Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [12220d 2mh202047] Xét các số thực dương a, b, x, y th[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = trị nhỏ " ! biểu thức P = x + 2y thuộc tập đây? " ! 5 A ;3 B (1; 2) C [3; 4) D 2; 2 √ ab Giá Câu [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất khơng thay đổi? A 17 tháng B 16 tháng C 18 tháng D 15 tháng log 2x x2 − ln 2x 1 − ln 2x − log 2x A y0 = B y0 = C y0 = D y = x ln 10 2x ln 10 2x3 ln 10 x3 9t , với m tham số thực Gọi S tập tất giá trị m cho Câu [4] Xét hàm số f (t) = t + m2 f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A Vô số B C D un Câu Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C D −∞ Câu [1229d] Đạo hàm hàm số y = Câu [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ơng ta muốn hồn nợ cho ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp cách tháng, số tiền hoàn nợ tháng ông A trả hết nợ sau năm kể từ ngày vay Biết tháng ngân hàng tính lãi số dư nợ thực tế tháng Hỏi số tiền tháng ông ta cần trả cho ngân hàng gần với số tiền ? A 2, 20 triệu đồng B 2, 25 triệu đồng C 2, 22 triệu đồng D 3, 03 triệu đồng Câu Cho hình chóp S ABCD có đáy ABCD hình chữ nhật AB = 2a, BC = 4a (S AB) ⊥ (ABCD) Hai mặt√bên (S BC) (S AD) cùng√hợp với đáy góc 30◦ √Thể tích khối chóp S ABCD √ 3 3 4a 8a 8a a B C D A 9 Câu [2] Tổng nghiệm phương trình x −4x+5 = A B C Câu Hàm số y = x + có giá trị cực đại x A −1 B −2 C D D d = 60◦ Đường chéo Câu 10 Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vng A, AC = a, ACB 0 0 ◦ BC mặt bên (BCC B ) tạo với mặt phẳng (AA C C) góc 30 Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ 4a3 2a3 a3 A a B C D 3 2 Câu 11 [3-c] Giá trị nhỏ giá√trị lớn hàm √ số f (x) = 2sin x + 2cos x √ A B 2 C 2 D Trang 1/4 Mã đề Câu 12 Hàm số sau khơng có cực trị x−2 B y = x3 − 3x C y = x + A y = 2x + x log2 240 log2 15 Câu 13 [1-c] Giá trị biểu thức − + log2 log3,75 log60 A B C D y = x4 − 2x + D −8 Câu 14 [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 20 B 24 C 15, 36 D 3, 55 Câu 15 [2D1-3] Tìm giá trị tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − đồng biến khoảng có độ dài lớn 5 A m ≥ B m > − C − < m < D m ≤ 4 x+2 Câu 16 Tính lim bằng? x→2 x A B C D Câu 17 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m > C m < D m ≤ 4 4 Câu 18 Cho hình chóp S ABCD có √ đáy ABCD hình chữ nhật AD = 2a, AB = a Gọi H trung điểm S ABCD AD, biết S H ⊥ (ABCD), S A = a Thể tích khối chóp √ √ 4a3 2a3 2a3 4a3 A B C D 3 3 Câu 19 Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) đường thẳng z x+1 y−5 = = Tìm véctơ phương ~u đường thẳng ∆ qua M, vng góc với đường thẳng d: 2 −1 d đồng thời cách A khoảng bé A ~u = (2; 2; −1) B ~u = (1; 0; 2) C ~u = (3; 4; −4) D ~u = (2; 1; 6) Câu 20 Phần thực phần ảo số phức z = −3 + 4i A Phần thực 3, phần ảo B Phần thực −3, phần ảo C Phần thực 3, phần ảo −4 D Phần thực −3, phần ảo −4 Câu 21 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất khơng thay đổi? A 102.423.000 B 102.424.000 C 102.016.000 D 102.016.000 4x + Câu 22 [1] Tính lim bằng? x→−∞ x + A −4 B −1 C D Câu 23 [4-1121h] Cho hình chóp S ABCD đáy ABCD hình vng, biết AB = a, ∠S AD = 90◦ tam giác S AB tam giác Gọi Dt đường thẳng qua D song song với S C Gọi I giao điểm Dt mặt phẳng (S AB) Thiết diện √mặt phẳng (AIC) có diện √tích √ hình chóp S ABCD với 2 2 11a a a a A B C D 32 16 Câu 24 [2] Tích tất nghiệm phương trình (1 + log2 x) log4 (2x) = 1 A B C D Trang 2/4 Mã đề Câu 25.