1. Trang chủ
  2. » Tất cả

Luận văn thạc sĩ nghiên cứu tổng hợp vật liệu composite nife2o4 graphen oxit biến tính ứng dụng làm chất xúc tác quang phân hủy chất hữu cơ ô nhiễm trong môi trường nước

134 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 134
Dung lượng 4,13 MB

Nội dung

i LỜI CAM ĐOAN Tơi xin cam đoan cơng trình kết nghiên cứu riêng tôi, thực hướng dẫn khoa học PGS TS Nguyễn Thị Vƣơng Hoàn TS Lê Thị Thanh Thúy Các số liệu, kết nêu luận văn trung thực chưa công bố cơng trình nghiên cứu Tơi xin chịu tránh nhiệm nghiên cứu Học Viên Nguyễn Thị Thúy e ii LỜI CẢM ƠN Tôi xin bày tỏ lòng biết ơn sâu sắc tới PGS TS Nguyễn Thị Vƣơng Hoàn TS Lê Thị Thanh Thúy – tận tình hướng dẫn, giúp đỡ, bảo động viên tơi hồn thành tốt luận văn Trong q trình thực luận văn tơi nhận nhiều quan tâm tạo điều kiện Thầy, Cô khoa Khoa học tự nhiên - Trường Đại học Quy Nhơn Tơi xin bày tỏ lịng cảm ơn chân thành tới quý Thầy, Cô Tôi xin chân thành cảm ơn gia đình, bạn bè tập thể lớp Cao học Hóa K21 ln động viên, khích lệ tinh thần suốt trình học tập nghiên cứu khoa học Mặc dù cố gắng thời gian thực luận văn cịn hạn chế kiến thức thời gian, kinh nghiệm nghiên cứu nên khơng tránh khỏi thiếu sót Rất mong nhận thông cảm ý kiến đóng góp q báu từ q Thầy, Cơ để luận văn hồn thiện Tơi xin chân thành cảm ơn! Bình Định, tháng năm 2020 Học Viên Nguyễn Thị Thúy e iii MỤC LỤC Trang Trang phụ bìa LỜI CAM ĐOAN……………………………………………………………i LỜI CẢM ƠN……………………………………………………………….ii MỤC LỤC………………………………………………………………… iii DANH MỤC CHỮ VIẾT TẮT, KÍ HIỆU……………………………… vi DANH MỤC CÁC BẢNG…………………………………………………vii DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ………………………………….viii MỞ ĐẦU Chƣơng 1: TỔNG QUAN 1.1 Tổng quan graphit 1.2 Tổng quan graphen oxit graphen oxit biến tính 1.2.1 Graphen oxit (GO) 1.2.2 Graphen oxit biến tính 12 1.3 Vật liệu ferrite spinel NiFe2O4 16 1.3.1 Cấu trúc vật liệu ferrite spinel 16 1.3.2 Tính chất từ vật liệu ferrite spinel 17 1.3.3 Các yếu tố ảnh hưởng đến tính chất từ hệ hạt nano ferrite spinel 18 1.3.4 Các phương pháp tổng hợp vật liệu ferrite spinel MFe2O4 25 1.3.5 Ứng dụng ferrite spinel MFe2O4 28 1.4 Vật liệu nanocomposite MFe2O4/GO GO biến tính 28 1.5 Giới thiệu xúc tác quang 30 1.5.1 Khái niệm xúc tác quang 30 1.5.2 Cơ chế phản ứng quang xúc tác 31 e iv 1.6 Giới thiệu thuốc nhuộm hoạt tính RhB MB 37 1.6.1 Thuốc nhuộm hoạt tính RhB 37 1.6.2 Xanh metylen (MB) 38 Chƣơng 2: PHƢƠNG PHÁP NGHIÊN CỨU VÀ THỰC NGHIỆM 40 2.1 Thực nghiệm 40 2.1.1 Thiết bị hóa chất 40 2.1.2 Tổng hợp vật liệu 41 2.2 Các phƣơng pháp nghiên cứu 43 2.2.1 Phương pháp nhiễu xạ tia X (XRD)… 43 2.2.2 Phương pháp quang phổ hồng ngoại (FT-IR) 45 2.2.3 Phương pháp quang phổ tia X phân tán lượng (EDX) 46 2.2.4 Ảnh hiển vi điện tử quét (SEM) 47 2.2.5 Phương pháp hiển vi điện tử truyền qua (TEM) 47 2.2.6 Phổ quang điện tử tia X (EDX) 48 2.2.7 Từ kế mẫu rung (VSM) 49 2.2.8 Phương pháp phân tích nhiệt 49 2.2.9 Phương pháp đẳng nhiệt hấp phụ - khử hấp phụ nitơ (BET) 50 2.2.10 Phương pháp phổ phản xạ khuếch tán tử ngoại – khả kiến (UVVis DRS) 50 2.3 Khảo sát hoạt tính quang xúc tác phản ứng phân hủy RhB 53 2.3.1 Xây dựng đường chuẩn 53 2.3.2.Khảo sát hoạt tính quang xúc tác vật liệu phản ứng phân hủy RhB 55 2.3.3 Nghiên cứu động học trình xúc tác 59 Chƣơng 3: KẾT QUẢ VÀ THẢO LUẬN 62 3.1 Đặc trƣng vật liệu 62 3.1.1 Vật liệu niken ferrite (NF) 62 e v 3.1.2 Vật liệu graphen oxit, graphen oxit biến tính 69 3.1.3 Vật liệu composite NF/ GO-N NF/ GO-N,S 77 3.2 hảo sát hoạt t nh úc tác quang vật liệu 91 3.2.1 hảo sát thời gian đạt cân b ng hấp phụ 91 3.2.2 Đánh giá hoạt tính xúc tác quang vật liệu phản ứng phân hủy RhB 92 3.2.3 hảo sát yếu tố ảnh hưởng đến hiệu suất xúc tác quang vật liệu 94 3.3 Nghiên cứu động học phản ứng quang úc tác vật liệu composite NF/GO-N,S 97 3.4 Nghiên cứu chế phản ứng 100 3.5 tái sử dụng vật liệu 103 ẾT LUẬN VÀ IẾN NGHỊ 105 I KẾT LUẬN 105 II KIẾN NGHỊ 107 DANH MỤC CƠNG TRÌNH KHOA HỌC ĐÃ CƠNG BỐ 108 TÀI LIỆU THAM KHẢO 109 QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN THẠC SĨ( Bản sao) e vi DANH MỤC CÁC TỪ VIẾT TẮT, Í