Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Tính lim x→3 x − 3 x + 3 bằng? A 1 B −∞ C 0 D +∞ Câu 2 Tính lim x→3 x2 − 9 x − 3 A +∞ B 3 C 6 D −3 Câu[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi x−3 bằng? x→3 x + A B −∞ x −9 Câu Tính lim x→3 x − A +∞ B − 2n bằng? Câu [1] Tính lim 3n + A − B x+2 Câu Tính lim bằng? x→2 x A B Câu [1] Tính lim C D +∞ C D −3 C C Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B C 2 x − 12x + 35 Câu Tính lim x→5 25 − 5x 2 B −∞ C A − 5 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B C x+1 Câu Tính lim x→−∞ 6x − 1 B C A D D D +∞ D +∞ D −1 D Câu 10 Giá trị lim (3x2 − 2x + 1) x→1 C +∞ D 1 Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ log(mx) Câu 12 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < ∨ m = C m ≤ D m < A B Câu 13 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≥ C m > D m ≤ Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e + C xy0 = ey − D xy0 = −ey − Câu 14 [3-12217d] Cho hàm số y = ln A xy0 = −ey + Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 D ;3 A (1; 2) B [3; 4) C 2; 2 log 2x x2 − ln 2x − log 2x B y0 = C y0 = x ln 10 x3 √ ab Câu 16 [1229d] Đạo hàm hàm số y = A y0 = − ln 2x 2x3 ln 10 √ √ D y0 = 2x3 ln 10 − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 19 11 + 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 17 [12215d] Tìm m để phương trình x+ B m ≥ A < m ≤ 1−x2 − 4.2 x+ 1−x2 Câu 19 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C log2 2020 D 2020 Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 cos n + sin n Câu 21 Tính lim n2 + A +∞ B −∞ C D 7n2 − 2n3 + Câu 22 Tính lim 3n + 2n2 + A B - C D Câu 23 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim v! n un B Nếu lim un = a > lim = lim = +∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ Câu 24 Dãy số sau có giới hạn 0? n2 + n + n2 − A un = B u = n (n + 1)2 5n − 3n2 Câu 25 Tính lim A C un = − 2n 5n + n2 D un = n2 − 3n n2 2n2 − 3n6 + n4 B C D Trang 2/5 Mã đề Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim B +∞ A Câu 27 Tính lim n+3 A C un D −∞ B C D + + ··· + n Câu 28 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = Câu 29 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D ! 3n + 2 Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 31 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ √ √ (A C D) √ a a 2a B C D a A Câu 32 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C 2a D a A Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a B C a D 2a A √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 3a 38 a 38 A B C D 29 29 29 29 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 B √ C √ D √ A 2 a +b a2 + b2 a2 + b2 a2 + b2 Câu 36 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B a C D Trang 3/5 Mã đề [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 B A a 57 C D 17 19 19 Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B C a D A 2 d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 2a C 4a D Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C (I) (II) D Cả ba mệnh đề Câu 42 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C B u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 43 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K B f (x) có giá trị nhỏ K D f (x) liên tục K Câu 44 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn Trang 4/5 Mã đề (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Cả hai sai D Chỉ có (I) Câu 46 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx f (x)dx − Z g(x)dx D Câu 47 ! định sau sai? Z Các khẳng A Z C k f (x)dx = f B Z f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Z B Z D f (x)g(x)dx = Z f (x)dx, k ∈ R, k , Z f (x)dx g(x)dx f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) khoảng (a; b) C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D G(x) = F(x) − C khoảng (a; b), với C số Câu 49 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 50 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C F(x) = x2 nguyên hàm hàm số f (x) = 2x √ D F(x) = x nguyên hàm hàm số f (x) = x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C A D A 13 C C B 10 B 12 B 14 B D 15 17 C A C 11 16 D 22 23 B 24 25 B 26 A 27 A C 34 D D C 40 C D B 47 B 38 B 43 D 36 B 41 C 32 B 37 49 C 30 33 A 45 B 28 A 29 39 D 20 A 21 35 B 18 C 19 A 31 C D B D 42 B 44 B 46 D 48 D 50 D ... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C (I) (II) D Cả ba mệnh đề Câu... nguyên hàm hàm số f (x) = x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C A D A 13 C C B 10 B 12 B 14 B D 15 17 C A C 11 16 D 22 23 B 24 25 B... lim n2 + A +∞ B −∞ C D 7n2 − 2n3 + Câu 22 Tính lim 3n + 2n2 + A B - C D Câu 23 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim v! n un B Nếu lim un = a > lim = lim = +∞