1. Trang chủ
  2. » Tất cả

Masters thesis of geospatial sciences development of a precise gravimetric geoid model for argentina

182 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 182
Dung lượng 3,33 MB

Nội dung

Development of a Precise Gravimetric Geoid Model for Argentina A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Geospatial Sciences Diego Alejandro Pinon B Surv Eng School of Mathematical and Geospatial Sciences College of Science Engineering and Health RMIT University March 2016 Declaration I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed Diego Alejandro Pinon March 2016 ABSTRACT The main aims of physical geodesy are to study the shape of the Earth, its gravity field and the geoid which is an equipotential surface closest to the mean sea level Precise geoid determination has been an important research topic in geodesy and geophysics in the past two decades Scientists and government agencies all around the world have made great efforts on the development of highaccuracy geoid models These geoid models are developed not only for scientific applications, but also for other purposes such as serving for a reference surface for mapping, sea level monitoring and natural resources exploitation and management A geoid model is required to define a national height or vertical datum Precise geoid models have experienced an unprecedented demand due to the rapid development of GPS/GNSS technologies Geoid models allow transforming ellipsoidal heights, which are relatively easily determined from GPS/GNSS observations, into physical heights, which are associated to the Earth’s gravity field, without the need for expensive and time-consuming spirit-levelling Physical heights are used for mapping, engineering and civil engineering infrastructure since they indicate the flow direction of fluids, due to the fact that fluids are attracted by the gravity of the Earth rather than geometric height differences Moreover, vertical datums have been historically based on a local mean sea level surface determined by averaging tide gauge readings over a certain period of time However, due to the sea surface topography effect, which is mainly caused by the sea dynamics and other meteorological processes, observations from different tide gauges not commonly coincide Therefore, when vertical datums are separated by oceans or other bodies of water, direct methods such as spirit levelling and gravity measurements are not applicable In this case, geoid models can be used for unifying two or more vertical datums together This research aims to develop a new and optimal precise geoid for Argentina using all available measurements from the most state of the art technologies and the latest global geopotential models (GGMs), along with detailed digital terrain models (DTMs) The remove-compute-restore technique and the combination of an optimal GGM with 658,111 land and marine gravity observations were used for the new model determination Several GGMs (e.g EGM2008, GOCO05S and EIGEN-6C4) were evaluated to investigate the best GGM that fits Argentinian regional gravity field Terrain corrections were calculated using a combination of the SRTM_v4.1 and SRTM30_Plus v10 DTMs for Page i Abstract all gravity observations For the regions that lacked gravity observations, the DTU13 world gravity model was utilised for filling-in the gravity voids The residual gravity anomalies were gridded by the Kriging method and the resultant grid was applied in the Stokes’ integral using the spherical multiband FFT approach and the deterministic kernel modification proposed by Wong and Gore in 1969 The accuracy of the new geoid was assessed by comparing its geoidal undulations over 1,904 benchmarks, which have both orthometric and ellipsoidal heights Results showed that an accuracy of better than 10 centimetres has been achieved Abstract Page ii ACKNOWLEDGEMENTS This acknowledgement list should be quite long It is probably more convenient to divide it into three: those who are experts in Geodesy or Geophysics, those who learned something about my research throughout my Masters and those who not have a clue about what I have accomplished during these last two and a half years From the first group, I would like to thank my supervisors, Prof Kefei Zhang and Dr Suqin Wu, for their continuous support, encouragement, motivation and direction I would like to express my profound gratitude to Sergio Cimbaro, President of the Instituto Geográfico Nacional (IGN), who not only provided most of the datasets (or helped me to obtain them) and bent over backwards to assist me with all of my requests, but has been a constant source of