1. Trang chủ
  2. » Tất cả

Plunging motions of an elastically suspended wing with an oscillating flap an experimental and numerical assessment

185 2 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 185
Dung lượng 8,03 MB

Nội dung

Plunging motions of an elastically suspended wing with an oscillating flap An experimental and numerical assessment PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof ir K.C.A.M Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op maandag 13 oktober 2014 om 10:00 uur door Joost Joachim Hermanus Marie STERENBORG ingenieur luchtvaart en ruimtevaart geboren te Nijmegen Dit proefschrift is goedgekeurd door de promotor: Prof dr ir drs H Bijl Copromotor: Dr ir A.H van Zuijlen Samenstelling promotiecommissie: Rector Magnificus Prof dr ir drs H Bijl Dr ir A.H van Zuijlen Prof dr ir G.A.M van Kuik Prof dr ir L.L.M Veldhuis Prof N.N Sørensen Dr -Ing Th Lutz Dr Ir K Boorsma Prof dr F Scarano voorzitter Technische Universiteit Delft, promotor Technische Universiteit Delft, copromotor Technische Universiteit Delft Technische Universiteit Delft Technical University of Denmark Universităat Stuttgart ECN Technische Universiteit Delft, reservelid This research is funded by Agentschap NL (formerly Senternovem), an agency of the Dutch Ministry of Economic Affairs, under project number EOS LT 09001 Printed by Ipskamp Drukkers, The Netherlands c 2014 by J.J.H.M Sterenborg Copyright All rights reserved No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without the prior permission of the author isbn: 978-94-6259-353-4 ii Summary Over the last years fluid-structure interactions have attained more interest emanating from applications, the availability of new numerical approaches for multi-physics coupling and the improved computing capacity that enables simulations of complex multi-physics problems Fluid-structure interactions involved in applications can be undesired but can also be benefited from An example of the latter is the popular research field of load alleviation for wind turbines based on aeroelastic blade deformations, like bend-twist coupling Next to aeroelastic load alleviation, active load mitigation systems for wind turbines also gain much attention Also for these active approaches, the aeroelastic system responses can be important to address Understanding and prediction of fluid-structure interactions can be achieved with numerical simulations One of the problems for numerical simulations of fluid-structure interactions is the validation of the solvers Main reason is the limited availability of proper experimental data, partly due to the complexity of experiments involving fluidstructure interactions This complexity appears amongst others in the determination of unsteady loads on moving objects and unsteady wind tunnel wall corrections Furthermore, the limited amount of data that are available are mostly for lower Reynolds regimes and/or different structures Also for aeroelastic codes used to design wind turbines there is a lack of validation data Therefore, this thesis aims to enhance the possibilities for validation of aeroelastic solvers used for the simulation of aeroelasticity of wind turbines An aeroelastic experiment is conducted using a wing based on the DU96-W-180 wind turbine profile and a Reynolds number of 700 000 Furthermore, in line with active load alleviation systems employing control surfaces, the one degree of freedom plunging wing motion is induced by controlled flap oscillations The flap actuation is sinusoidal as well as the resulting oscillations A rigid body motion is used in the experiment in order to eliminate spatial coupling between flow and structure in numerical simulations Three sub-objectives, elaborated on in the remainder, can be distinguished in this thesis: 1) the assessment of experimental unsteady load determination, 2) a one degree of freedom aeroelastic experiment to setup a validation database, and 3) a comparative numerical study using three 2-D aeroelastic solvers with different levels of fidelity, partially also to identify implications of the numerical modelling in combination with the experimental setup One option to determine the aerodynamic forces is to deduce the instantaneous sectional loads from measured velocity fields using Noca’s method along any closed contour An experiment is conducted to investigate the application of Noca’s method iii first for an aerofoil with an oscillating trailing edge flap Wind tunnel corrections for this specific unsteady flow problem are considered Conclusion of this assessment is that for the experimental data Noca’s approach is relatively sensitive to the contour location: applied to a set of contours a solution of the unsteady loads with an error bandwidth of on average 6.39% of its mean instantaneous values is found Also, compared to Kutta-Joukowski’s theorem and panel code simulations, small offsets of on average about 5% reduction are found in the force coefficients Among others, it is known a higher spatial resolution of the experimental data and more accurate approximations of velocity gradients will improve the force prediction Phase and amplitude of the lift are in close agreement with 2-D panel computations including modelled wind tunnel walls and a gap correction The aeroelastic experiment