Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giả sử ta có lim x→+∞ f (x) = a và lim x→+∞ f (x) = b[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim = B lim [ f (x)g(x)] = ab x→+∞ g(x) x→+∞ b C lim [ f (x) + g(x)] = a + b D lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ x − 12x + 35 25 − 5x B − 1−n Câu [1] Tính lim bằng? 2n + 1 A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −1 √ √ 4n + − n + Câu Tính lim 2n − A B 2 Câu Tính lim x→5 A x+1 Câu Tính lim x→−∞ 6x − A x+1 Câu Tính lim x→+∞ 4x + A B D +∞ C −∞ D − C D −4 C +∞ D C D D C B C Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B + sin 2x C − sin 2x Câu Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ x−3 bằng? Câu 10 [1] Tính lim x→3 x + A +∞ B −∞ C D C D Câu 11 [12213d] Có giá trị nguyên m để phương trình nhất? A B D −1 + sin x cos x C 3|x−1| = 3m − có nghiệm D Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 2020 C 13 D log2 13 q Câu 13 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2] Trang 1/5 Mã đề Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≥ D m ≤ Câu 15 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m < C m > D m ≤ 4 4 Câu 16 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = e + C xy0 = −ey + D xy0 = −ey − Câu 17 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 Câu 18 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D log(mx) = có nghiệm thực Câu 19 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m = B m < ∨ m > C m < D m ≤ Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D 12 + 22 + · · · + n2 Câu 21 [3-1133d] Tính lim n3 A B C +∞ 3 ! 1 Câu 22 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C 2 7n2 − 2n3 + Câu 23 Tính lim 3n + 2n2 + A B - C 3 Câu 24 Trong khẳng định có khẳng định đúng? D D D (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D + + ··· + n Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = 1 C lim un = D lim un = 2 2n − Câu 26 Tính lim 3n + n4 A B C D Câu 25 [3-1132d] Cho dãy số (un ) với un = Trang 2/5 Mã đề ! 3n + 2 Câu 27 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 28 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = −∞ = a < lim = > với n lim ! un = a > lim = lim = +∞ ! un = a , lim = ±∞ lim = = +∞ lim = a > lim(un ) = +∞ Câu 29 Tính lim n+3 A B Câu 30 Dãy số sau có giới hạn 0? − 2n n2 + n + A un = B u = n 5n + n2 (n + 1)2 C C un = D n2 − 3n n2 D un = n2 − 5n − 3n2 Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD c a2 + b2 b a2 + c2 abc b2 + c2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C D a A 3a Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ BC) √ √ 2a 57 a 57 a 57 A B a 57 C D 19 19 17 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab D √ A √ B √ C a +b a2 + b2 a2 + b2 a2 + b2 Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B a C 2a D Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD Trang 3/5 Mã đề √ A a √ a B √ a C √ D a d = 120◦ Câu 38 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B C 4a D 3a Câu 39 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B 2a C a D a [ = 60◦ , S O Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Câu 41 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K B f (x) có giá trị lớn K C f (x) liên tục K D f (x) xác định K Câu 42 Z Trong khẳng định sau, khẳng định sai? Z xα+1 dx = ln |x| + C, C số B xα dx = + C, C số A α+1 Z x Z C dx = x + C, C số D 0dx = C, C số Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B G(x) = F(x) − C khoảng (a; b), với C số C Cả ba câu sai D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 45 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai C Khơng có câu D Câu (III) sai sai Câu 46 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trang 4/5 Mã đề Trong hai khẳng định A Cả hai B Chỉ có (II) C Chỉ có (I) D Cả hai sai Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (II) D (I) (III) Câu 48 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 49 Z Các khẳng định sau Z sai? A Z C Z !0 f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = f (x) Z Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 50 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D A D A D A C 11 A C 13 12 D C 16 A 18 C 17 D 14 D 15 10 19 A D 20 A 21 B 22 D 23 B 24 D 25 27 D 26 A B 28 29 A 30 A 31 A 32 33 B D 38 39 43 36 A B B 40 D 41 C 34 A 35 37 B 42 C D B 44 B 45 C 46 47 C 48 A 49 A 50 C B B ... un = Trang 2/5 Mã đề ! 3n + 2 Câu 27 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 28 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim... g(x))dx = f (x)dx + g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D A D A D A C 11 A C 13 12 D C 16 A 18 C 17 D 14 D 15 10 19 A D 20... đoạn Trang 4/5 Mã đề Trong hai khẳng định A Cả hai B Chỉ có (II) C Chỉ có (I) D Cả hai sai Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x)