12 dx = o — In I› vñi n, la cac sñ nguyén dirong Tinli P —- ‹i" + h' B S C D 10 Can 41 Cho hinh lâng ip diing ABC A B’C’ cñ day DC la tain giac vuñng can, M = AC —— a , AA’ —— i Tinh khoâng cach giiia hai dung thang chéo AB’ va BC’ tlieo a a p B C Can 42 Clio a ,6 la cac so thuc during khac 1, dir g thang d song song truc hônh cat true tung, dđ thi hâm so y = a' , thi hâm so v = b’ lan luy tai H , M , N (nhir hinh bén) Biét HM —— 3MV Menh dé nao sau day dung? q = b” dH z.ii z A b4 = a’ B b’ —— n * C 3s —— 4b D 4s = 3b Can 43 Trong khñng gian vñi he truc O.g-, cho diém A(2;—2; 2) va meat cau pS ) : x' + y!" + (c + 2)' — Diém M di chuyén trén meat cau pS) dñng thñi thoa man OM.AM —— Diém M luñn thuoc meat phang nao dirñi day? A 2.x — y + 6- — = C 2.x — v + 6- + = B 2.x + y + 6- + = D 2.v — y — 6- + = Can 44 Cho hâm so biac bon y — f{x) cñ dđ thi hâm so y = /’(•) nhu hinh vé bén Hâm so g px)= f $x' —4) +x — 8s' co bao nhiéu diém citc tiéu? Trang - Ma dé A B C D Can 45 Gia sit hâm sñ y — f px) lién tuc, nthan gia tri during trén (0;-i-in) va thfia mân /(1) = 1, f(- ) = f’(x) + , vñi mpi x > Menh dé nâo sau day dung? A < /(5) < B < /(5) < C nghiem ding vñi mpi x e dirñi day? A (50; 70) B (—10;10) Hfii m thuoc khoâng nâo C (30;50) D (10;30) Can 49 Cho khoi chñp S.ABC cñ day la tarn giac vuñng cân tai B Khoâng cach tit A dén mat phang pSBC) bang o , SAB —— SCB —— 90’ Khi dai canh AB thay dñi, thé tich khoi chñp S.ABC cñ gia tri nhfi nhat bang A o' B a' C o' p 6a' Can 50 Cñ bao nhiéu cap so px; y) vñi z, y la cac so nguyén thfia mân dong thñi hai diéu kien sau: 4.2’ °"' — 2log (2s) +x = va 21og px+ y) — x — y A Trang 6/6 - Ma dé B C D ... So cac gia tri nguyén cua tham so m thuoc $? ?2023; 2023a dé thi hâm so y ding nam bén trâi truc tung la: A.4046 B.4044 Can 30 Cho C 2022 2‘ + co tiem can D 2023 fax)dx va J 3f( ) — ((.x)) ‹lx... va BC’ tlieo a a p B C Can 42 Clio a ,6 la cac so thuc during khac 1, dir g thang d song song truc hônh cat true tung, dđ thi hâm so y = a'' , thi hâm so v = b’ lan luy tai H , M , N (nhir hinh... 2‘ — 2°‘ + 2023a'' Biét rang tñn tai sñ thitc m cho bat phitnng trinh f p4‘ — mx + 37iii) + f $(.v — m — 37) 2‘ ) > nghiem ding vñi mpi x e dirñi day? A (50; 70) B (—10;10) Hfii m thuoc khoâng