is conducted at an angle of attack of α = −0.95 ◦ yielding attached flow conditions The flap deflects over a range of about ±2 ◦ with reduced flap frequencies ranging from k = 0.1 to k = 0.3 The damped natural frequency of the mass-damper-spring like structure expressed as a reduced frequency is about k = 0.194 The obtained database contains displacements and time dependent aerodynamic forces It provides a clear insight in typical loads and motions and can be used in comparative studies As expected, the maximum displacement of the wing is found near the system eigenfrequency The lift is dominated by the flap motion and the effective angle of attack due to the motion introduces phase shifts of the lift signal with respect to the flap phase angle Despite the experiment has been setup and executed with the necessary precision, small ambiguities are found in the lift and drag and the data should not be used for code validation Structural assumptions (e.g mass-damper-spring, constant damping) are one of the causes for the ambiguities in the lift Both the data and experiences can be used to (re)design future experiments to improve the quality of the data to the desired level of accuracy for validation Suggestions in this are the extension of the used measurement techniques with surface pressure measurements and simplifications in the supporting structure by a reduction of the number of components In a comparative study the one degree of freedom aeroelastic problem is simulated with three different levels of fidelity 2-D aerodynamic models: Theodorsens model, a panel code and a URANS solver In the numerical models 2-D steady wind tunnel corrections are implemented All models are coupled to a structure solver and the fluid-structure interaction is resolved in both a loosely coupled and strongly coupled fashion The applicability of the 2-D wind tunnel corrections instead of a full modelling is investigated and the accuracy of the different models is assessed Trends in the lift forces, moments and displacements are predicted according to the experimental values, although some phase and amplitude errors are observed Errors are amongst others due to inherent 3-D flow effects in the experiment against 2-D simulations and the application of steady wind tunnel corrections on an unsteady problem Subiterations to reduce the coupling error only have a significant effect on the phase of the lift General conclusion is that compared to expensive 3-D simulations, less expensive 2-D solutions are found that approximate the experimental values for the unsteady test cases For Theodorsens model and the panel code this is achieved with a low computational effort and for URANS the computational effort is moderate iv Dompende bewegingen van een flexibel opgehangen vleugel met een oscillerende klep Een experimenteel en numeriek onderzoek Samenvatting De laatste jaren is vloeistof-vaste stof interactie onderwerp van onderzoek vanwege de vele toepassingen, de beschikbaarheid van nieuwe numerieke benaderingen voor multi-fysische koppelingen en de verbeterde rekenkracht die het mogelijk maakt om complexe, multi-fysische problemen door te rekenen Vloeistof-vaste stof interacties in toepassingen zijn soms onwenselijk, maar kunnen ook benut worden Een voorbeeld van het laatste kan worden gevonden in belastingsreducties voor windturbinebladen door middel van bladvervormingen onder invloed van luchtkrachten, zoals een buig-torsie koppeling Hiernaast is er veel belangstelling voor actieve systemen die belastingen reduceren op windturbinebladen Voor deze actieve systemen kan het ook belangrijk zijn om de vloeistof-vaste stof interactie te beschouwen Begrip van vloeistof-vaste stof interactie kan worden verkregen door numerieke simulaties uit te voeren Een van de problemen van numerieke simulaties is het valideren van de rekencodes Belangrijkste reden is de erg gelimiteerde beschikbaarheid van goede data, mede vanwege de complexiteit van experimenten Deze complexiteit komt onder andere voort uit de bepaling van de niet-stationaire krachten en instationaire windtunnelcorrecties Daarnaast is de gelimiteerde data vaak alleen beschikbaar voor lage Reynoldsgetallen en/of voor andere constructies Ook voor aero-elastische codes gebruikt voor het ontwerpen van windturbines is een gebrek aan validatie data Daarom is het doel van dit onderzoek om de mogelijkheden te vergroten om validaties uit te voeren van aero-elastische codes gebruikt voor het simuleren van windturbines Een aero-elastisch experiment is uitgevoerd, waarbij een vleugel gebaseerd op het DU96-W-180 windturbine profiel en een Reynoldsgetal van 700 000 zijn gebruikt Daarnaast is, net zoals bij actieve belastingsreductiesystemen met kleppen, de op-en-neergaande beweging van de gebruikte stijve vleugel genduceerd door een opgelegde klep beweging De klep oscilleert in een sinus beweging en daardoor beweegt ook de vleugel in een zelfde patroon Het gebruik van een stijve vleugel zorgt er voor dat in numerieke simulaties de koppeling tussen de rekenroosters voor de vloeistof en de vaste stof buiten beschouwing gelaten kan worden Het onderzoek kan worden onderverdeeld in delen, die in het vervolg worden beschouwd: 1) onderzoek naar de experimentele bepaling van instationaire krachten, 2) het ´e´en vrijheids