HIỆU AOPs Q trình oxi hóa nâng cao (Advance Oxidation Process) BET Phương pháp đẳng nhiệt hấp phụ - khử hấp phụ nitơ (BnenceuerEmmett- Teller) CB Vùng dẫn (Conduction Band) e CB- Electron quang sinh (Photoelectron electron) EDX Phương pháp phổ tán xạ lượng tia X (Energy Dispersive XRay Spectroscopy) Eg Năng lượng vùng cấm (Band gap energy) GO Graphen oxit (Graphene oxide) h+VB Lỗ trống quang sinh (Optical birth hole) HĐBM Hoạt động bề mặt (Surface active agent) IR Phương pháp phổ hồng ngoại (Infrared Spectroscopy) MB Xanh Methylen NF Niken ferrite (NiFe2O4) RhB Rhodamine B SEM Phương pháp hiển vi điện tử quét (Scanning Electron Microscopy) TEM UV-Vis Hiển vi điện tử truyền qua (Transmission Electron Microscopy) Phổ hấp thụ phân tử (Ultraviolet-visible) UV-Vis DRS Phương pháp phổ phản xạ khuếch tán tử ngoại-khả kiến (Ultraviolet-visible Diffuse Reflectance Spectra) VB Vùng hóa trị (Valence band) VSM Từ kế mẫu rung (Vibrating Sample Magnetmeter) XPS Phổ quang điện tử tia X( X-ray photoelectron spectroscopy-XPS) XRD Nhiễu xạ tia X( X-Ray Diffraction) e vii DANH MỤC CÁC BẢNG BIỂU Bảng 1 Thơng số bán kính số ion kim loại ·························· 16 Bảng Phân bố ion vị trí cấu trúc spine ······················ 17 Bảng Tính chất từ số hệ hạt nano có hình dạng khác nhau.····· 19 Bảng Ảnh hưởng thành phần đến tính chất từ ····················· 22 Bảng Thế oxi hóa chất oxy hóa điển hình ························· 33 Bảng Các loại hóa chất sử dụng đề tài ························ 40 Bảng 2 Các thí nghiệm chuẩn bị xây dựng đường chuẩn RhB·············· 53 Bảng Các thí nghiệm chuẩn bị xây dựng đường chuẩn MB ·············· 54 Bảng Thành phần nguyên tử nguyên tố có NF ·················· 67 Bảng Thành phần phần trăm nguyên tử nguyên tố graphit; GO GO-N, GO-N,S ······················································· 77 Bảng 3 Các thông số đặc trưng của NF/GO-N NF/GO-N,S ········ 82 Bảng Phần trăm nguyên tố mẫu NF; NF/GO; NF/GO-N; NF/GO-N,S ······························································ 83 Bảng Năng lượng vùng cấm vật liệu ······························· 93 Bảng Hằng số tốc độ k phản ứng theo mơ hình Langmuir – Hinshelwood ····························································· 98 Bảng Hằng số tốc độ phản ứng theo mơ hình Langmuir – Hinshelwood ··························································· 100 Bảng Hiệu suất xúc tác quang chất xúc tác NF/GO-N,S với chất dập tắt ··································································· 102 e viii DANH MỤC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Cấu trúc tinh thể kim cương graphit (3D)······················ Hình Sơ đồ tạo Graphen oxit từ graphit ······································ Hình Cấu trúc GO theo Lerf – Klinowski ······························· Hình Liên kết hydro lớp graphit oxit ······························ 10 Hình Cấu tạo liên kết nguyên tử nitrogen N-graphene········· 13 Hình Cấu trúc hình thành vật liệu nanocomposite MnO2/N-GO····· 14 Hình Sơ đồ tổng hợp graphen dopping N,S ································· 15 Hình 8.Cấu trúc tinh thể củaferrite spinel ······································ 16 Hình Sự phụ thuộc Ms vào nồng độ pha tạp Zn2+ hệ nano ZnxM1-x Fe2O4 (M=Fe, Mn) ············································· 21 Hình 10 Sự phụ thuộc mômen từ vào từ trường H (a) H/T (b) nhiệt độ khác hạt nano Fe có kích thước D = 4,4 nm ···· 23 Hình 11 Lực kháng từ phụ thuộc vào kích thước hạt···················· 24 Hình 12 Đường M(H) với kích thước khác (a) phụ thuộc lực kháng từ vào kích thước hệ hạt nano Fe3O4 300 K (b) ···· 25 Hình 13 Đường M(H) với kích thước khác (a) phụ thuộc lực kháng từ vào kích thước mẫu Co0,4Fe2,6O4(b) ··············· 25 Hình 14 Cơ chế phản ứng xúc tác quang hóa dị thể ························· 32 Hình 15 Sơ đồ biểu diễn chế oxi hóa ······································ 34 Hình 16 Sơ đồ biểu diễn chế khử ··········································· 35 Hình 17 Cơ chế xúc tác quang vật liệu biến tính A B chất bán dẫn ····················································································· 