√Thể tích tứ diện √ cạnh a √ √ a3 a3 a3 a3 A B C D 12 Câu 26 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ a3 a3 a3 B a C D A Câu 27 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≥ C m > D m ≤ Câu 28 Hình hộp chữ nhật có ba kích thước khác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 29 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = B y(−2) = −18 C y(−2) = D y(−2) = 22 Câu 30 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ môđun z √ √ √ √ 13 B C 13 D A 26 13 Câu 31 √ có nghĩa √ Biểu thức sau không −3 −1 B (− 2) C 0−1 D (−1)−1 A x+3 Câu 32 [2D1-3] Có giá trị nguyên tham số m để hàm số y = nghịch biến khoảng x−m (0; +∞)? A Vô số B C D Câu 33 Một máy bay hạ cánh sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần với vận tốc v(t) = − t + 69(m/s), t khoảng thời gian tính giây Hỏi giây cuối trước dừng hẳn, máy bay di chuyển mét? A 1587 m B 387 m C 25 m D 27 m Câu 34 [2D1-3] Tìm giá trị tham số m để hàm số y = x3 − mx2 + 3x + đồng biến R A −3 ≤ m ≤ B m ≥ C −2 ≤ m ≤ D m ≤ Câu 35 Cho hình√ chóp S ABCD có đáy ABCD hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D = a Thể tích khối √ chóp S ABCD √ √ √ a 15 a3 a3 A a B C D 3 log 2x Câu 36 [3-1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 3 x x ln 10 2x ln 10 2x ln 10 3a Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 38 Mỗi đỉnh hình đa diện đỉnh chung A Bốn mặt B Năm mặt C Ba mặt D Hai mặt Trang 3/4 Mã đề Câu 39 [3-c] Cho < x < 64 Tìm giá trị lớn f (x) = log42 x + 12 log22 x log2 x A 96 B 64 C 81 D 82 Câu 40 Nhị thập diện (20 mặt đều) thuộc loại A {5; 3} B {3; 5} C {3; 4} D {4; 3} Câu 41 Khối đa diện loại {3; 3} có số đỉnh A B D C Câu 42 Cho hàm số y = |3 cos x − sin x + 8| với x ∈ [0; 2π] Gọi M, m giá trị lớn nhất, giá trị nhỏ √M + m √ hàm số Khi tổng √ A B C D 16 Câu 43 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x 12 + 22 + · · · + n2 Câu 44 [3-1133d] Tính lim n3 A B 2x + Câu 45 Tính giới hạn lim x→+∞ x + A B C D +∞ C −1 D Câu 46 Khối đa diện loại {3; 3} có tên gọi gì? A Khối 12 mặt B Khối tứ diện C Khối lập phương D Khối bát diện Câu 47 Khối đa diện loại {3; 5} có tên gọi gì? A Khối bát diện B Khối 20 mặt C Khối tứ diện D Khối 12 mặt Câu 48 Hàm số y = −x3 + 3x − đồng biến khoảng đây? A (−∞; −1) B (−1; 1) C (1; +∞) D (−∞; 1) Câu 49 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = x+2 đồng biến khoảng Câu 50 Có giá trị nguyên tham số m để hàm số y = x + 5m (−∞; −10)? A B C D Vô số - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A A C C B D B 10 A B 11 12 A C 13 15 B D B 17 D 14 C 16 C 18 A 19 B 20 21 B 22 C 23 B 24 C B 26 25 A 27 B 28 29 B 30 31 C B 32 C 33 D D D 34 A 35 C 36 37 C 38 39 C 40 B C B 41 A 42 43 A 44 A 45 A 46 B 48 B 50 B 47 B 49 A D ... = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5. 000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 20 B 24 C 15, 36 D 3, 55 Câu 15 [2D1-3] Tìm giá trị tham số m để f... khoảng Câu 50 Có giá trị nguyên tham số m để hàm số y = x + 5m (−∞; −10)? A B C D Vô số - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A A... nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x 12 + 22 + · · ·