support and motivation over many years I seriously enjoyed sharing all my research questions, concerns and outcomes with the IGN staff (in particular with Demián, Ezequiel, Hernán, Gonzalo, Agustín, Tomás and Juan Carlos) I grew through my conversations with them all Finally, I would like to acknowledge Prof C.C Tscherning (R.I.P 1942 – 2014) for providing the GRAVSOFT software, his patience towards my silly questions and his selfless assistance Regarding those who now understand the basics of the geoid model, I would like to thank my beloved Hayley for all her support during this quest She probably learned about Geodesy as much as I did, or even more From the last group of people who never understood what I was doing in my Masters, I want to acknowledge all my Argentinean friends, for helping me to remember that there is another life beyond Geodesy, and my new Aussie friends, for providing me a rest after a long research day Finally, I would like to thank my Australian family, for encouraging me and being positive always, and my parents, Luis and Carolina, for being my raw model of effort, persistence and integrity Page iii Acknowledgements TABLE OF CONTENTS Abstract i Acknowledgements iii Table of Contents iv List of Figures viii List of Tables xiii List of Abbreviations xv Introduction 1.1 Background 1.2 History of the Argentinean Geoid 1.2.1 Argentinean Geoid 1998 1.2.2 Argentinean Geoid 2005 (ARG05) 1.2.3 Argentinean Geoid 2006 (GAR) 1.3 Aim and Objectives 1.4 Significance 1.5 Structure of the Thesis 10 Gravity Field, Vertical Datum and Height System 12 2.1 Gravity Field of the Earth 12 2.1.1 Gravitational Potential 12 2.1.2 Centrifugal Potential 15 2.1.3 Gravity Potential 16 2.1.4 Potential Expressed in Terms of Spherical Harmonics 16 2.1.5 Normal Potential 17 2.1.6 Gravity 18 2.1.7 Normal Gravity 19 2.2 Height System 19 2.2.1 Ellipsoidal Height 20 2.2.2 Levelling Height 23 2.2.3 Geopotential Number 25 2.2.4 Orthometric Height 27 2.2.5 Normal Height 30 2.3 Vertical Datum 31 Table of Contents Page iv 2.3.1 Local Vertical Datum (LVD) 33 2.3.2 Global Vertical Datum (GVD) 34 2.3.3 Earth Tides 36 2.4 Argentinean Vertical Datum, Height System and Gravity System 39 2.4.1 History of the Argentinean Vertical Datum and Height System 39 2.4.2 History of the Argentinean Gravity System 42 2.5 Summary 48 Geoid Determination 49 3.1 Theory of Geoid Determination 49 3.1.1 Disturbing Potential 49 3.1.2 Geodetic Boundary Value Problem (GBVP) 50 3.1.3 Computation of Gravity Anomalies Outside the Earth 52 3.1.4 Stokes’ Formula 53 3.2 Global Geopotential Models (GGMs) 55 3.2.1 Earth Gravitational Model 2008 (EGM2008) 57 3.2.2 European Improved Gravity Model of the Earth by New Techniques (EIGEN-6C4) 58 3.2.3 GO_CONS_GCF_2_DIR_R5 59 3.2.4 Gravity Observation Combination (GOCO05S) 59 3.3 Terrain Reduction 60 3.3.1 Terrain Correction 61 3.3.2 Isostatic Reduction 62 3.3.3 Helmert’s Second Condensation Method 63 3.3.4 Residual Terrain Model (RTM) 65 3.3.5 Hammer Chart 66 3.3.6 Rectangular Prism Integration 67 3.3.7 Terrain Correction by Fast Fourier Transformation (FFT) 68 3.4 Digital Terrain Models (DTMs) 69 3.4.1 SRTM v4.1 70 3.4.2 SRTM30_Plus v10 71 3.5 Remove-Compute-Restore (RCR) Technique 72 3.5.1 Stokes’ Integral by FFT 73 3.5.2 Modification to Stokes’ Kernel 75 3.6 Summary 76 Data Preparation and Pre-processing 78 Page v Table of Contents 4.1 Introduction 78 4.2 Compilation of a DTM 79 4.3 Terrain Gravity Data and Gravity Reductions 80 4.3.1 Normal Gravity 83 4.3.2 Atmospheric Correction 84 4.3.3 Free-Air Correction 85 4.3.4 Refined Bouguer Correction 85 4.3.5 Free-Air Anomaly 86 4.3.6 Refined Bouguer Anomaly 87 4.4 Marine Gravity Data and Gravity Reductions 87 4.4.1 Free-Air Anomaly 88 4.4.2 Refined Bouguer Anomaly 89 4.4.3 Eötvös Correction 90 4.5 Validation of Gravity Anomalies 91 4.5.1 GGM Method 91 4.5.2 Satellite Altimetry Method 92 4.5.3 Least Square Collocation (LSC) Method 94 4.6 GPS-levelling data 96 4.7 Selection of an Optimal GGM 99 4.8 Gridding the Argentinean Gravity Field 104 4.8.1 Gridding Methods 104 4.8.2 World Gravimetric Grids 112 4.8.3 Residual Anomaly Grid 116 4.8.4 Computation Scheme for Residual Anomaly Grid 121 4.9 Summary 122 Numerical Results 123 5.1 Introduction 123 5.2 Geoid Determination 123 5.2.1 Stokes’ Integral 123 5.2.2 Contribution of the GGM 125 5.2.3 Indirect Topographic Effect 126 5.2.4 Geoid Model Determination 127 5.3 Geoid Fitting 129 5.4 Modelling Procedure Scheme 135 Table of Contents Page vi 5.5 Validation of the New Geoid Model 135 5.6 Improvement Made by the New Geoid Model 137 5.7 Summary 139 Conclusions and Recommendations 141 6.1 Summary 141 6.2 