36 Hình 18 Cơng thức hóa học RhB ·········································· 38 Hình 1.19 Cơng thức 3,7-bis(Dimethylamino)-phenothiazin-5-ium chloride (hay xanh metylen) ··········································· 38 e ix Hình Sơ đồ nhiễu xạ Rơnghen ··············································· 44 Hình 2 Sơ đồ tia tới tia························································ 44 Hình Độ tù peak phản xạ gây kích thước hạt ···················· 44 Hình Phổ UV- Vis RhB ··················································· 53 Hình Đường chuẩn Rhodamine B (RhB) ······························· 54 Hình Phổ UV- Vis MB ···················································· 55 Hình Đường chuẩn xanh metylen (MB) ································ 55 Hình Giản đồ XRD NF nung nhiệt độ 3500C (a), 4000C (b), 4500C (c), 5000C (d) 7000C (e) ······································ 62 Hình 3.2 Giản đồ phân tích nhiệt NF ········································· 63 Hình 3 Ảnh TEM mẫu NF-4500C (a), NF-5000C (b) NF-7000C (c) ·········································································· 64 Hình Giản đồ XRD NF tỉ lệ mol Fe3+ Ni2+ khác nhau······ 65 Hình Phổ EDX vật liệu NF tỉ lệ khác nhau······················ 66 Hình Đường cong từ trễ mẫu NF tổng hợp tỉ lệ mol Fe3+ Ni2+ khác nhau···························································· 67 Hình Đồ thị biểu diễn phụ thuộc C/Co theo thời gian vật liệu NF tỉ lệ ································································· 68 Hình Phổ XPS tồn phần (a), Ni2p (b), Fe2p (c) O1s (d) vật liệu NF 2,0:1,0 ································································· 70 Hình Giản đồ nhiễu xạ tia X GO; GO-N1,0 ; GO-N1,5 GO-N2,0 ·································································· 71 Hình 10 Giản đồ nhiễu xạ tia X GO; GO-N,S1,0 ; GO-N,S1,5 GO-N,S2,0 ···························································· 72 Hình 11 Phổ FT-IR mẫu GO mẫu GO-N-1; GO-N-1,5 ; GO-N-2,0 ································································ 74 Hình 12 Phổ FT-IR mẫu GO mẫu GO-N,S1,0 ; GO-N,S1,5; e x GO-N,S2,0 ······························································ 74 Hình 3.13 Đồ thị biểu diễn phụ thuộc C/Co theo thời gian mẫu vật liệu GO-N tỉ lệ khác ············································ 75 Hình 14 Đồ thị biểu diễn phụ thuộc C/Co theo thời gian mẫu vật liệu GO-N,S tỉ lệ khác ···································· 76 Hình 15 Giản đồ nhiễu xạ tia X GO, NF, NF/GO-N NF/ GO-N,S ····························································· 78 Hình 16 Phổ IR GO; GO-N; GO-N,S; NF; NF– GO-N NF– GO-N,S ··························································· 78 Hình 17 Ảnh SEM composite NF/GO-N, NF/GO-N,S ············ 79 Hình 18 Ảnh TEM composite NF/GO-N NF/GO-N,S ········· 80 Hình 19 Đường đẳng nhiệt hấp phụ- khử hấp phụ N2 77 K NF/GO-N NF/GO-N,S ·························································· 80 Hình 20 Đường cong từ trễ NF, NF/GO-N NF/GO-N,S ············ 81 Hình 21 Phổ XPS tồn phần NF, NF/GO NF/GO-N; NF/GO-N,S ··· ·························································································· 82 Hình 22 Phổ XPS phân giải cao C1s NF/GO-N,S ················ 84 Hình 23 Phổ XPS phân giải cao O1s NF/GO-N,S ················ 84 Hình 24 Phổ XPS Fe2p NF, NF/GO-N, NF/GO-N,S ············ 85 Hình 25 Phổ XPS Ni2p NF/GO-N,S ······························· 86 Hình 26 Phổ XPS N1s, S2p NF/GO-N,S ························· 87 Hình 27 Phổ XPS phân giải cao O1s NF, NF/GO-N, NF/GO-N,S······························································ 88 Hình 28 Phổ UV-Vis trạng thái rắn NF, NF/GO-N NF/GO-N,S··· 89 Hình 29 Đồ thị phụ thuộc (F(R)hϑ)2 theo lượng ánh sáng bị hấp thụ NF, NF/GO-N NF/GO-N,S ························· 90 Hình 30 Dung lượng hấp phụ RhB theo thời gian mẫu NF, GO-N, e 109 TÀI LIỆU THAM HẢO TÀI LIỆU TIẾNG VIỆT [1] Lê Thị Mai Hoa, Hà Quang Ánh, Lê Hà Giang, Nguyễn Kế Quang, Ngô Tiến Quyết, Quản Thị Thu Trang Vũ Anh Tuấn, Study on dye reactive RR 195 photodegradation ability from aqueous solution by CoFe2O4/ GO composite, Tạp