Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim x→3 x − 3 x + 3 bằng? A −∞ B 1 C +∞ D 0 C[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [1] Tính lim x→3 A −∞ x−3 bằng? x+3 B C +∞ Câu Phát biểu sau sai? A lim = n C lim k = n x+2 bằng? Câu Tính lim x→2 x A B D B lim un = c (un = c số) D lim qn = (|q| > 1) C D Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab x→+∞ f (x) a C lim = x→+∞ g(x) b B lim [ f (x) + g(x)] = a + b x→+∞ D lim [ f (x) − g(x)] = a − b x→+∞ Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b D lim+ f (x) = f (a) lim+ f (x) = f (b) √ x2 + 3x + x→−∞ 4x − B Câu Tính giới hạn lim A Câu Tính giới hạn lim x→+∞ A −1 C 2x + x+1 B D − C D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin 2x C − sin 2x 2n + Câu Tìm giới hạn lim n+1 A B C 1 − 2n Câu 10 [1] Tính lim bằng? 3n + A − B C 3 √ Câu 11 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B m ≥ 1−x2 √ D −1 + sin x cos x D D − 3m + = có nghiệm C < m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 1/5 Mã đề Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (1; 3; 2) D (2; 4; 3) Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e + C xy0 = −ey + D xy0 = −ey − Câu 14 [3-12217d] Cho hàm số y = ln A xy0 = ey − Câu 15 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 ;3 C (1; 2) D 2; A [3; 4) B 2 log 2x x2 1 − log 2x B y0 = C y0 = 2x ln 10 x3 √ ab Câu 17 [1229d] Đạo hàm hàm số y = A y0 = − ln 2x x3 ln 10 D y0 = − ln 2x 2x3 ln 10 Câu 18 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 19 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D log(mx) = có nghiệm thực log(x + 1) C m < ∨ m > D m < ∨ m = Câu 20 [1226d] Tìm tham số thực m để phương trình A m < B m ≤ Câu 21 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ v n ! un D Nếu lim un = a , lim = ±∞ lim = ! 3n + 2 Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D cos n + sin n Câu 23 Tính lim n2 + A B +∞ C D −∞ ! 1 + + ··· + Câu 24 Tính lim 1.2 2.3 n(n + 1) A B C D 2 un Câu 25 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B C −∞ D +∞ Trang 2/5 Mã đề 12 + 22 + · · · + n2 n3 B +∞ Câu 26 [3-1133d] Tính lim A Câu 27 Tính lim A C n+3 B C ! 1 + ··· + Câu 28 [3-1131d] Tính lim + 1+2 + + ··· + n A B C +∞ Câu 29 Dãy số sau có giới hạn 0? n2 − − 2n n2 + n + B u = C un = A un = n 2 (n + 1) 5n − 3n 5n + n2 n−1 Câu 30 Tính lim n +2 A B C D D D D un = n2 − 3n n2 D Câu 31 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 8a a 5a B C D A 9 9 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B 2a C a D A a d = 120◦ Câu 34 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a B 2a C 3a D 4a A 3a Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 0 0 Câu 36.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A a B 2a C D Trang 3/5 Mã đề [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ √ với mặt đáy S O = a Khoảng cách từ O đến (S √ a 57 2a 57 a 57 B a 57 C D A 17 19 19 d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 B √ C D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 41 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai C Cả hai sai D Chỉ có (I) Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) Câu 43 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K C (II) (III) D Cả ba mệnh đề B f (x) liên tục K D f (x) có giá trị nhỏ K Câu 44 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 45 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) C dx = log |u(x)| + C u(x) D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Trang 4/5 Mã đề Câu 46 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 47 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (I) sai C Câu (III) sai D Câu (II) sai sai Câu 48 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = x + C, C số A xα dx = α+1 Z Z 0dx = C, C số D C dx = ln |x| + C, C số x Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z D f (x)dx = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D B B D A 10 A 11 A 12 A 13 A 14 A 15 D 16 17 A 19 B 21 A C 23 25 B D 22 B 24 B 26 B 29 C 30 31 C 32 33 C 34 A 35 C 36 37 C 38 40 B 41 A D B C D C B 42 A B 44 B 46 A C 47 A 49 B 20 28 A 45 D D C 43 C 18 27 39 D 48 A 50 C B ... !0 Z D f (x)dx = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D B B D A 10 A 11 A 12 A 13 A 14 A 15 D 16 17 A 19 B 21 A C 23 25 B D... nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) Câu 43... m < ∨ m = Câu 20 [1226d] Tìm tham số thực m để phương trình A m < B m ≤ Câu 21 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