Conclusions and Major Findings 141 6.3 Recommendations 144 References 146 Page vii Table of Contents D'Onofrio, E, Fiore, M, Mayer, F, Perdomo, R & Ramos, R 1999, 'La referencia vertical', Contribuciones a la Geodesia en la Argentina de fines del siglo XX Universidad Nacional de Rosario, pp 99-127 De Witte, L 1967, 'Truncation errors in the Stokes and Vening Meinesz formulae for different order spherical harmonic gravity terms', Geophysical Journal International, vol 12, no 5, pp 44964 Dehant, V & Ducarme, B 1987, 'Comparison between the theoretical and observed tidal gravimetric factors', Physics of the earth and planetary interiors, vol 49, no 3, pp 192-212 Dobrin, MB & Savit, CH 1988, Introduction to geophysical prospecting, 4th edn, McGraw-Hill Book Co., New York, USA Drewes, H 1978, 'Zur ausgleichung von gravimeternetzen', Zeitschrift für Vermessungswesen, vol 103, pp 485-96 Drinkwater, MR, Floberghagen, R, Haagmans, R, Muzi, D & Popescu, A 2003, 'GOCE: ESA’s first Earth Explorer Core mission', in Earth Gravity Field from Space—from Sensors to Earth Sciences, Springer, pp 419-32 Dryden, HL 1942, 'A re-examination of the Potsdam absolute determination of gravity', Research NBS, vol 29, p 303 Eckstein, BA 1989, 'Evaluation of spline and weighted average interpolation algorithms', Computers & Geosciences, vol 15, no 1, pp 79-94 Edwards, MO 1989, Global gridded elevation and bathymetry on 5-minute geographic grid (ETOPO5), NOAA, National Geophysical Data Center, Boulder, Colorado, USA Ekman, M 1989, 'Impacts of geodynamic phenomena on systems for height and gravity', Bulletin Géodésique, vol 63, no 3, pp 281-96 El-Rabbany, A 2006, Introduction to GPS: the global positioning system, 2nd edn, Artech house, Norwood ESRI 2012, ArcMap, 10.1 edn, ESRI, Redlands, California Page 149 References Farr, TG, Rosen, PA, Caro, E, Crippen, R, Duren, R, Hensley, S, Kobrick, M, Paller, M, Rodriguez, E & Roth, L 2007, 'The shuttle radar topography mission', Reviews of geophysics, vol 45, no Featherstone, WE 1997, 'On the use of the geoid in geophysics: a case study over the North West Shelf of Australia', Exploration Geophysics, vol 28, no 2, pp 52-7 Featherstone, WE 1998, 'Do we need a Gravimetric Geoid or a Model of the Australian Height Datum to Transform GPS Heights in Australia?', Australian Surveyor, vol 43, no 4, pp 273-80 Featherstone, WE 2000, 'Towards the unification of the Australian height datum between the mainland and Tasmania using GPS and AUSGeoid98', Geomatics Research Australasia, pp 33-54 Featherstone, WE 2002, 'Comparison of different satellite altimeter-derived gravity anomaly grids with ship-borne gravity data around Australia', Gravity and Geoid, pp 326-31 Featherstone, WE 2009, 'Only use ship-track gravity data with caution: a case-study around Australia', Australian Journal of Earth Sciences, vol 56, no 2, pp 195-9 Featherstone, WE & Claessens, SJ 2008, 'Closed-form transformation between geodetic and ellipsoidal coordinates', Studia Geophysica et Geodaetica, vol 52, no 1, pp 1-18 Featherstone, WE, Dentith, MC & Kirby, JF 1998, 'Strategies for the accurate determination of orthometric heights from GPS', Survey Review, vol 34, no 267, pp 278-96 Featherstone, WE, Evans, JD & Olliver, JG 1998, 'A Meissl-modified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations', Journal of Geodesy, vol 72, no 3, pp 154-60 Featherstone, WE & Kirby, JF 2000, 'The reduction of aliasing in gravity anomalies and geoid heights using digital terrain data', Geophysical Journal International, vol 141, no 1, pp 204-12 Featherstone, WE & Kuhn, M 2006, 'Height systems and vertical datums: a review in the Australian context', Journal of Spatial Science, vol 51, no 1, pp 21-41 Featherstone, WE & Sideris, MG 1998, 'Modified kernels in spectral geoid determination: first results from Western Australia', in Geodesy on the Move, Springer Berlin Heidelberg, Berlin, vol 119, pp 188-93 References Page 150 Font, G, Pacino, MC, Blitzkow, D & Tocho, C 1998, 'A Preliminary Geoid Model for Argentina', in R Forsberg, M Feissel & R Dietrich (eds), Geodesy on the Move, Springer Berlin Heidelberg, Berlin, vol 119, pp 255-61 Forsberg, R 1981, 'Establishment of a LaCoste & Romberg Gravity Network in Greenland', Bulletin de Bureau Gravimetrique International, vol 46, pp 168-79 Forsberg, R 1984, A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, OSU/DGSS-355, The Ohio State University, Columbus, USA Forsberg, R 1985, 'Gravity field terrain effect computations by FFT', Bulletin Géodésique, vol 59, no 4, pp 342-60 Forsberg, R 1993, 'Modelling the fine-structure of the geoid: methods, data requirements and some