chí Xúc tác hấp phụ, ISSN 0866-7411, T4, N0 2, 39-44 (2015) [2] Lê Thị Mai Hoa, Hà Quang Ánh, Lê Hà Giang, Nguyễn Kế Quang, Đào Đức Cảnh, Nguyễn Thị Phương, Trần Thị Kim Hoa, Đặng Tuyết Phương Vũ Anh Tuấn, Synthesis, characterization and application of novel MnFe2O4- rGO composite in photocatalytic degradation of reactive dye, Proceedings of IWNA 2015,11-14 November 2015, Vung Tau, Viet Nam pp 513-516 [3] Nguyễn Hữu Đức (2008), Vật liệu từ cấu trúc nano điện t spin, Nhà xuất đại học Quốc gia Hà Nội: pp 49-53 [4] Nguyễn Hữu Hiếu, Đặng Thị Minh Kiều, Phan Thị Hoài Diễm, Tổng hợp Fe3O4/ graphen oxit nanocomposit để x lý nước thải, Tạp chí phát triển KH&CN, tập 18, số T6, 212-220 (2015) [5] Nguyen Thi Vuong Hoan , Nguyen Ngoc Minh, Thoi Thi Kim Nhi, Nguyen Van Thang, Vu Anh Tuan , Vo Thang Nguyen, Nguyen Mau Thanh, Nguyen Van Hung and Dinh Quang Khieu, TiO2/Diazonium/Graphene Oxide Composites: Synthesis and Visible-Light-Driven Photocatalytic Degradation of Methylene Blue, Journal of Nanomaterials Volume 2020, Article ID 4350125, 15 pages [6] Nguyen Thi Vuong Hoan, Nguyen Thi Anh Thu, Hoang Van Duc, Nguyen Duc Cuong, Dinh Quang Khieu, and Vien Vo, Fe3O4/Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion e 110 Removal , Journal of Chemistry, Volume 2016, Article ID 2418172, 10 pages [7] Phan Văn Tường (2007 ), Vật liệu vô cơ, Nhà xuất đại học Quốc gia Hà Nội: pp 52-54.59 [8] Thân Đức Hiền, Lưu Tuấn Tài (2008), Từ học vật liệu từ, Nhà xuất đại học Bách Khoa - Hà Nội: pp 158, 108-111,162-163 TÀI LIỆU THAM HẢO TIẾNG ANH [9] AbdElmoula, M., Optical, electrical and catalytic properties of titania nanotubes 2011, Northeastern University [10] Ai, W., et al., Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high‐performance i‐ion batteries and oxygen reduction reaction Advanced Materials, 2014 26(35): p 6186-6192 [11] Angelakeris, M., Magnetic nanoparticles: A multifunctional vehicle for modern theranostics Biochimica et Biophysica Acta (BBA)-General Subjects, 2017 1861(6): p 1642-1651 [12] Ariharan, A., B Viswanathan, and V Nandhakumar, Nitrogen doped graphene as potential material for hydrogen storage Graphene, 2017 6(2): p 41-60 [13] Badr, Y and M Mahmoud, Enhancement of the optical properties of poly vinyl alcohol by doping with silver nanoparticles Journal of applied polymer science, 2006 99(6): p 3608-3614 [14] Bai, S., et al., One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal Carbon, 2012 50(6): p 2337-2346 [15] Becerril, H.A., et al., Evaluation of solution-processed reduced graphene oxide films as transparent conductors ACS nano, 2008 2(3): p 463-470 [16] Biddinger, E.J., D Von Deak, and U.S Ozkan, Nitrogen-containing carbon e 111 nanostructures as oxygen-reduction catalysts Topics in Catalysis, 2009 52(11): p 1566-1574 [17] Boroski, M., et al., Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries Journal of hazardous materials, 2009 162(1): p 448-454 [18] Boukhvalov, D.W., Oxidation of a graphite surface: the role of water The Journal of Physical Chemistry C, 2014 118(47): p 27594-27598 [19] Casanovas, J., et al., Origin of the large N1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials Journal of the American Chemical Society, 1996 118(34): p 8071-8076 [20] Chandel, N., et al., Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes Arabian Journal of Chemistry, 2020 13(2): p 4324-4340 [21] Channu, V., R Bobba, and R Holze, Graphite and graphene oxide electrodes for lithium ion batteries Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013 436: p 245-251 [22] Chen, D., M Sivakumar, and A.K Ray, Heterogeneous photocatalysis in environmental remediation Developments in Chemical Engineering and Mineral Processing, 2000 8(5‐6): p 505-550 [23] Cong, Y., et al., Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity Chemistry Letters, 2006 35(7): p 800-801 [24] De Montferrand, C., et al., Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection Acta biomaterialia, 2013 9(4): p 61506157 [25] Deng, H., et al., Monodisperse magnetic single‐crystal ferrite