Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim √ 4n2 + 1 − √ n + 2 2n − 3 bằng A 3 2 B 1 C 2[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B C D +∞ x2 − 12x + 35 Câu Tính lim x→5 25 − 5x 2 B +∞ C D −∞ A − 5 2n + Câu Tìm giới hạn lim n+1 A B C D x+2 Câu Tính lim bằng? x→2 x A B C D x−2 Câu Tính lim x→+∞ x + A − B C D −3 Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) + g(x)] = a + b B lim [ f (x)g(x)] = ab x→+∞ x→+∞ f (x) a = C lim [ f (x) − g(x)] = a − b D lim x→+∞ x→+∞ g(x) b x2 − 5x + x→2 x−2 B 2x + Tính giới hạn lim x→+∞ x + 1 B x−3 [1] Tính lim bằng? x→3 x + B +∞ Câu Tính giới hạn lim A Câu A Câu A C −1 D C D −1 C −∞ D Câu 10 Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin x cos x C −1 + sin 2x D + sin 2x Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 6) C (2; 4; 3) D (1; 3; 2) q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 1] C m ∈ [0; 2] D m ∈ [0; 4] Câu 13 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D Trang 1/5 Mã đề Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A (1; 2) B ;3 C 2; D [3; 4) 2 √ ab Câu 15 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C 2020 D log2 2020 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 + 19 11 − 19 C Pmin = D Pmin = 9 Câu 16 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x + √ y √ 18 11 − 29 11 − A Pmin = B Pmin = 21 Câu 17 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 log(mx) Câu 18 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < C m < ∨ m = D m < ∨ m > √ Câu 19 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 63 C Vô số D 64 Câu 20 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey − B xy0 = −ey + C xy0 = −ey − D xy0 = ey + Câu 21 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ ! un = a , lim = ±∞ lim = !vn un = a > lim = lim = +∞ = +∞ lim = a > lim(un ) = +∞ + + ··· + n Câu 22 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 23 Tính lim A n+3 B C 1 1 + + ··· + 1+2 + + ··· + n B C +∞ D ! Câu 24 [3-1131d] Tính lim A Câu 25 Dãy số sau có giới hạn khác 0? n+1 sin n A B n n C n D D √ n Trang 2/5 Mã đề cos n + sin n n2 + B 7n − 2n3 + Câu 27 Tính lim 3n + 2n2 + A - B 12 + 22 + · · · + n2 Câu 28 [3-1133d] Tính lim n3 A B Câu 29 Dãy số sau có giới hạn 0? − 2n n2 + n + B un = A un = (n + 1) 5n + n2 Câu 26 Tính lim A −∞ D +∞ C C D C +∞ C un = D n2 − 5n − 3n2 D un = n2 − 3n n2 un A +∞ B −∞ C D √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a a 38 3a 58 A B C D 29 29 29 29 Câu 32 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 2a a 5a B C D A 9 9 0 0 Câu 33.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a B C D A Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 a b2 + c2 c a2 + b2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A C √ D √ B √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D 2 0 0 Câu 38 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) Trang 3/5 Mã đề √ a A √ 2a B √ a D √ C a [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ 2a 57 a 57 a 57 B C a 57 A D 17 19 19 d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Câu 41 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K B f (x) có giá trị nhỏ K C f (x) xác định K D f (x) liên tục K Câu 42 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z C f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Câu 43 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 44 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 46 Z Các khẳng định sau Z sai? f (x)dx = F(x) + C ⇒ A Z C f (x)dx = F(x) +C ⇒ f (t)dt = F(t) + C B Z f (u)dx = F(u) +C D Z Z !0 f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Trang 4/5 Mã đề Câu 47 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (II) C Chỉ có (I) D Cả hai câu sai Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Cả hai sai D Chỉ có (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B A C C A 11 D B C 14 B 16 B C 22 A B 24 A 25 A 26 27 A 28 A D 33 C 35 D B 34 B C 38 B 40 41 D 42 A 43 D 44 A 47 C 32 36 37 A 45 B 30 B 31 39 C 20 A 21 29 C 18 19 A 23 D 12 A D 17 B 10 B 13 15 C B 46 C 49 A D C C 48 D 50 D ...Câu 14 [122 20d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A (1; 2) B ;3 C 2; D [3; 4) 2 √ ab Câu 15 [122 21d]... 19 11 − 19 C Pmin = D Pmin = 9 Câu 16 [122 10d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x + √ y √ 18 11 − 29 11 − A Pmin = B Pmin = 21 Câu 17 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1... trị a + 2b B C D A 2 log(mx) Câu 18 [122 6d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < C m < ∨ m = D m < ∨ m > √ Câu 19 [122 8d] Cho phương trình (2 log23 x − log3