graden aero-elastische experiment voor het vergaren van validatie materiaal, en 3) een vergelijkende studie van drie numerieke rekenmodellen met een verschillende complexiteit, deels ook om de implicaties van de modellering en de experimentele opstelling te beschouwen Een optie voor het bepalen van instationaire luchtkrachten is door de instantane doorsnede krachten te bepalen uit snelheidsvelden middels Noca’s methode toegepast v op een gesloten lijn Een experiment is uitgevoerd om de toepasbaarheid van Noca’s methode voor een vleugel met een bewegende klep te onderzoeken Windtunnelcorrecties voor dit specifieke instationaire probleem zijn ook onderzocht Conclusie is dat, gegeven de experimentele data, Noca’s methode relatief gevoelig is voor de gekozen ligging van de gesloten lijn: voor meerdere gesloten lijnen is een schatting van de instationaire krachten met een bandbreedte van 6.39% van de gemiddelde instantane kracht bepaald Verder zijn er, in vergelijking met Kutta-Joukowksi’s theorie en panelen code simulaties, kleine afwijkingen met een gemiddelde verlaging van zon 5% gevonden in de krachtencoefficiăenten Het is bekend dat onder andere een hogere resolutie voor de ruimte discretisatie en een hogere orde benadering voor de snelheidsafgeleiden leiden tot een verbetering van de voorspelling van de krachten De fase en de amplitude van de liftkracht komen goed overeen met 2-D simulaties met een panelen code met gentegreerde windtunnelcorrecties en een sleuf correctie Het aero-elastische experiment is uitgevoerd voor een invalshoek van α = −0.95 ◦, waarbij de stroming aanligt Hierbij slaat de klep uit over ±2 ◦ met gereduceerde flap frequenties van k = 0.1 tot k = 0.3 De gedempte natuurlijke frequentie van de massademper-veersysteem achtige constructie, uitgedrukt als een gereduceerde frequentie, is ongeveer k = 0.194 Verplaatsingen en tijdsafhankelijke luchtkrachten zijn gemeten De resultaten geven een goed inzicht in de typische krachten en verplaatsingen die kunnen worden gebruikt om vergelijkende onderzoeken te kunnen doen Zoals verwacht is de verplaatsing van de vleugel maximaal rond de natuurlijke frequentie van de constructie De liftkracht is met name afhankelijk van de klepbeweging De effectieve invalshoek door de verticale beweging zorgt voor fase veranderingen in de liftkracht ten opzichte van de klep fasehoek Ondanks een zorgvuldige opzet en uitvoering van het experiment, zijn er tegenstrijdigheden gevonden in de lift en weerstandskrachten die er toe leiden dat de data niet direct voor validatie kan worden gebruikt Aannames voor het structurele model (o.a massa-demper-veersysteem, constante demping) is een van de oorzaken voor de tegenstrijdigheden voor de liftkrachten De gemeten data en opgedane kennis kunnen worden gebruikt om een herontwerp te maken voor nieuwe experimenten, zodat nieuwe data geschikt voor validatie kan worden gemeten Suggesties hiervoor zijn het uitvoeren van oppervlakte drukmetingen en vereenvoudigingen van de ondersteunende constructie door minder componenten te gebruiken In een vergelijkingsonderzoek is het aero-elastische probleem gesimuleerd met drie 2-D stromingsmodellen van verschillende complexiteit: Theodorsens model, een panelen code en een URANS code In de simulatiemodellen zijn 2-D stationaire windtunnelcorrecties gentegreerd Alle stromingsmodellen zijn gekoppeld aan een structureel rekenmodel en de vloeistof-vaste stof interactie is zowel zwak en sterk gekoppeld opgelost De toepasbaarheid van 2-D windtunnelcorrecties in plaats van het simuleren van de volledige opstelling met windtunnel is onderzocht en de nauwkeurigheid van de rekenmodellen is beschouwd Trends in the liftkrachten, momenten en verplaatsingen zijn overeenkomstig voorspeld met de experimentele data, alhoewel fase- en amplitudefouten zijn waargenomen Fouten komen onder andere door de 2-D modellering van een 3-D experiment en de toepassing van stationaraire windtunnelcorrecties voor een instationair probleem Subiteraties om de koppelingsfouten te reduceren hebben alleen een waarneembaar effect op de fase van de liftkracht De algemene conclusie is dat ten opzicht van dure 3-D simulaties, minder dure 2-D voorspellingen zijn gevon- vi den die de resultaten van het experiment benaderen voor de instationaire problemen Voor Theodorsens model en de panelen code is dit bereikt met weinig rekentijd en voor URANS is de rekentijd meer gemiddeld vii viii Contents Summary iii Samenvatting v Contents xii Introduction 1.1 Motivation 1.2 Literature review of present state 1.3 Approach 1.4 Outline 1 Terminology, wind tunnel models and methodologies 2.1 Terminology 2.1.1 Characteristic (non-)dimensional numbers 2.1.2 Flap phase angle 2.1.3 Averaging methods 2.1.4 Data reduction 2.2 Wind tunnel model 2.2.1 Model description 2.2.2 Wing model derived with co-kriging 2.3 Standard wind tunnel corrections for steady flow 2.3.1 Steady corrections closed wind tunnels 2.3.2 Steady corrections for open jet wind tunnels 2.4 Wind tunnel measurements and FSI 2.5 Particle Image Velocimetry 2.5.1 Principles of PIV 2.5.2 Phase-locked PIV 2.6 Methods to derive (un)steady forces 2.6.1 Kutta-Joukowski’s circulatory approach 2.6.2 Noca’s momentum flux equation 2.6.3 Implementation of Noca’s method 9 10 10 11 11 11 12 13 13 14 15 16 16 17 17 17 18 