microspheres e 112 Angewandte Chemie, 2005 117(18): p 2842-2845 [26] Ewels, C and M Glerup, Nitrogen doping in carbon nanotubes Journal of nanoscience and nanotechnology, 2005 5(9): p 1345-1363 [27] Fang, Y., et al., CuO/TiO2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials Bulletin of Materials Science, 2012 35(4): p 495-499 [28] Feng, J., et al., Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles Journal of Alloys and Compounds, 2011 509(37): p 9093-9097 [29] Feng, T., et al., One-dimensional nanostructured TiO2 for photocatalytic degradation of organic pollutants in wastewater International Journal of Photoenergy, 2014 2014 [30] Finegold, L and J.L Cude, Biological Sciences: One and Two-dimensional Structure of Alpha-Helix and Beta-Sheet Forms of Poly (L-Alanine) shown by Specific Heat Measurements at Low Temperatures (1.5–20 K) Nature, 1972 238(5358): p 38-40 [31] Friedmann, D., C Mendive, and D Bahnemann, TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis Applied Catalysis B: Environmental, 2010 99(3-4): p 398-406 [32] Fu, C., et al., Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries Int J Electrochem Sci, 2013 8(5): p 6269-6280 [33] Fu, Y and X Wang, Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation Industrial & engineering chemistry research, 2011 50(12): p 7210-7218 [34] Fu, Y., et al., Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis e Applied Catalysis B: 113 Environmental, 2012 111: p 280-287 [35] Fu, Y., et al., Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage Industrial & engineering chemistry research, 2012 51(36): p 11700-11709 [36] Garg, R., N.K Dutta, and N.R Choudhury, Work function engineering of graphene Nanomaterials, 2014 4(2): p 267-300 [37] Geng, D., et al., Nitrogen doping effects on the structure of graphene Applied Surface Science, 2011 257(21): p 9193-9198 [38] Gernjak, W., et al., Photo-Fenton treatment of water containing natural phenolic pollutants Chemosphere, 2003 50(1): p 71-78 [39] Glaze, W.H., J.-W Kang, and D.H Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation 1987 [40] Groves, M., et al., Improving platinum catalyst binding energy to graphene through nitrogen doping Chemical Physics Letters, 2009 481(4-6): p 214219 [41] Guo, H.-L., et al., A green approach to the synthesis of graphene nanosheets ACS nano, 2009 3(9): p 2653-2659 [42] Hashimzade, F., et al., Prediction of half-metallic properties in TlCrS2 and TlCrSe2 based on density functional theory Journal of Magnetism and Magnetic Materials, 2017 435: p 69-75 [43] He, Y., et al., Enhanced photodegradation activity of methyl orange over Z- scheme type MoO3–gC3N4 composite under visible light irradiation Rsc Advances, 2014 4(26): p 13610-13619 [44] Herzer, G., Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets IEEE Transactions on magnetics, 1990 26(5): p 1397-1402 [45] Hou, Y., et al., ZnFe2O4 multi-porous microbricks/graphene hybrid e 114 photocatalyst: facile synthesis, improved activity and photocatalytic mechanism Applied Catalysis B: Environmental, 2013 142: p 80-88 [46] Houshiar, M., et al., Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties Journal of Magnetism and Magnetic Materials, 2014 371: p 43-48 [47] Howe, R., Recent developments in photocatalysis Developments in Chemical Engineering and Mineral Processing, 1998 6(1‐2): p 55-84 [48] Hummers Jr, W.S and R.E Offeman, Preparation of graphitic oxide Journal of the american chemical society, 1958 80(6): p 1339-1339 [49] Iannicelli-Zubiani, E.M., et al., Enhanced lanthanum adsorption by amine modified activated carbon Chemical Engineering Journal, 2018 341: p 7582 [50] Jang, J.t., et al., Critical enhancements of MRI contrast and hyperthermic effects by dopant‐controlled magnetic nanoparticles Angewandte Chemie International Edition, 2009 48(7): p 1234-1238 [51] Kaden, W.E., et al., Size-dependent oxygen activation efficiency over Pd n/TiO2 (110) for the CO oxidation reaction Journal of the American Chemical Society, 2010 132(38): p 13097-13099 [52] Khan, M.M., D Pradhan, and Y