results', Surveys in geophysics, vol 14, no 4-5, pp 403-18 Forsberg, R & Jensen, T 2015, 'New Geoid of Greenland: A Case Study of Terrain and Ice Effects, GOCE and Use of Local Sea Level Data', in International Association of Geodesy Symposia, Springer Berlin Heidelberg, Berlin, pp 1-7 Forsberg, R & Sideris, MG 1993, 'Geoid computations by the multi-band spherical FFT approach', Manuscripta geodaetica, vol 18, pp 82-90 Forsberg, R & Tscherning, CC 2008, An overview manual for the GRAVSOFT geodetic gravity field modelling programs Förste, C, Bruinsma, SL, Abrikosov, O, Lemoine, J-M, Schaller, T, Götze, HJ, Ebbing, J, Marty, J-C, Flechtner, F, Balmino, G & Biancale, R 2014, 'EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse', paper presented to 5th GOCE User Workshop, Paris, France, 25-28 November 2014 Förste, C, Schmidt, R, Stubenvoll, R, Flechtner, F, Meyer, U, König, R, Neumayer, H, Biancale, R, Lemoine, J-M, Bruinsma, S, Loyer, S, Barthelmes, F & Esselborn, S 2008, 'The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C', Journal of Geodesy, vol 82, no 6, pp 331-46 Page 151 References Fotopoulos, G, Featherstone, WE & Sideris, MG 2002, 'Fitting a gravimetric geoid model to the Australian Height Datum via GPS data', Gravity and Geoid, pp 173-8 General Bathymetric Chart of the Oceans 2008, The GEBCO_08 Grid, Goos, JM, Featherstone, WE, Kirby, JF & Holmes, SA 2003, 'Experiments with two different approaches to gridding terrestrial gravity anomalies and their effect on regional geoid computation', Survey Review, vol 37, no 288, pp 92-112 Götze, H-J & Kirchner, A 1997, 'Interpretation of gravity and geoid in the Central Andes between 20 ° and 29 ° S', Journal of South American Earth Sciences, vol 10, no 2, pp 179-88 Haagmans, R, De Min, E & Van Gelderen, M 1993, 'Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes' integral', Manuscripta geodaetica, vol 18, pp 227- Hackney, RI & Featherstone, WE 2003, 'Geodetic versus geophysical perspectives of the ‘gravity anomaly’', Geophysical Journal International, vol 154, no 1, pp 35-43 Hamilton, AC 1963, 'World Standards for Gravity Measurements', Journal of the Royal Astronomical Society of Canada, vol 57, p 199 Hammer, S 1939, 'Terrain corrections for gravimeter stations', Geophysics, vol 4, no 3, pp 184-94 Hartmann, T & Wenzel, HG 1995, 'The HW95 tidal potential catalogue', Geophysical Research Letters, vol 22, no 24, pp 3553-6 Hayford, JF 1909, Geodesy: The Figure of the Earth and Isostasy from Measurements in the United States, US Government Printing Office Heck, B 1990, 'An evaluation of some systematic error sources affecting terrestrial gravity anomalies', Bulletin Géodésique, vol 64, no 1, pp 88-108 Heck, B & Grüninger, W 1987, 'Modification of Stokes’s integral formula by combining two classical approaches', Proceedings of the XIX General Assembly of the International Union of Geodesy and Geophysics, vol 2, pp 309-37 References Page 152 Heck, B & Rummel, R 1990, 'Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data', in Sea Surface Topography and the Geoid, Springer, pp 116-28 Heikkinen, M 1979, 'On the Honkasalo term in tidal corrections to gravimetric observations', Journal of Geodesy, vol 53, no 3, pp 239-45 Heiskanen, WA & Moritz, H 1967, Physical geodesy, W.H Freeman, San Francisco Helmert, F 1890, 'Die Schwerkraft im Hochgebirge, insbesondere in den Tyroler Alpen', Veröff Königl Preuss Geod Inst, vol Hengl, T, Gruber, S & Shrestha, DP 2003, 'Digital terrain analysis in ILWIS', International Institute for Geo-Information Science and Earth Observation Enschede, The Netherlands, vol 62 Herring, TA, King, RW & McClusky, SC 2010, Introduction to Gamit/Globk, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America Hinze, WJ 2003, 'Bouguer reduction density, why 2.67?', Geophysics, vol 68, no 5, pp 1559-60 Hinze, WJ, Aiken, C, Brozena, J, Coakley, B, Dater, D, Flanagan, G, Forsberg, R, Hildenbrand, T, Keller, GR & Kellogg, J 2005, 'New standards for reducing gravity data: The North American gravity database', Geophysics, vol 70, no 4, pp J25-J32 Hofmann-Wellenhof, B & Moritz, H 2006, Physical geodesy, edn, Springer-Verlag Wien, Austria Iliffe, J, Ziebart, M, Cross, P, Forsberg, R, Strykowski, G & Tscherning, CC 2003, 'OSGM02: A new model for converting GPS-derived heights to local height datums in Great Britain and Ireland', Survey Review, vol 37, no 290, pp 276-93 Instituto Geográfico Militar 1980, 100 años en el quehacer cartográfico del país, 1879-1979, Ejército Argentino, Instituto Geográfico Militar, Buenos Aires, Argentina Instituto Geográfico Nacional 2011, Atlas de la República Argentina Edición 2011, Instituto