20 ix 2.7 Uncertainty analysis Experimental benchmark I and numerical comparison: with actuated flap 3.1 Problem definition 3.1.1 Low turbulence tunnel 3.1.2 The model and equipment 3.1.3 Steady and unsteady test cases 3.1.4 PIV setup and apparatus 3.2 Numerical model 3.2.1 2-D panel code 3.3 Wind tunnel corrections 3.3.1 Wind tunnel wall corrections 3.3.2 Gap correction 3.4 Results 3.4.1 Force evaluation 3.4.2 Steady cases 3.4.3 Unsteady cases 3.5 Conclusions an aerofoil Experimental benchmark II: a free plunging wing with imposed oscillations 4.1 Problem definition 4.1.1 Open jet wind tunnel 4.1.2 Wind tunnel model 4.1.3 Supporting structure 4.1.4 Structural characteristics 4.1.5 Steady and unsteady test cases 4.2 Measurements and post-processing 4.2.1 Measurement devices 4.2.2 Force derivation 4.2.3 Measurement procedure and post-processing 4.2.4 Uncertainty analysis 4.2.5 PIV setup and apparatus 4.2.6 Wind tunnel corrections 4.3 Results 4.3.1 Steady cases 4.3.2 Unsteady case: 2-D PIV 4.3.3 Unsteady cases 4.4 Conclusions Comparative study of numerical models with imposed flap oscillations 5.1 Problem definition 5.1.1 Test problem simplification 5.1.2 Wind tunnel corrections 5.2 Numerical methods x 24 25 26 26 27 28 29 31 32 32 33 37 38 38 38 40 45 flap 47 48 48 49 49 50 52 54 54 55 57 58 59 61 61 61 67 70 80 for a free plunging aerofoil 83 83 83 84 88 Appendix H Wind tunnel measurements DU96-W-180 The wind tunnel model used in this work is based on the DU96-W-180 aerofoil It is an aerofoil that is part of the DU series, which consists of wind turbine dedicated aerofoils designed at Delft University of Technology The used wind tunnel model has manufacturing tolerances in the order of a few millimetres and therefore the model deviates significantly from the original DU96-W-180 aerofoil, as laid down in Appendix D Furthermore, on the wind tunnel model tripping wire is applied that has some impact on the flow and the determined force coefficients In this appendix 2-D steady wind tunnel measurements for the DU96-W-180 are presented along with integral, 2-D steady measurements for the current wind tunnel model in the same setup as discussed in Chapter Also graphs are provided where both data sets are plotted together H.1 Steady measurement data original DU96-W180 The DU aerofoils are tested in the wind tunnels of Delft University of Technology and IAG Stuttgart, as described by Timmer and van Rooij [2003] In this work the DU96-W-180 aerofoil is tested at a Reynolds number of Re=700 000, for which data is presented by Timmer [2010] Since no tabulated data is published previously for the DU96-W-180 at Re=700 000, in Table H.1 a selection of this data is presented, viz for −15 ◦ ≤ α ≤ 30 ◦ including some hysteresis targeted repeating measurements 147 α [ ◦] -15 -14.5 -14 -13.5 -13.04 -14.04 -15.03 -15.5 -13.04 -12.04 -11.04 -10.04 -9.04 -8.03 -7.03 -6.02 -5.02 -4.02 -3.01 -2.01 -1.00 0.00 1.01 2.01 3.02 4.02 5.03 6.03 cl -0.3348 -0.3458 -0.4003 -0.4964 -0.7263 -0.7198 -0.6964 -0.3402 -0.7263 -0.7152 -0.6830 -0.6486 -0.5933 -0.5201 -0.4340 -0.3429 -0.2478 -0.1467 -0.0387 0.0724 0.1824 0.2944 0.4053 0.5163 0.6272 0.7341 0.8430 0.9478 cd 0.1860 0.1808 0.1802 0.1716 0.0497 0.0767 0.1066 0.1937 0.0497 0.0361 0.0278 0.0228 0.0194 0.0165 0.0144 0.0129 0.0109 0.0097 0.0096 0.0097 0.0102 0.0109 0.0119 0.0130 0.0142 0.0159 0.0175 0.0196 α[ ◦] 7.03 8.04 8.54 9.04 9.54 10.05 11.04 12.04 13.04 14.04 15.04 16.04 17.04 18.04 19.04 20.03 21.03 22.03 23 22 21 20.03 23 24 26 28 30 cm 0.0204 0.0205 0.0222 0.0170 -0.0518 -0.0304 -0.0156 0.0222 -0.0518 -0.0605 -0.0645 -0.0630 -0.0606 -0.0585 -0.0576 -0.0571 -0.0565 -0.0564 -0.0569 -0.0577 -0.0589 -0.0600 -0.0612 -0.0623 -0.0634 -0.0639 -0.0648 -0.0652 cl 1.0546 1.1524 1.1959 1.2324 1.2441 1.2358 1.1847 1.1317 1.1102 1.0932 1.0872 1.0887 1.0864 1.0810 1.0668 1.0467 1.0188 1.0099 0.7755 0.7779 0.7902 1.0467 0.7755 0.7901 0.8838 0.9594 1.0193 cd 0.0218 0.0248 0.0254 0.0262 0.0283 0.0323 0.0503 0.0678 0.0776 0.0917 0.1038 0.1204 0.1353 0.1528 0.1695 0.1875 0.2061 0.2428 0.3612 0.3414 0.3255 0.1875 0.3612 0.4023 0.4823 0.5608 0.6377 cm -0.0660 -0.0658 -0.0640 -0.0613 -0.0559 -0.0511 -0.0553 -0.0572 -0.0524 -0.0535 -0.0534 -0.0567 -0.0598 -0.0637 -0.0674 -0.0726 -0.0773 -0.0894 -0.1179 -0.1171 -0.1167 -0.0726 -0.1179 -0.1456 -0.1666 -0.1864 -0.2050 Table H.1: Steady easurements DU-96-W180, Re=700 000 and −15 ◦ ≤ α ≤ 30 ◦ , clean configuration Source: N Timmer H.2 Steady measurement data current model Steady force measurements for the current wind tunnel model with tripping wires are briefly discussed in this section Tripping wires are applied for all wind tunnel tests presented in this thesis The tripping wires are used to have more confidence on the location of transition, especially also in conjunction with the oscillating flap and the changing pressures In Table H.2 the steady quasi 2-D measurements are presented for tripped conditions The measurements are quasi 2-D, since balance measurements are conducted for the model including the gaps of about mm between the model and the wind tunnel walls These gaps introduce three dimensional flow The measured data is corrected with the wind tunnel measurement system incorporated correction procedure presented in Appendix A 148 α [ ◦] -5.14 -4.11 -3.07 -2.04 -1.01 0.03 1.06 2.1 3.13 4.17 5.2 6.23 7.25 8.27 9.28 10.28 11.29 12.3 13.31 14.31 15.31 16.3 17.3 18.29 19.28 20.26 21.25 22.23 23.11 24.11 25.1 cl -0.168 -0.083 0.007 0.09 0.175 0.263 0.352 0.44 0.526 0.607 0.684 0.751 0.806 0.84 0.865 0.896 0.92 0.95 0.967 0.985 0.997 0.991 0.978 0.98 0.974 0.952 0.933 0.921 0.724 0.737 0.74 cd 0.01447 0.01394 0.01377 0.01459 0.01575 0.01724 0.01867 0.02036 0.02208 0.02425 0.02658 0.02954 0.03321 0.03895 0.04797 0.05724 0.0656 0.07435 0.08412 0.09349 0.10363 0.1189 0.13181 0.14734 0.16551 0.18423 0.20407 0.22672 0.34415 0.36347 0.38094 cm -0.05773 -0.05551 -0.05346 -0.0502 -0.04755 -0.04502 -0.04317 -0.04052 -0.03827 -0.03506 -0.03164 -0.02747 -0.0232 -0.02103 -0.02168 -0.02389 -0.02358 -0.02601 -0.02607 -0.02823 -0.0292 -0.03414 -0.03667 -0.0418 -0.04629 -0.05273 -0.05911 -0.06791 -0.10338 -0.10701 -0.11196 Table H.2: Balance measurements current model, Re=700 000 and −5.14 ◦ ≤ α ≤ 25.1 ◦ , tripped configuration 149 H.3 Combined graphs DU96-W-180 and current wind tunnel model To provide more insight, the data of Table H.2 are plotted together with part of the data of Table H.1 in Figure H.1 Freestream lift, drag and moments coefficients for both the clean DU96-W-180 aerofoil and the tripped wind tunnel model are shown, without the hysteresis loop It can clearly be seen that the data of both wind tunnel models differs significantly As explained the different geometry, the use of tripping wires and three dimensional flow due to the gaps are main causes for the observed differences It is not possible to determine the single contributions for each of these causes from the presented data More wind tunnel tests are needed to accomplish this The trends in the lift and the drag are according to expectancy: 1) a decrease of the lift due to three dimensional flow and also possible decambering due to the tripping wire and shape deviation (see Appendix D), and 2) an increase in drag due to the same contributions For the moment coefficient the trend is more difficult to interpret and pressure measurements would be very helpful 1.4 1.2 cl , cL [−] 0.8 0.6 0.4 0.2 -0.2 DU96-W-180 (clean) Used model (tripped) -0.4 -8 -4 12 16 α[ ◦ ] (a) 2-D and integral lift coefficients 150 20 24 28 0.45 DU96-W-180 (clean) Used model (tripped) 0.4 0.35 cd , cD [−] 0.3 0.25 0.2 0.15 0.1 0.05 -8 -4 12 16 20 24 28 20 24 28 α[ ◦ ] (b) 2-D and integral drag coefficients -0.02 -0.04 cm , cM [−] -0.06 -0.08 -0.1 -0.12 -0.14 -0.16 DU96-W-180 (clean) Used model (tripped) -0.18 -8 -4 12 16 α[ ◦ ] (c) 2-D and integral moment coefficient around 0.25c Figure H.1: Comparison of lift, drag and moment coefficients for DU96-W-180 (2-D, clean) and used wind tunnel model based on DU96-W-180 (integral, tripped, with slits near tunnel walls) Excluding hysteresis loop Source DU96-W-180 (2-D, clean): N Timmer 151 152 Appendix I Tabulated results grid and time step study (U)RANS solver In Chapter a comparative study is reported using various numerical models Standard practise in numerical computations is to conduct a verification study, see e.g Roache [1994] and Stern et al [2001] Chapter provides an overview of the final results; in this appendix the intermediate solutions are given of the grid and time step study for the (U)RANS solver The post-processing is applied as described in Section 2.1.4 For a fair convergence study the maximum level of accuracy is rounded up to four digits, to take into account also inaccuracies that are introduced due to post-processing steps in the data The grid convergence study for the RANS solver is based on steady calculations employing three, body conformal unstructured meshes The meshes have 75k cells, 130k cells and 211k cells In Table I.1 the lift, drag and moment coefficients are presented for each of the meshes Table I.1: Spatial convergence study RANS using three meshes: 75k, 130k and 211k grid cells cl cd cm 75k mesh 0.2924 0.0197 −0.0587 130k mesh 0.2774 0.0172 −0.0553 211k mesh 0.2716 0.0160 −0.0541 The time step study for the URANS solver is conducted using the 130k mesh, applied to the test case with k = 0.198 and δamp = 1.70 ◦ For three time steps, viz ∆t = 0.01 s, ∆t = 0.005 s and ∆t = 0.0025 s, the results for the lift, drag and moment coefficient are provided in Table I.2 Mind that the mean results differ compared to the steady simulations, since the unsteady simulations are conducted including wind tunnel corrections This should however not influence the convergence 153 Table I.2: Temporal convergence study URANS using the 130k mesh with three time steps: ∆t = 0.01 s, ∆t = 0.005 s and ∆t = 0.0025 s Including open jet tunnel corrections cl,mean cl,amp θc l cd,mean cd,amp θc d cm,mean cm,amp θc m ∆t = 0.01 s 0.2176 0.0378 −13.80 ◦ 0.0194 0.0031 5.546 ◦ −0.0550 0.0168 183.7 ◦ ∆t = 0.005 s 0.2175 0.0378 −10.78 ◦ 0.0194 0.0031 3.369 ◦ −0.0550 0.0167 182.0 ◦ 154 ∆t = 0.0025 s 0.2175 0.0378 −10.19 ◦ 0.0194 0.0031 2.464 ◦ −0.0550 0.0167 180.88 ◦ References H.J Allen and W.G Vincenti Wall interference in a twodimensional wind tunnel, with the consideration of the effect of compressibility Technical Report 782, NACA, 1944 URL http://naca.central.cranfield.ac.uk/reports/1944/naca-report-782.pdf C Bak, M Gaunaa, P.B Andersen, T Buhl, P Hansen, and K Clemmensen Wind tunnel test on airfoil Risø-B1-18 with an active trailing edge flap Wind Energy, 13:207–219, 2010 doi: 10.1002/we.369 G.K Batchelor Interference on wings, bodies and airscrews in a closed tunnel of octagonal section Technical Report Report ACA 1, Australian Council for Aeronautics., 1944 T Baur and J Kă ongeter Piv with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena In 3rd International Workshop on Particle Image Velocimetry, University of California-Santa Barbara, 1999 Y.