Sohn, Nanocomposites for visible light- induced photocatalysis 2017: Springer [53] Khan, M.M., S.F Adil, and A Al-Mayouf, Metal oxides as photocatalysts 2015, Elsevier [54] Khan, Z.U., A Kausar, and H Ullah, A review on composite papers of graphene oxide, carbon nanotube, polymer/GO, and polymer/CNT: Processing strategies, properties, and relevance Technology and Engineering, 2016 55(6): p 559-581 e Polymer-Plastics 115 [55] Kiani, M., et al., Spinel nickel ferrite nanoparticles supported on nitrogen doped graphene as efficient electrocatalyst for oxygen reduction in fuel cells Materials Express, 2017 7(4): p 261-272 [56] Kim, D., et al., Synthesis of uniform ferrimagnetic magnetite nanocubes Journal of the American Chemical Society, 2009 131(2): p 454-455 [57] Krishnamoorthy, K., et al., The chemical and structural analysis of graphene oxide with different degrees of oxidation Carbon, 2013 53: p 38-49 [58] Kubelka, P and F Munk, An article on optics of paint layers Z Tech Phys, 1931 12(593-601): p 259-274 [59] Kumar, P.R., et al., Enhanced properties of porous CoFe2O4 –reduced graphene oxide composites with alginate binders for Li-ion battery applications New Journal of Chemistry, 2014 38(8): p 3654-3661 [60] Kumar, S.V., et al., High performance magnetically separable graphene/zinc oxide nanocomposite Materials Letters, 2013 93: p 411-414 [61] Lee, J.-H., et al., Artificially engineered magnetic nanoparticles for ultra- sensitive molecular imaging Nature medicine, 2007 13(1): p 95-99 [62] Li, W., et al., Evidence for the active species involved in the photodegradation process of methyl orange on TiO2 The Journal of Physical Chemistry C, 2012 116(5): p 3552-3560 [63] Li, Y., et al., Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors Nano energy, 2016 19: p 165-175 [64] Li, Z., et al., Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene Chemical reviews, 2015 115(15): p 7046-7117 [65] Lin, Y., et al., Nitrogen and Sulfur Co‐Doped raphene‐ ike Carbon from Industrial Dye Wastewater for Use as a High‐Performance Supercapacitor Electrode Global Challenges, 2019 3(11): p 1900043 [66] Lingamdinne, L.P., et al., Porous graphene oxide based inverse spinel nickel e 116 ferrite nanocomposites for the enhanced adsorption removal of arsenic RSC advances, 2016 6(77): p 73776-73789 [67] Liu, B., et al., Nitrogen-doped banana peel–derived porous carbon foam as binder-free electrode for supercapacitors Nanomaterials, 2016 6(1): p 18 [68] Liu, R., et al., Synthesis and bactericidal ability of TiO2 and Ag-TiO2 prepared by coprecipitation method International Journal of Photoenergy, 2012 2012 [69] Maciel, R., G Sant’Anna Jr, and M Dezotti, Phenol removal from high salinity effluents using Fenton’s reagent and photo-Fenton reactions Chemosphere, 2004 57(7): p 711-719 [70] Marcano, D.C., et al., Improved synthesis of graphene oxide ACS nano, 2010 4(8): p 4806-4814 [71] Mei, J and L Zhang, Anchoring high-dispersed MnO2 nanowires on nitrogen doped graphene as electrode materials for supercapacitors Electrochimica Acta, 2015 173: p 338-344 [72] Mokhtar Mohamed, M., et al., Nitrogen graphene: A new and exciting generation of visible light driven photocatalyst and energy storage application ACS omega, 2018 3(2): p 1801-1814 [73] Neppolian, B., et al., Graphene oxide based Pt–TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency Ultrasonics sonochemistry, 2012 19(1): p 9-15 [74] Nica, V., et al., Calorimetric method for the determination of Curie temperatures of magnetic nanoparticles in dispersion Journal of Physics: Condensed Matter, 2008 20(20): p 204115 [75] Noh, S.-h., et al., Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis Nano letters, 2012 12(7): p 3716-3721 e 117 [76] Nyangiwe, N.N., et al., Free-green synthesis and dynamics of reduced graphene sheets via sun light irradiation Graphene, 2015 4(03): p 54 [77] Ortiz-Qui onez, J.-L., U Pal, and M.S Villanueva, Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co–Ni ferrite nanoparticles fabricated by low-temperature solution combustion process ACS omega, 2018 3(11): p 14986-15001 [78] Ou, C.F., The effect of graphene/Ag nanoparticles addition on the performances of organic solar cells Journal of Materials Science and Chemical Engineering, 2015 [79] Pare, B., et al., ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation Desalination, 2008 232(1-3): p 80-90 [80] Park, S., et al., Hydrazine-reduction of graphite-and graphene oxide carbon, 2011 49(9): p 3019-3023 [81] Parsons, S., Advanced oxidation processes for water and wastewater treatment 2004: IWA publishing [82] Qin, T., et al., 3D flexible O/N Co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances Journal of Power Sources, 2016 336: p 455-464 [83] Rajeshwar, K., et al., Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media Journal of photochemistry and photobiology C: photochemistry reviews, 2008 9(4): p 171-192 [84] Rehman, S., et al., Strategies of making TiO2 and ZnO visible light active Journal of hazardous materials, 2009 170(2-3): p 560-569 [85] Robertson, A.W and J.H Warner, Atomic resolution imaging of graphene by transmission electron microscopy Nanoscale, 2013 5(10): p 4079-4093 [86] Salazar-Alvarez, G., et al., Cubic versus spherical magnetic nanoparticles: e 118 the role of surface anisotropy Journal of the American Chemical Society, 2008 130(40): p 13234-13239 [87] Samoilova, R.I., A.R Crofts, and S.A Dikanov, Reaction of superoxide radical with quinone molecules The Journal of Physical Chemistry A, 2011 115(42): p 11589-11593 [88] Shan, H., et al., Sulfur/nitrogen dual-doped porous graphene aerogels enhancing anode performance of lithium ion batteries Electrochimica Acta, 2016 205: p 188-197 [89] Shi, L., et al., Nitrogen-doped carbon nanoparticles for oxygen reduction prepared via a crushing method involving a high shear mixer Materials, 2017 10(9): p 1030 [90] Sikhwivhilu, L.M., S.S Ray, and N.J Coville, Influence of bases on hydrothermal synthesis of titanate nanostructures Applied Physics A, 2009 94(4): p 963-973 [91] Smith, R.A., Semiconductors 1978 [92] Song, Q and Z.J Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals Journal of the American Chemical Society, 2004 126(19): p 6164-6168 [93] Song, Z., W Ran, and F Wei, One-step approach for the synthesis of CoFe2O4@ rGO core-shell nanocomposites as efficient adsorbent for removal of organic pollutants Water Science and Technology, 2017 75(2): p 397405 [94] Su, J., et al., Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties The Journal of Physical Chemistry C, 2011 115(30): p 14469-14477 [95] Sun, D., J Yang, and X Yan, Hierarchically porous and nitrogen, sulfur- codoped graphene-like microspheres as a high capacity anode for lithium ion e 119 batteries Chemical Communications, 2015 51(11): p 2134-2137 [96] Sun, L., et al., Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation Journal of alloys and compounds, 2013 564: p 55-62 [97] Sun, Q and S Kim, Synthesis of nitrogen-doped graphene supported Pt nanoparticles catalysts and their catalytic activity for fuel cells Electrochimica Acta, 2015 153: p 566-573 [98] Suresh, S., A Prakash, and D Bahadur, The role of reduced graphene oxide on the electrochemical activity of MFe2O4 (M= Fe, Co, Ni and Zn) nanohybrids Journal of Magnetism and Magnetic Materials, 2018 448: p 4351 [99] Suwanchawalit, C and V Somjit, Hydrothermal synthesis of magnetic CoFe2O4-Graphene nanocomposite with enhanced photocatalytic performance Digest J Nanomater Biostruc, 2015 10: p 769-777 [100] Tabit, R., et al., Magnetic CoFe2O4 nanoparticles supported on graphene oxide (CoFe2O4/GO) with high catalytic activity for peroxymonosulfate activation and degradation of rhodamine B RSC advances, 2018 8(3): p 1351-1360 [101] Thu, N.T.A., et al., Electrochemical determination of paracetamol using Fe3O4/ reduced graphene-oxide-based electrode Journal of Nanomaterials, 2018 2018 [102] Tian, Z., et al., Facile synthesis of highly conductive sulfur-doped reduced graphene oxide sheets Physical Chemistry Chemical Physics, 2016 18(2): p 1125-1130 [103] Torrent, J and V Barrón, Diffuse