Geográfico Nacional, Buenos Aires, Argentina Instituto Geográfico Nacional 2013, Red de Vértices Geodésicos POSGAR 07, Instituto Geográfico Nacional, viewed jun 2014, Instituto Geográfico Nacional 2014a, Modelo Digital de Elevaciones de la República Argentina, Instituto Geográfico Nacional,, Buenos Aires, Argentina Page 153 References Instituto Geográfico Nacional 2014b, Red Altimétrica Nacional, Instituto Geográfico Nacional, viewed jun 2014, Instituto Geográfico Nacional 2015, Red Gravimétrica, Instituto Geográfico Nacional, viewed jun 2015, International Centre for Global Earth Models 2015, Status of the IAG service for global Earth gravity field models after the first decade, Geoforschungszentrum (GFZ), viewed 21st October 2014, Janák, J & Vaníček, P 2005, 'Mean Free-Air Gravity Anomalies in the Mountains', Studia Geophysica et Geodaetica, vol 49, no 1, pp 31-42 Jarvis, A, Reuter, HI, Nelson, A & Guevara, E 2008, Hole-filled SRTM for the globe Version 4, Jet Propulsion Laboratory 2000, Shuttle Radar Topography Mission, viewed May 2014, Kane, MF 1962, 'A comprehensive system of terrain corrections using a digital computer', Geophysics, vol 27, no 4, pp 455-62 Kirby, JF & Featherstone, WE 1997, 'A study of zero-and first-degree terms in geopotential models over Australia', Geomatics Research Australasia, pp 93-108 Kirby, JF & Featherstone, WE 1999, 'Terrain correcting Australian gravity observations using the national digital elevation model and the fast Fourier transform', Australian Journal of Earth Sciences, vol 46, no 4, pp 555-62 Kotsakis, C & Sideris, MG 1999, 'On the adjustment of combined GPS/levelling/geoid networks', Journal of Geodesy, vol 73, no 8, pp 412-21 LaFehr, TR 1991, 'An exact solution for the gravity curvature (Bullard B) correction', Geophysics, vol 56, no 8, pp 1179-84 Lambert, WD 1930, 'The reduction of observed values of gravity to sea level', Bulletin Géodésique, vol 26, no 1, pp 107-81 References Page 154 Lemoine, FG, Kenyon, SC, Factor, JK, Trimmer, RG, Pavlis, NK, Chinn, DS, Cox, CM, Klosko, SM, Luthcke, SB & Torrence, MH 1998, The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861, NASA, Greenbelt, USA Lichtenstern, A 2013, 'Kriging methods in spatial statistics', Technische Universität München Lowrie, W 2007, Fundamentals of geophysics, Cambridge University Press, New York, USA Mader, K 1954, 'Die orthometrische Schwerekorrektion des Prazisions-Nivellements in den Hohen Tuaern', Wien, Osterreichischer Verein fur Vermessungswesen, 1954., vol Mäkinen, J & Ihde, J 2009, 'The permanent tide in height systems', in Observing our Changing Earth, Springer Berlin Heidelberg, vol 133, pp 81-7 Martinec, Z & Grafarend, EW 1997, 'Solution to the Stokes Boundary-Value Problem on an Ellipsoid of Revolution', Studia Geophysica et Geodaetica, vol 41, no 2, pp 103-29 Martinec, Z, Matyska, C, Grafarend, EW & Vanicek, P 1993, 'On Helmert's 2nd condensation method', Manuscripta geodaetica, vol 18, pp 417- Mather, RS 1971, The analysis of the earth's gravity field, University of New South Wales, Kensington, Australia Matheron, G 1963, 'Principles of geostatistics', Economic geology, vol 58, no 8, pp 1246-66 Mayer-Gürr, T, Pail, R, Gruber, T, Fecher, T, Rexer, M, Schuh, W-D, Kusche, J, Brockmann, J-M, Rieser, D, Zehentner, N, Kvas, A, Klinger, B, Baur, O, Höck, E, Krauss, S & Jäggi, A 2015, 'The combined satellite gravity field model GOCO05s', paper presented to European Geosciences Union General Assembly 2015, Vienna, Austria, 12-17 April 2015 McCarthy, DD 1992, IERS Standards for 1992, International Earth Rotation Service, Paris, France McCarthy, DD & Petit, G 2004, IERS conventions (2003), No 32, Bundesamt für Kartographie und Geodäsie, Frankfurt, Germany McLain, DH 1974, 'Drawing contours from arbitrary data points', The Computer Journal, vol 17, no 4, pp 318-24 Page 155 References Meissl, P 1971, Preparations for the Numerical Evaluation of Second Order Molodensky Type Formulas, The Ohio State University, Columbus, USA Melchior, P 1974, 'Earth tides', Geophysical Surveys, vol 1, no 3, pp 275-303 Melchior, P 1983, The tides of the planet Earth, Pergamon Press Oxford, England Moirano, J, Brunini, C, Drewes, H & Kaniuth, K 1998, 'Realization of a Geocentric Reference System in Argentina in Connection with SIRGAS', in F Brunner (ed.), Advances in Positioning and Reference Frames, Springer Berlin Heidelberg, vol 118, pp 199-204 Moirano, J, Brunini, C, Font, G, Lauria, EA & Ramos, R 2002, 'Hacia una nueva referencia vertical en Argentina', Actas XXI Reunión Científica de Geofísica y Geodesia Asociación Argentina de Geofísicos y Geodestas Rosario Argentina Molodenskii, MS 