-C Bertram Fung Selected works on Biomechanics and Aeroelasticity, volume Advanced Series in Biomechanics: Volume World Scientific Publishing Co Pte Ltd., 1997 H Bijl, M Carpenter, V Vatsa, and C Kennedy Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: laminar flow Journal of Computational Physics, 179:313–329, 2002 doi: 10.1006/jcph.2002.7059 D Boon Application of uncertainty quantification to a fluid-structure interaction experiment Master’s thesis, Delft University of Technology, 2011 D.J Boon, R.P Dwight, J.J.H.M Sterenborg, and H Bijl Reducing uncertainties in a wind-tunnel experiment using bayesian updating In Proceedings of the 14th AIAA Non-Deterministic Approaches Conference, 2012 E.A Bossanyi GH Bladed - Theory Manual Garrad Hassan, 2003 155 A.L Braslow and E.C Knox Simplified method for determination of critical height distributed roughness particles for boundary-layer transition at Mach numbers from to Technical Report TN 4363, NACA, 1958 T.F Brooks, M.A Marcolini, and D.S Pope Airfoil trailing edge flow measurements and comparison with theory, incorporating open wind tunnel corrections In AIAA/NASA 9th Aeroacoustics conference, AIAA-84-2266, 1984 M Buhl and A Manjock A comparison of wind turbine aeroelastic codes used for certification In 44th AIAA Aerospace Sciences Meeting and Exhibit, volume NREL/CP-500-39113, 2006 URL http://www.nrel.gov/docs/fy06osti/39113.pdf R Burden and J Faires Numerical analysis Brooks/Cole, 7th edition, 2001 M Carpenter, C Kennedy, H Bijl, S Viken, and V Vatsa Fourth-order RungeKutta schemes for fluid mechanics applications Journal of Sientific Computing, 25:157–194, 2005 doi: 10.1007/BF02728987 S Castrup and H Castrup Measurement uncertainty analysis principles and methods Technical Report NASA-HDBK 8739.19, NASA, 2010 URL http://www.hq.nasa.gov/office/codeq/doctree/NHBK873919-3.pdf P.K Chaviaropoulos, I.G Nikolaou, K.A Aggelis, N.N Soerensen, J Johansen, M.O.L Hansen, M Gaunaa, T Hambraus, H Frhr von Geyr, Ch Hirsch, K Shun, S.G Voutsinas, G Tzabiras, Y Perivolaris, and S.Z Dyrmose Viscous and aeroelastic effects on wind turbine blades: VISCEL project partI Wind Energy, 6: 365–385, 2003a doi: 10.1002/we.100 P.K Chaviaropoulos, N.N Soerensen, M.O.L Hansen, I.G Nikolaou, K.A Aggelis, J Johansen, M Gaunaa, T Hambraus, H Frhr von Geyr, Ch Hirsch, K Shun, S.G Voutsinas, G Tzabiras, Y Perivolaris, and S.Z Dyrmose Viscous and aeroelastic effects on wind turbine blades: VISCEL project partII Wind Energy, Vol 6:387–403, 2003b doi: 10.1002/we.101 R Cook Concepts and Applications of Finite Element Analysis Wiley, 2nd edition, 1987 A de Boer, M.S van der Schoot, and H Bijl Mesh deformation based on radial basis function interpolation Computers & Structures, 85 (11-14):784–795, 2007 doi: 10.1016/j.compstruc.2007.01.013 G Dietz, G Schewe, and H Mai Experiments on heave/pitch limit-cycle oscillations of a supercritical airfoil close to the transonic dip Journal of Fluids and Structures, 19(1):1–16, 2004 doi: 10.1016/j.jfluidstructs.2003.07.019 J Donea An arbitrary lagragian-eulerian finite element method for transient fluidstructure interactions Computer Methods in Applied Mechanics and Engineering, 33:689–723, 1982 156 M Drela XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils, volume 54, chapter 1, pages 1–12 Springer Berlin Heidelberg, 1989 doi: 10.1007/978-3-642-84010-4˙1 K Duraisamy, W.J McCroskey, and J.D Baeder Analysis of wind tunnel wall interference effects on subsonic unsteady airfoil flows Journal of Aircraft, 44:1683– 1690, 2007 doi: 10.2514/1.28143 G Elsinga, F Scarano, B Wieneke, and B Oudheusden Tomographic particle image velocimetry Experiments in Fluids, 41(6):933–947, 2006 doi: 10.1007/s00348-006-0212-z C Felippa and T Geers Partitioned analysis for coupled mechanical systems Engineering Computations, 5(2):123–133, 1988 doi: 10.1108/eb023730 M Fern´ andez Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit SeMA Journal, 55-1:59–108, 2011 doi: 10.1007/BF03322593 S Fonov, G Jones, J Crafton, V Fonov, and L Goss The development of optical techniques for the measurement of pressure and skin friction Measurement Science and Technology, 16:1–8, 2005 doi: 10.1088/0957-0233/17/6/S05 A.I.J Forrester, A S´ obester, and A.J Keane Multi-fidelity optimization via surrogate modelling Proceedings of the Royal Society A, 463:32513269, 2007 doi: 10.1098/rspa.2007.1900 M Frederick, E.C Kerrigan, and J.M.R Graham Gust alleviation using rapidly deployed trailing-edge flaps Journal of Wind Engineering and Industrial Aerodynamics, 98:712–723, 2008 doi: 10.1016/j.jweia.2010.06.005 P Friedmann and D Hodges Rotary wing aeroelasticity - A historical perspective Journal of Aircraft, 6:1019–1046, 2003 E Galloni and M Kohen Influence of the mass of the spring on its static and dynamic effects American Journal of Physics, 47(12):1076–1078, 