1. Trang chủ
  2. » Tất cả

Luận văn thạc sĩ phương trình gần đúng và tính nghiệm gần đúng

66 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC TRẦN THỊ NĂM PHƯƠNG TRÌNH ĐẠI SỐ VÀ TÍNH NGHIỆM GẦN ĐÚNG LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên 2015 c ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC TRẦN THỊ N[.]

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC TRẦN THỊ NĂM PHƯƠNG TRÌNH ĐẠI SỐ VÀ TÍNH NGHIỆM GẦN ĐÚNG LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - 2015 c ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC TRẦN THỊ NĂM PHƯƠNG TRÌNH ĐẠI SỐ VÀ TÍNH NGHIỆM GẦN ĐÚNG Chuyên ngành: Phương pháp toán sơ cấp Mã số: 60 46 01 13 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: PGS.TS ĐÀM VĂN NHỈ Thái Nguyên - 2015 c Phương trình đại số Tính nghiệm gần Trần Thị Năm ĐHKH Thái Nguyên Thái Nguyên, năm 2013 c Mục lục Lời cảm ơn iii Mở đầu 1 Phương trình Định lý Hilbert không điểm 1.1 Mở rộng đại số 1.1.1 Quan hệ tương đương 1.1.2 Mở rộng đơn 1.1.3 Mở rộng đại số 1.1.4 Một vài vận dụng 1.2 Phụ thuộc đại số Định lý Hilbert sở 1.2.1 Phụ thuộc đại số 1.2.2 Định lý sở Hilbert 1.3 Định lý không điểm Hilbert Tính gần nghiệm 2.1 Nghiệm hệ đa thức 2.1.1 Kết thức phép khử 2.1.2 Khái niệm kết thức biệt thức 2.1.3 Biểu diễn kết thức qua nghiệm 2.1.4 Phép khử ẩn 2.1.5 Phép biến đổi Tschirnhaus 2.2 Xác định nghiệm gần 2.2.1 Phương pháp truy hồi i c 4 13 17 18 18 21 25 25 25 25 32 35 38 42 42 2.3 2.4 2.2.2 Phương pháp dây cung 2.2.3 Phương pháp tiếp tuyến Newton 2.2.4 Phương trình hàm ẩn Phương pháp lặp hội tụ chúng Ví dụ minh họa ii c 44 46 47 48 57 Lời cảm ơn Tác giả xin bày tỏ lòng biết ơn sâu sắc tới PGS.TS Đàm Văn Nhỉ - Thầy trực tiếp hướng dẫn khoa học tận tình bảo, giúp đỡ, góp ý để hồn thiện luận văn Trong q trình học tập, nghiên cứu hồn thiện luận văn, tác giả nhận động viên, khuyến khích tạo điều kiện giúp đỡ nhiệt tình cấp lãnh đạo Sở Giáo dục Đào tạo tỉnh Tuyên Quang, Ban Giám hiệu đồng nghiệp trường phổ thông dân tộc Nội trú THPT tỉnh Tuyên Quang, bạn bè đồng nghiệp gia đình Với tình cảm chân thành, tác giả xin cảm ơn Khoa Toán - Tin, phòng Đào tạo - Trường Đại học Khoa học - Đại hoc Thái Nguyên, thầy cô giáo tham gia giảng dạy, cung cấp kiến thức tài liệu giúp tác giả học tập, nghiên cứu hoàn thiện luận văn Mặc dù nghiêm túc cố gắng thực luận văn không tránh khỏi thiếu sót hạn chế Tác giả mong nhận ý kiến đóng góp chân thành từ thầy giáo, cô giáo, bạn bè đồng nghiệp bạn đọc Xin chân trọng cảm ơn! Tác giả iii c Mở đầu Hai định lý Hilbert sở không điểm thuộc kết đại số Chúng vận dụng nhiều không lĩnh vực Đại số Hình học đại số, mà chúng vận dụng Lý thuyết số tổ hợp (Combinatorial Number Theory), Lý thuyết đồ thị Tổ hợp Đặc biệt, nhà toán học Noga Alon (Tel Aviv University) nói, vận dụng hai định lý cho ta kết sâu sắc Lý thuyết số vấn đề tô màu đồ thị Do vậy, người học toán hay dạy toán cần nghiên cứu hai định lý Trong chương trình tốn phổ thơng nay, đặc biệt cho chun tốn, phần phương trình hệ phương trình chiếm thời lượng lớn ứng dụng nhiều môn học khác thực tế Khá nhiều sách tham khảo nhiều tác giả viết chuyên đề Các tài liệu có thường quan tâm đến kỹ thuật phương pháp giải dạng, lớp phương trình hệ phương trình Tuy nhiên, phương pháp đại số (biến đổi tương đương, đặt ẩn phụ, đánh giá biểu thức ) giải phương trình, hệ phương trình thường giải số lớp phương trình hệ phương trình đó, tức khơng mang tính phổ qt Hơn giải phương trình ta thường biến đổi để đưa phương trình xét phương trình đa thức Nhiều tốn ta khơng cần biết xác nghiệm cụ thể