1962, 'Methods for study of the external gravitational field and figure of the Earth', Israel Program for Scientific Translations, Jerusalem, vol Morelli, C 1959, 'Special study group No general report', Bulletin Géodésique, vol 51, no 1, pp 743 Morelli, C, Gantar, C, McConnell, RK, Szabo, B & Uotila, U 1972, The International Gravity Standardization Net 1971 (IGSN 71), Osservatorio Geofisico Sperimentale, Paris, France Moritz, H 1968, On the use of the terrain correction in solving Molodensky's problem, Ohio State University, Columbus, United States of America Moritz, H 1980a, Advanced physical geodesy, Advances in Planetary Geology, Abacus Press, Tunbridge, England Moritz, H 1980b, 'Geodetic reference system 1980', Bulletin Géodésique, vol 54, no 3, pp 395-405 Murai, S 1997, GIS Work Book Volume Technical Course, Japan Association of Surveyors, viewed 14th october 2014, Nagy, D, Papp, G & Benedek, J 2000, 'The gravitational potential and its derivatives for the prism', Journal of Geodesy, vol 74, no 7-8, pp 552-60 References Page 156 Nahavandchi, H & Sjöberg, LE 1998, 'Unification of vertical datums by GPS and gravimetric geoid models using modified Stokes formula', Marine Geodesy, vol 21, no 4, pp 261-73 Nahavandchi, H & Sjöberg, LE 2001, 'Precise geoid determination over Sweden using the Stokes– Helmert method and improved topographic corrections', Journal of Geodesy, vol 75, no 2-3, pp 74-88 National Geospatial-Intelligence Agency 1999, Gravity station data format & anomaly computations National Imagery and Mapping Agency 1997, World Geodetic System 1984: Its Definition and Relationships with Local Geodetic Systems, TR 8350.2, Department of Defense, USA Nörlund, NE 1937, 'The figure of the earth', Bulletin Géodésique (1922-1941), vol 55, no 1, pp 193210 Nowell, DAG 1999, 'Gravity terrain corrections', Journal of Applied Geophysics, vol 42, no 2, pp 117-34 Oliver, MA & Webster, R 1990, 'Kriging: a method of interpolation for geographical information systems', International Journal of Geographical Information System, vol 4, no 3, pp 313-32 Pacino, MC, Cogliano, D, Font, G, Moirano, J, Natalí, P, Lauría, EA, Ramos, R & Miranda, S 2007, 'Activities Related to the Materialization of a New Vertical System for Argentina', in P Tregoning & C Rizos (eds), Dynamic Planet, Springer Berlin Heidelberg, vol 130, pp 671-6 Pacino, MC & Font, G 1999, 'Modelado del Geoide en Argentina a partir de datos gravimétricos', En: Contribuciones a la Geodesia en la Argentina de fines de siglo XX (UNR Editora), pp 215-30 Pan, M & Sjöberg, LE 1998, 'Unification of vertical datums by GPS and gravimetric geoid models with application to Fennoscandia', Journal of Geodesy, vol 72, no 2, pp 64-70 Pavlis, NK, Holmes, SA, Kenyon, SC & Factor, JK 2012, 'The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)', Journal of Geophysical Research, vol 117, no B4 Peiliang, X & Rummel, R 1991, A quality investigation of global vertical datum connection, No 34, Nederlandse Commissie voor Geodesie, The Netherlands Page 157 References Piđón, DA, Guagni, HJ & Cimbaro, SR 2014, 'Nuevo ajuste de la red de nivelación de alta precisión de la República Argentina', paper presented to XXVII Reunión Científica de la Asociación Argentina de Geofísicos y Geodestas, San Juan, Argentina, 10-14 November 2014 Piđón, DA, Zhang, K, Suqin, W & Cimbaro, SR 2014, 'Hacia un nuevo modelo de geoide para la Argentina', paper presented to XXVII Reunión Científica de la Asociación Argentina de Geofísicos y Geodestas, San Juan, Argentina, 10-14 November 2014 Pugh, DT 1996, Tides, surges and mean sea-level, reprinted with corrections June 1996 edn, John Wiley & Sons Ltd, Chippenham Rapp, RH 1983, 'The need and prospects for a world vertical datum', paper presented to Proceedings of the International Association of Geodesy Symposia Rapp, RH 1994, 'Separation between reference surfaces of selected vertical datums', Bulletin Géodésique, vol 69, no 1, pp 26-31 Rapp, RH 1998a, 'Comparison of altimeter‐derived and ship gravity anomalies in the vicinity of the Gulf of California', Marine Geodesy, vol 21, no 4, pp 245-59 Rapp, RH 1998b, 'Past and Future Developments in Geopotential Modeling', in R Forsberg, M Feissel & R Dietrich (eds), Geodesy on the Move, Springer Berlin Heidelberg, Berlin, vol 119, pp 5878 Rapp, RH & Balasubramania, N 1992, A conceptual formulation of a world height system, The Ohio State University, Columbus, USA Rapp, RH, Nerem, RS, Shum, CK, Klosko, SM & Williamson, RG 1991, 'Consideration of permanent tidal deformation in the orbit determination and data analysis for the Topex/Poseidon mission' Reigber, C, Bock, R, Förste, C, Grunwaldt, L, Jakowski, N, Lühr, H, Schwintzer, P & Tilgner, C 1996, Champ, Phase B: Executive Summary, STR96/13, Geoforschungszentrum (GFZ) Reigber, C, Schwintzer, P, Stubenvoll, R, Schmidt, R, Flechtner, F, Meyer, U, König, R, Neumayer, H, Förste, C & Barthelmes, F 2006, A high resolution global gravity field model combining CHAMP and GRACE satellite mission and surface data: EIGEN-CG01C, Geoforschungszentrum (GFZ), Potsdam, Germany References Page 158 Rummel, R & Teunissen, P 1988, 'Height datum definition, height datum connection and the role of the geodetic boundary value problem', Bulletin Géodésique, vol 62, no 4, pp 477-98 Sacerdote, F & Sansò, F 2004, 'Geodetic Boundary-Value Problems and the Height Datum Problem', in F Sansò (ed.), V Hotine-Marussi Symposium on Mathematical Geodesy, Springer Berlin Heidelberg, vol 127, pp 174-8 Sánchez, L 2007, 'Definition and Realisation of the SIRGAS Vertical Reference System within a Globally Unified Height System', in P Tregoning & C Rizos (eds), Dynamic Planet, Springer Berlin Heidelberg, vol 130, pp 638-45 Sánchez, L 2009, 'Strategy to Establish a Global Vertical Reference System', in H Drewes (ed.), Geodetic Reference Frames, Springer Berlin Heidelberg, vol 134, pp 273-8 Sánchez, L 2012, 'Towards a vertical datum standardisation under the umbrella of Global Geodetic Observing System', Journal of Geodetic Science, vol 2, no 4, p 325 Sandwell, DT, Müller, RD, Smith, WH, Garcia, E & Francis, R 2014, 'New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure', Science, vol 346, no 6205, pp 65-7 Sandwell, DT & Smith, WH 1997, 'Marine gravity anomaly from Geosat and ERS satellite altimetry', Journal of Geophysical Research: Solid Earth (1978–2012), vol 102, no B5, pp 10039-54 Sandwell, DT & Smith, WH 2009, 'Global marine gravity from retracked Geosat and ERS‐1 altimetry: Ridge segmentation versus spreading rate', Journal of Geophysical Research: Solid Earth (1978–2012), vol 114, no B1 Sansò, F & Sideris, MG 2013, Geoid Determination: Theory and Methods, vol 110, Lecture Notes in Earth System Sciences, Springer-Verlag, Berlin Schwarz, KP, Sideris, MG & Forsberg, R 1987, 'Orthometric heights without leveling', Journal of Surveying Engineering, vol 113, no 1, pp 28-40 Schwarz, KP, Sideris, MG & Forsberg, R 1990, 'The use of FFT techniques in physical geodesy', Geophysical Journal International, vol 100, no 3, pp 485-514 Seeber, G 2003, Satellite geodesy: foundations, methods, and applications, Walter de Gruyter, Berlin, Germany Page 159 References Shako, R, Förste, C, Abrikosov, O, Bruinsma, S, Marty, J-C, Lemoine, J-M, Flechtner, F, Neumayer, H & Dahle, C 2014, 'EIGEN-6C: A high-resolution global gravity combination model including GOCE data', in Observation of the System Earth from Space-CHAMP, GRACE, GOCE and future missions, Springer, pp 155-61 Shepard, D 1968, 'A two-dimensional interpolation function for irregularly-spaced data', paper presented to Proceedings of the 23rd Assocition for Computing Machinery National Conference, New York, USA Sideris, MG 1990, 'Rigorous gravimetric terrain modelling using Molodensky’s operator', Manuscripta geodaetica, vol 15, no 2, pp 97-106 Sideris, MG & She, BB 1995, 'A new, high-resolution geoid for Canada and part of the US by the 1DFFT method', Bulletin Géodésique, vol 69, no 2, pp 92-108 Sjöberg, L 2003, 'A general model for modifying Stokes’ formula and its least-squares solution', Journal of Geodesy, vol 77, no 7-8, pp 459-64 Sjöberg, L 2005, 'A discussion on the approximations made in the practical implementation of the remove–compute–restore technique in regional geoid modelling', Journal of Geodesy, vol 78, no 11-12, pp 645-53 Smith, D, Holmes, SA, Li, X, Guillaume, S, Wang, Y, Bürki, B, Roman, DR & Damiani, TM 2013, 'Confirming regional cm differential geoid accuracy from airborne gravimetry: the Geoid Slope Validation Survey of 2011', Journal of Geodesy, vol 87, no 10-12, pp 885-907 Smith, D & Milbert, D 1999, 'The GEOID96 high-resolution geoid height model for the United States', Journal of Geodesy, vol 73, no 5, pp 219-36 Smith, W & Wessel, P 1990, 'Gridding with continuous curvature splines in tension', Geophysics, vol 55, no 3, pp 293-305 Somigliana, C 1929, 'Teoria generale del campo gravitazionale dell'ellissoide di rotazione', Memorie della Società Astronomica Italiana, vol 4, p 425 Strang van Hees, G 1990, 'Stokes formula using fast Fourier techniques', Manuscripta geodaetica, vol 15, no 4, pp 235-9 References Page 160 Tapley, BD, Bettadpur, S, Watkins, M & Reigber, C 2004, 'The gravity recovery and climate experiment: Mission overview and early results', Geophysical Research Letters, vol 31, no Tocho, C, Font, G & Sideris, MG 2007, 'A new high-precision gravimetric geoid model for Argentina', paper presented to Dynamic Planet, Cairns, Australia Torge, W 1996, 'The International Association of Geodesy (IAG)-More than 130 years of international cooperation', Journal of Geodesy, vol 70, no 12, pp 840-5 Torge, W 2001, Geodesy, 3rd edn, de Gruyter, Berlin Torge, W, Timmen, L, Röder, RH & Schnüll, M 1995, 'Large Scale Absolute Gravity Control in South America, JILAG-3 Campaigns 1988–1991', in Springer Berlin Heidelberg, Springer Berlin Heidelberg, Berlin, vol 113, pp 46-55 Tscherning, CC 1984, 'The Geodesist's Handbook', Bull Géod, vol 58, no Tscherning, CC 1985, GEOCOL: A FORTRAN-program for gravity field approximation by collocation, University of Copenhagen, Copenhagen, Denmark Tscherning, CC 1991a, 'A strategy for gross-error detection in satellite altimeter data applied in the Baltic-sea area for enhanced geoid and gravity determination', in Determination of the Geoid, Springer New York, USA, pp 95-107 Tscherning, CC 1991b, 'The use of optimal estimation for gross-error detection in databases of spatially correlated data', Bulletin d’Information, vol 68, pp 79-89 Tscherning, CC & Forsberg, R 1992, 'Harmonic continuation and gridding effects on geoid height prediction', Bulletin Géodésique, vol 66, no 1, pp 41-53 U.S Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center 2006, 2-minute Gridded Global Relief Data (ETOPO2v2), U.S National Geospatial-Intelligence Agency 2008, Earth Gravitational Model 2008, U.S National Geospatial-Intelligence Agency,, viewed August 2014, Page 161 References United States Geological Survey 1999, GTOPO30 Documentation, viewed july 2014, Vanicek, P 1991, 'Vertical datum and NAVD88', Surveying and Land Information Systems, vol 51, no 2, pp 83-6 Vanicek, P & Christou, NT 1993, Geoid and its geophysical interpretations, CRC Press, Boca Raton, Florida, USA Vaníček, P, Kingdon, R & Santos, M 2012, 'Geoid versus quasigeoid: a case of physics versus geometry', Contributions to Geophysics and Geodesy, vol 42, no 1, pp 101-18 Vaníček, P & Kleusberg, A 1987, 'The Canadian geoid - Stokesian approach', Manuscripta geodaetica, vol 12, pp 86-98 Vaníček, P & Sjöberg, LE 1991, 'Reformulation of Stokes's theory for higher than second‐degree reference field and modification of integration kernels', Journal of Geophysical Research: Solid Earth (1978–2012), vol 96, no B4, pp 6529-39 Vergos, GS, Tziavos, IN & Andritsanos, VD 2005, 'Gravity Data Base Generation and Geoid Model Estimation Using Heterogeneous Data', in C Jekeli, L Bastos & J Fernandes (eds), Gravity, Geoid and Space Missions, Springer Berlin Heidelberg, vol 129, pp 155-60 Vignudelli, S, Cipollini, P, Roblou, L, Lyard, F, Gasparini, G, Manzella, G & Astraldi, M 2005, 'Improved satellite altimetry in coastal systems: Case study of the Corsica Channel (Mediterranean Sea)', Geophysical Research Letters, vol 32, no Wang, Y, Saleh, J, Li, X & Roman, D 2012, 'The US Gravimetric Geoid of 2009 (USGG2009): model development and evaluation', Journal of Geodesy, vol 86, no 3, pp 165-80 Wichiencharoen, C 1982, The indirect effects on the computation of geoid undulations, 336, The Ohio State University, Columbus, USA Wong, L & Gore, R 1969, 'Accuracy of geoid heights from modified Stokes kernels', Geophysical Journal International, vol 18, no 1, pp 81-91 Zhang, K 1997, 'An evaluation of FFT geoid determination techniques and their application to height determination using GPS in Australia', Curtin University of Technology References Page 162 Zhang, K 1998, Altimetric gravity anomalies, their assessment and combination with local gravity field, 98(4), Finnish Geodetic Institute Zhang, K 1999, 'On the determination of a new Australian geoid', Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, vol 24, no 1, pp 61-6 Zhang, K & Featherstone, W 1995, 'The statistical fit of high degree geopotential models to the gravity field of Australia', Geomatics Research Australasia, pp 1-18 Page 163 References ... undulations values from USA, Canada, Europe, Australia, Japan and Brazil (International Centre for Global Earth Models 2015) 103 Table 4.8: Number of gravity anomalies used for evaluating... a new precise and high resolution geoid model that agrees with the national vertical datum, and that the national mapping, geological and cadastres agencies can adopt as the new vertical reference... will be adopted as the official Argentinean geoid model A large number of public agencies, universities and private companies are eager to access to an official precise high resolution geoid model

Ngày đăng: 11/03/2023, 11:45

w