reflectance spectroscopy of iron oxides Encyclopedia of surface and Colloid Science, 2002 1: p 1438-1446 [104] Turtelli, R.S., et al., Interplay between the cation distribution and e 120 production methods in cobalt ferrite Materials Chemistry and Physics, 2012 132(2-3): p 832-838 [105] Ullah, K., et al., A facile and fast synthesis of novel composite Pt– graphene/ TiO2 with enhanced photocatalytic activity under UV/Visible light Chemical engineering journal, 2013 231: p 76-83 [106] Vafayi, L., S Gharibe, and S Afshar, Development of a Mild Hydrothermal Method toward Preparation of ZnS Spherical Nanoparticles 2013 [107] Vaidyanathan, G and S Sendhilnathan, Characterization of Co1− xZnxFe2O4 nanoparticles synthesized by co-precipitation method Physica B: Condensed Matter, 2008 403(13-16): p 2157-2167 [108] Valix, M., W Cheung, and G McKay, Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption Chemosphere, 2004 56(5): p 493-501 [109] Wang, D., et al., Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation Chemical engineering journal, 2012 198: p 547-554 [110] Wang, H., T Maiyalagan, and X Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications Acs Catalysis, 2012 2(5): p 781-794 [111] Wang, L., et al., Adsorption capability for Congo red on nanocrystalline MFe2O4 (M= Mn, Fe, Co, Ni) spinel ferrites Chemical Engineering Journal, 2012 181: p 72-79 [112] Wang, Y., et al., N-Doping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction Journal of Materials Chemistry A, 2018 6(5): p 2011-2017 [113] Wu, L., et al., Monolayer Assembly of Ferrimagnetic CoxFe3–xO4 e 121 Nanocubes for Magnetic Recording Nano letters, 2014 14(6): p 3395-3399 [114] Wu, X., et al., PEG-assisted hydrothermal synthesis of CoFe2O4 nanoparticles with enhanced selective adsorption properties for different dyes Applied Surface Science, 2016 389: p 1003-1011 [115] Xing, S., et al., Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2 Applied Catalysis B: Environmental, 2011 107(3-4): p 386-392 [116] Yang, L and B Kruse, Revised Kubelka–Munk theory I Theory and application JOSA A, 2004 21(10): p 1933-1941 [117] Ying, J.Y., C.P Mehnert, and M.S Wong, Synthesis and applications of supramolecular‐templated mesoporous materials Angewandte Chemie International Edition, 1999 38(1‐2): p 56-77 [118] Zhang, L and Z Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells The Journal of Physical Chemistry C, 2011 115(22): p 11170-11176 [119] Zhang, L.-L., et al., Corrigendum to" Insight into cobalt-doping in Li2FeSiO4 cathode material for lithium-ion battery"[J Power Sources 274C (2014) 194-202] JPS, 2015 278: p 826-827 [120] Zhang, X.-J., et al., Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride ACS applied materials & interfaces, 2014 6(10): p 7471-7478 [121] Zhao, G., et al., Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management Environmental science & technology, 2011 45(24): p 10454-10462 [122] Zhu, S., et al., Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors Ultrasonics sonochemistry, 2013 20(3): p 872-880 e 122 [123] B., Zhen G., Muir B.W., Moffat B.A., Harbour P., Murray K.S., Moubaraki Suzuki K., Madsen I., Agron-Olshina N., Waddington L (2011),Comparative 171 study of magnetic behavior of spherical and cubicsuperparamagneticironoxide nanoparticles, The Journal of Physical Chemistry C, 115: pp 327–334 e e ... graphen oxit biến tính ứng dụng làm chất xúc tác quang phân hủy chất hữu ô nhiễm môi trường nước” Đề tài tập trung nghiên cứu tổng hợp chất xúc tác NiFe 2O4/ graphen oxit biến tính N; N S; nghiên cứu. .. nanocomposite NiFe2O4/ graphen oxit biến tính ứng dụng để xử lý chất hữu ô nhiễm môi trường nước Đối tƣợng phạm vi nghiên cứu 3.1 Đối tượng nghiên cứu - Graphen oxit biến tính (bởi N N, S); - Vật liệu. .. hợp graphen oxit biến tính N đồng thời N,S; vật liệu ferrite spinel NiFe2O4; nanocomposite ferrite spinel NiFe2O4/ graphen oxit biến tính; - Nghiên cứu ứng dụng hệ vật liệu NiFe2O4/ graphen oxit

Ngày đăng: 27/03/2023, 06:47

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w