mà ta cần vài tính chất có liên quan đến tập nghiệm Vì vậy, học sinh, học sinh chuyên toán, thường lúng túng gặp dạng tập Do vậy, cần mở rộng trường để phương trình có nghiệm trường dựa vào Định lý c Viet để suy tính chất nghiệm mà ta quan tâm Một vấn đề mà hay gặp việc giải hệ phương trình nhiều ẩn, thường làm loại bỏ số phương trình khơng làm ảnh hưởng đến tập nghiệm hệ cho Chính mà luận văn đặt vấn đề xét khái niệm phụ thc đại số, phương trình đại số định lý sở Hilbert, định lý không điểm Hilbert Đặc biệt thông qua việc nghiên cứu cách giải gần phương trình phi tuyến đề tài đề cập đến cách tính nghiệm gần nhằm cung cấp thêm kiến thức giải phương trình, hệ phương trình tốn có liên quan phục vụ cho cơng tác giảng dạy học tập mơn tốn, mơn học khác giải toán thực tế chương trình trung học phổ thơng Luận văn chia làm hai chương Chương gồm ba mục Mục 1.1 dành để trình bày mở rộng trường Trong Mục 1.2, chúng tơi trình bày khái niệm phụ thuộc đại số Định lý Hilbert sở Mục 1.3 tập trung trình bày phương trình đại số, Định lý Hilbert khơng điểm kết Noga Alon Kết ba định lý sau Định lý 1.2.4 [Hilbert’s Basis Theorem]Mỗi idêan I 6= (0) I 6= (1) vành đa thức K[x1 , x2 , , xn ] có hệ sinh hữu hạn Định lý 1.3.2 [Hilbert’s zero-theorem]Giả sử g(x1 , , xn ) 6= thỏa mãn g(ξ1 , ξ2 , , ξn ) = (ξ1 , ξ2 , , ξn ) nghiệm hệ  fi (x1 , , xn ) = i = 1, 2, , r Khi có đa thức bi (x1 , , xn ) ∈ C[x1 , , xn ] số nguyên dương s thỏa mãn s g(x1 , , xn ) = r X bi (x1 , , xn )fi (x1 , , xn ) i=1 Định lý 1.3.4 [Noga Alon]Giả thiết trường K có char(K) = Cho đa thức khác không g(x) = g(x1 , , xn ) ∈ K[x] Ký hiệu tập c Si ⊂ K thỏa mãn |Si | > pi (xi ) = Q (xi − s) với i = 1, , n Nếu s∈Si g(x) triệt tiêu nghiệm chung p1 , , pn tồn đa thức q1 , , qn ∈ K[x1 , , xn ] thỏa mãn deg qi deg g − deg pi để g= n X qi pi i=1 Chương gồm ba mục Mục 2.1 dành để trình bày kết thức vài tính chất Trong Mục 2.2 chúng tơi trình bày vài phương pháp giải gần phương trình phi tuyến Mục 2.3 trình bày phương pháp lặp để giải gần phương trình Kết hai định lý sau Định lý 2.1.1 Với hai đa thức fu gv có hai đa thức h(u, v, x) k(u, v, x) thuộc K[u, v][x] thỏa mãn hệ thức biểu diễn sau: Res(fu , gv ) = h(u, v, x)fu + k(u, v, x)gv  f (x, y) = Định lý 2.1.20 Hệ phương trình (A) g(x, y) = giải qua  f, g ∈ R[x, y] phương trình đa thức ẩn c Chương Phương trình Định lý Hilbert khơng điểm Chương tập trung xét vài phần liên quan đến phương trình đại số Định lý khơng điểm Hlbert 1.1 1.1.1 Mở rộng đại số Quan hệ tương đương Giả thiết tập X 6= ∅ Tích Carte X × X định nghĩa sau: X × X = {(x, y)|x, y ∈ X} Định nghĩa 1.1.1 Tập S X × X gọi quan hệ hai X Nếu (x, y) ∈ S ta nói x có quan hệ S với y viết xSy Định nghĩa 1.1.2 Giả thiết X 6= ∅ S 6= ∅ quan hệ hai X Quan hệ S gọi quan hệ tương đương X thỏa mãn ba điều kiện sau đây: (1) (Phản xạ) Với x ∈ X có xSx (2) (Đối xứng) Với x, y ∈ X, có xSy có ySx (3) (Bắc cầu) Với x, y, z ∈ X, có xSy ySz có xSz c ... TRẦN THỊ NĂM PHƯƠNG TRÌNH ĐẠI SỐ VÀ TÍNH NGHIỆM GẦN ĐÚNG Chuyên ngành: Phương pháp toán sơ cấp Mã số: 60 46 01 13 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: PGS.TS ĐÀM VĂN NHỈ Thái Ngun... số lớp phương trình hệ phương trình đó, tức khơng mang tính phổ qt Hơn giải phương trình ta thường biến đổi để đưa phương trình xét phương trình đa thức Nhiều tốn ta khơng cần biết xác nghiệm. .. thức vài tính chất Trong Mục 2.2 chúng tơi trình bày vài phương pháp giải gần phương trình phi tuyến Mục 2.3 trình bày phương pháp lặp để giải gần phương trình Kết hai định lý sau Định lý 2.1.1

Ngày đăng: 11/03/2023, 09:04

w