1979 doi: 10.1119/1.11978 J.A Garcia Numerical investigation of nonlinear aeroelastic effects on flexible high aspect ratio wings Journal of Aircraft, 42:1025–1036, 2005 A.D Gardner, K Richter, and H Rosemann Simulation of oscillating airfoils and moving flaps employing the DLR-TAU unsteady grid adaptation In New Results in Numerical Fluid and Experimental Fluid Mechanics VI, volume Vol 96/2008 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 170–177 Springer Berlin/Heidelberg, 2008 doi: 10.1007/978-3-540-74460-3˙21 H.C Garner, E.W.E Rogers, W.E.A Acum, and E.C Maskell Subsonic wind tunnel corrections, AGARDograph 109 Technical report, NATO Research and Technology Organisation, 1966 URL http://www.dtic.mil/dtic/tr/fulltext/u2/657092.pdf 157 P Gerontakos and T Lee PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection Experiments in Fluids, 45:955–972, 2008 doi: 10.1007/s00348-008-0514-4 H Glauert Aerodynamic theory Dover Publications, 1963 R Gurka, A Liberzon, D Hefetz, D Rubinstein, and U Shavit Computation of pressure distribution using piv velocity data In Workshop on Particle Image Velocimetry, 1999 M.H Hansen Aeroelastic instability problems for wind turbines Wind Energy, 10-6: 551–577, 2007 doi: 10.1002/we.242 M.O.L Hansen, J.N Sørensen, S Voutsinas, N Sørensen, and H.Aa Madsen State of the art in wind turbine aerodynamics and aeroelasticity Progress in Aerospace Sciences, 42:285–330, 2006 doi: 10.1016/j.paerosci.2006.10.002 T.H Havelock The lift and moment on a flat plate in a stream of finite width In Proceedings of the Royal Society of London Mathematical and Physical Sciences, volume 166 of A, pages 178–196 The Royal Society, 1938 URL http://www.jstor.org/stable/96970 J Heinz, N.N Sørensen, and F Zahle Investigation of the load reduction potential of two trailing edge flap controls using CFD Wind Energy, 14:449–462, 2011 doi: 10.1002/we.435 S Heinze Aeroelastic concepts for flexible aircraft structures PhD thesis, Royal Institute of Technology, 2007 C Hillenherms, W Schrăoder, and W Limberg Experimental investigation of a pitching airfoil in transonic flow Aerospace Science and Technology, 8:583–590, 2004 doi: 10.1016/j.ast.2004.07.001 T.Y Hubel and C Tropea Experimental investigation of a flapping wing model Experiments in Fluids, 46:945961, 2009 doi: 10.1007/s00348-008-0599-9 B Hă ubner, E Walhorn, and D Dinkler A monolithic approach to fluidstructure interaction using spacetime finite elements Computer Methods in Applied Mechanics and Engineering, 193 (23-26):2087–2104, 2004 A Hussain and W Reynolds The mechanics of an organized wave in turbulent shear flow part experimental results Journal of Fluid Mechanics, 54(2):241–261, 1972 doi: 10.1017/S0022112072000667 D.J Inman Engineering Vibration Prentice Hall, 2001 A Jameson, W Schmidt, and E Turkel Numerical solution of the euler equations by finite volume methods using runge-kutta time-stepping schemes AIAA, 1981-1259, 1981 158 A Jensen and G Pedersen Optimization of acceleration measurements using PIV Measurement Science and Technology, 15:2275–2283, 2004 doi: 10.1088/0957-0233/15/11/013 B Jones The measurement of profile drag by the pitot-traverse method Technical Report ARC R&M 1688, The Cambridge University Aeronautics Laboratory, 1936 J Katz and A Plotkin Low-Speed Aerodynamics Cambridge University Press, second edition, 2001 M Kennedy and A O’Hagan Predicting the output from a complex computer code when fast approximations are available Biometrika, 87(1):1–13, 2000 M Kennedy and A O’Hagan Bayesian calibration of computer models Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464, 2001 doi: 10.1111/1467-9868.00294 C Klein, R Engler, U Henne, and W Sachs Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel Experiments in Fluids, 39:475–483, 2005 doi: 10.1007/s00348-005-1010-8 S.J Kline and F.A McClintock Describing uncertainties in single-sample experiments Mechanical Engineering, 75:3–8, 1953 A Krynytzky, B Ewald, and R Voß AGARD-AG-336 Technical report, NATO Research and Technology Organisation, 1998 URL http://www.rta.nato.int/Pubs/rdp.asp?RDP=AGARD-AG-336 H.H Ku Notes on the use of propagation of error formulas Journal of Research of the National Bureau of Standards, 70C(4):263273, 1966 U Kă uttler and W Wall Fixed-point fluidstructure interaction solvers with dynamic relaxation Computational Mechanics, 43(1):61–72, 2008 doi: 10.1007/s00466-008-0255-5 J.G Leishman Unsteady lift of a flapped airfoil by indicial concepts Journal of Aircraft, 31:288–297, 1994 doi: 10.2514/3.46486 Rongxing Li Generation of geometric representations of 3d objects in cad/cam by digital photogrammetry ISPRS Journal of Photogrammetry and Remote Sensing, 48(5):2–11, 1993 doi: 10.1016/0924-2716(93)90067-W N Liggett and M.J Smith The physics of modeling unsteady flaps with gaps Journal of Fluids and Structures, 38:255–272, 2013 doi: dx.doi.org/10.1016/j.jfluidstructs.2012.12.010 I Lim and I Lee Aeroelastic analysis of rotor systems using trailing edge flaps Journal of Sound and Vibration, 321:525–536, 2009 doi: 10.1016/j.jsv.2008.10.029 159 X Liu and J Katz Instantaneous pressure and material acceleration measurements using a four-exposure PIV system Experiments in Fluids, 41(2):227–240, 2006 doi: 10.1007/s00348-006-0152-7 S Mathew and G Philip Advances in Wind Energy Conversion Technology Springer, 2011 B McLachlan and J Bell Pressure-sensitive paint in aerodynamic testing Experimental Thermal and Fluid Science, 10(4):470–485, 1995 doi: 10.1016/0894-1777(94)00123-P C Michler, S Hulshoff, E Brummelen, and R Borst A monolithic approach to fluid-structure interaction Computers & Fluids, 33 (5-6):839–848, 2004 C Michler, E Brummelen, and R Borst An interface newton-krylov solver for fluid-structure interaction International Journal for Numerical Methods in Fluids, 47(10):1189–1195, 2005 doi: 10.1002/fld.850 National Instruments Corporation User guide and specifications NI cDAQ-9172, 2008 URL http://www.ni.com/pdf/manuals/371747f.pdf J Neumann and H Mai Gust response: Simulation of an aeroelastic experiment by a fluidstructure interaction method Journal of Fluids and Structures, 38:290–302, 2013 doi: 10.1016/j.jfluidstructs.2012.12.007 F Noca, D Shields, and D Jeon A comparison of methods for evaluating timedependent fluid dynamic forces on bodies, using only their velocity fields and their derivatives Journal of Fluids and Structures, 13:551–578, 1999 doi: 10.1006/jfls.1999.0219 NUMECA International User Manual FINET M /Hexa, FINET M /Hexa 2.5 (including hexstream) edition, 2007 W.L Oberkampf What are validation experiments Experimental Techniques, 25-3: 35–40, 2001 doi: 10.1111/j.1747-1567.2001.tb00023.x W.L Oberkampf and M.F Barone Measures of agreement between computation and experiment: Validation metrics Journal of Computational Physics, 217:5–36, 2006 doi: 10.1016/j.jcp.2006.03.037 W.L Oberkampf and T.G Trucano Verification and validation in computational fluid dynamics Progress in Aerospace Sciences, 38:209–272, 2002 H Olsson, K.J Astră om, C Canudas de Wit, M Găafvert, and P Lischinsky Friction models and friction compensation : Non-linear and adaptive control (NACO) European network European Journal of Control, 3:176–195, 1998 S Øye FLEX4 simulation of wind turbine dynamics In Proceedings of the 28th IEA Meetings of Experts - State of the art of Aeroelastic Codes for Wind Turbine calculations Technical University of Denmark, 1996 160 A Patel Development of an adaptive RANS solver for unstructured hexahedral meshes PhD thesis, Universit´e Libre de Bruxelles, 2003 J Petersen, H Madsen, A Bjăork, P Enevoldsen, S ỉye, H Ganander, and D Winkelaar Prediction of dynamic loads and induced vibrations in stall Technical Report Risø-R-1045, Risø National Laboratory, 1998 URL http://orbit.dtu.dk/fedora/objects/orbit:91256/datastreams/file_7751222/content S Piperno, C Farhat, and B Larrouturou Partitioned procedures for the transient solution of coupled aroelastic problems part I: Model problem, theory and twodimensional application Computer Methods in Applied Mechanics and Engineering, 124-1:79112, 1995 doi: 10.1016/0045-7825(95)92707-9 Prandtl Tragflă ugel Theorie, Nachrichten von der Gesellschaft der Wisseschaften zu Gă ottingen 1918 M Raffel, C Willert, S Wereley, and J Kompenhans Particle Image Velocimetry Springer Berlin/Heidelberg, second edition, 2007 ISBN 978-3-540-72307-3 J.A Rivera, B.E Dansberry, M.G Farmer, C.V Eckstrom, D.A Seidel, and R.M Bennett Experimental flutter boundaries with unsteady distributions for the NACA 0012 benchmark model Technical report, NASA, 1991 URL http://hdl.handle.net/2060/19920013264 V Riziotis, S Voutsinas, E Politis, and P Chaviaropoulos Aeroelastic stability of wind turbines: the problem the methods and the issues Wind Energy, 7:373–392, 2004 doi: 10.1002/we.133 P.J Roache Perspective: A method for uniform reporting of grid refinement studies Journal of Fluids Engineering, 116(3):405–413, 1994 doi: 10.1115/1.2910291 P.B Ryzhakov, R Rossi, S.R Idelsohn, and E Onate A monolithic lagrangian approach for fluidstructure interaction problems Computational Mechanics, 46-6: 883–899, 2010 doi: 10.1007/s00466-010-0522-0 A.A Shabana Dynamics of Multi-body Systems Cambridge University Press, 2005 W Shyy, H Aono, S Chimakurthi, P Trizila, C.-K Kang, C Cesnik, and H Liu Recent progress in flapping wing aerodynamics and aeroelasticity Progress in Aerospace Sciences, 46-7:284–327, 2010 doi: 10.1016/j.paerosci.2010.01.001 C Sim˜ao Ferreira, G van Bussel, F Scarano, and van Kuik PIV visualization of dynamic stall VAWT and blade load determination In AIAA 2008-1317, 2008 C.J Sim˜ao Ferreira The near wake of the VAWT - 2D and 3D views of the VAWT aerodynamics PhD thesis, Delft University of Technology, 2009 M.J Smith, C.E.S Cesnik, D.H Hodges, and K Moran An evaluation of computational algorithms to interface between CFD and CSD methodologies In AIAA1996-1400, volume AIAA-1996-1400, 1996 161 ... [2010] and Appendix H The wing is untwisted and untapered and has a chord of 0.5 m, a span of 1.8 m and a 0.2c flap Except for the wing span, which is based on wind tunnel dimensions, the wing. .. 0.1 the flap mean deflection δmean and the amplitude δamp are set to ◦ and ◦ respectively For k = 0.2, next to these settings also a mean deflection of ◦ and an amplitude of ◦ are used Standard... corrections, the following steady and unsteady cases are presented: k = with δmean = ◦ or ◦ ; k = 0.1 with δmean = ◦ and δamp = ◦ ; k = 0.2, δmean = ◦ and δamp = ◦ ; k = 0.2, δmean = ◦ and δamp = ◦

Ngày đăng: 17/03/2023, 15:10

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN