1. Trang chủ
  2. » Tất cả

De 365

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 545,33 KB

Nội dung

 Mẫu trình bày đề thi trắc nghiệm (Áp dụng cho các môn Lý, Hóa, Sinh) SỞ GD&ĐT ĐẮK LẮK TRƯỜNG THPT NGUYỄN HUỆ (Đề thi có 06 trang) TOAN THPT NĂM HỌC 2022 2023 MÔN TOAN – Khối lớp 12 Thời gian làm bài[.]

SỞ GD&ĐT ĐẮK LẮK TRƯỜNG THPT NGUYỄN HUỆ TOAN THPT NĂM HỌC 2022 - 2023 MÔN TOAN – Khối lớp 12 Thời gian làm : 90 phút (không kể thời gian phát đề) (Đề thi có 06 trang) Họ tên học sinh : Số báo danh : Mã đề 365 Câu Trong không gian Oxyz , mặt cầu có tâm I(2;  1;1) tiếp xúc mặt phẳng (Oyz) có phương trình là: 2 A ( x  2)  ( y  1)  ( z  1) 2 2 B ( x  2)  ( y  1)  ( z  1) 4 2 C ( x  2)  ( y  1)  ( z  1) 4 2 D ( x  2)  ( y  1)  ( z  1) 2 Câu Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ  cos a, b   A  cos a, b  B   Câu Cho A     C Khi đó,  cos a , b  25    Tích phân B 2  x  1   y     z   D  cos a , b  25   f ( x)dx   cos a , b  f (x)dx C D  A  1; 2;  Câu Trong không gian với hệ tọa độ Oxyz , cho hai điểm mặt cầu tâm A tiếp xúc với đường thẳng OB C  b   1; 0;   f ( x)dx 2 A  a  2;1;   x  1   y     z   2   B 14 D B  0;1;  Viết phương trình 2  2   x  1   y     z    x  1   y     z   x1 25 là: Câu Tập nghiệm bất phương trình A   1   ;    B  1   ;  2  C  1   ;  2  D   1   ;  2  Câu Cho hàm số f ( x) liên tục  có đồ thị đường cong hình vẽ bên Số nghiệm phương trình f ( x)  0 A B C D Câu Số giao điểm đồ thị hàm số y x  3x  với trục hoành A B C 1/6 - Mã đề 365 D log a log b Câu Cho số thực dương a , b thỏa mãn Mệnh đề sau đúng? A a log b C a 2log b a B b 6 a D b 9 Câu Diện tích hình phẳng giới hạn đường y x  5x  y 0 4    x  5x  dx   x2  5x  dx     x2  x  dx   x   5x  dx A B C D a Câu 10 Cho hình tứ diện cạnh có đỉnh trùng với đỉnh hình nón trịn xoay cịn ba đỉnh lại tứ diện nằm đường tròn đáy hình nón Diện tích xung quanh hình nón 1 1  a2 2 a A B C R  Câu 11 Cho mặt cầu có bán kính Diện tích mặt cầu cho a A 36 B 9 Câu 12 Với a số thực dương tùy ý, A log 23 a B  log 23 a   log 23 a2 D  a C 18 D 12 C log a D  log a x y  z 1  :   K  1;1;1 Oxyz , Câu 13 Trong không gian với hệ tọa độ cho điểm đường thẳng Viết phương trình mặt cầu tâm K tiếp xúc với  2 x  1   y  1   z  1 A  C  x  1   y  1   z  1 2 14 B 8 D 2 2 2  x  1   y  1   z  1  x  1   y  1   z  1  7 Câu 14 Trong không gian với hệ tọa độ Oxyz, phương trình phương trình mặt cầu có tâm I  1; 2;  1 A tiếp xúc với mặt phẳng  x  1   y     z  1 2 x  1   y     z  1 C  2  P  : x  y  z  0 ? 2 2 2  x  1   y     z  1 3 B 3 x  1   y     z  1 D   9 9  log 2 a 4b log Câu 15 Cho số thực a, b thỏa mãn Khẳng định sau đúng? A 2a  4b 1 B 2a  4b 2 C  2b 1 D a  2b 2 Câu 16 Cho hàm số f ( x) có bảng xét dấu f ( x) sau Hàm số f ( x) đạt cực đại điểm A x 0 B x  C x  D x 1 Câu 17 Cho hàm số f ( x) g( x) liên tục [0; 2] A B 2 f (x)dx 2 g( x)dx  C 12 Câu 18 Cho hàm số y  f ( x) có bảng biến thiên hình bên 2/6 - Mã đề 365 , Tính D  f  x   g  x   dx Hàm số cho đạt cực tiểu A x 0 B x 2 C x 5 D x 1 x y 1 z   :   K  1; 0;1 Oxyz , Câu 19 Trong không gian với hệ tọa độ cho điểm đường thẳng Viết phương trình mặt cầu tâm K tiếp xúc với  A C  x  1  x  1 2  y   z  1   y   z  1  19 B 19 D  x  1 2 19  y   z  1  14  x  1 2 19  y   z  1  2 Câu 20 Trong không gian Oxyz , cho mặt cầu (S) : x  y  2z  8x  y  4z 0 có tâm bán kính I  2;  2;1 , R 9 I  2;  2;1 , R 3 I   2; 2;  1 , R 9 A B C Câu 21 Thể tích khối lập phương có cạnh bằng A 18 B C Câu 22 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: D I   2; 2;  1 , R 3 D 27 x 1 y z    3 1 mặt phẳng  P  : 3x  3y  2z  0 Khẳng định đúng? A d song song với B d nằm  P  P C d vng góc với  P D d cắt không vuông góc với  P Câu 23 Biết log3 a T log12 18 Phát biểu sau đúng? A T a a 1 B T a4 2a  C T a2 2a  D a 2 a 1 T Câu 24 Gọi ( H ) hình phẳng giới hạn đồ thị y x  x, y 0 mặt phẳng Oxy Quay hình ( H ) quanh trục hoành ta khối trịn xoay tích 2 x  2x dx A   B x  x dx   C  x  2  x dx D  x   x dx Câu 25 Cho số phức z a  bi (với a, b   ) thỏa mãn z(1  2i)  i 3 Tính T a  b A T  B T 1 C T 0 D T 2 Câu 26 Trong mặt phẳng Oxy , tập hợp tất điểm biểu diễn số phức z thỏa mãn| z   2i |1 3/6 - Mã đề 365 đường trịn có tọa độ tâm A (  1;  2) Câu 27 Gọi A  26 z1 , z2 B (  1; 2) A D (2;  1) z  4z  13 0 hai nghiệm phức phương trình B  10 C 26 Câu 28 Tập nghiệm bất phương trình  1   ;  2  C (  2;  1) B  1  0;   2 log x 1 Giá trị z12  z22 D 10 C  1  0;   2 D 1   ;     Câu 29 Cho số phức z 2  3i Môđun z A B C D Câu 30 Cho hàm số bậc bốn y  f ( x) có đồ thị hình bên Số nghiệm phương trình f ( x)  0 A B C Câu 31 Đồ thị hàm số có dạng đường cong hình bên? A y x  3x  B y  x  3x C y x  3x D D y x  3x Câu 32 Cho hình chóp S.ABC có đáy tam giác vng cân B, AC 2a , SA  ( ABC), SA 2a Gọi H , K hình chiếu vng góc A lên SB, SC Góc hai mặt phẳng ( AHK ) ( ABC )  A 90  B 30  C 45  D 60 A  1; 2;  B  5; 2;  1 Câu 33 Trong không gian Oxyz , cho Viết phương trình mặt cầu đường kính AB 2 A (S) : ( x  3)  ( y  2)  ( z  1) 32 2 B (S) : ( x  3)  ( y  2)  ( z  1) 8 2 C (S) : ( x  3)  ( y  2)  ( z  1) 8 2 D (S) : ( x  3)  ( y  2)  ( z  1) 32 Câu 34 Trong không gian  Oxyz  , tìm điều kiện tham số m để phương trình x2  y2  z2  2x  y  4z  m 0 phương trình mặt cầu A m 24 B m   C m  Câu 35 Có cách chọn hai học sinh từ nhóm gồm học sinh? A A8 B C C8 4/6 - Mã đề 365 D m  D Câu 36 Trong không gian Oxyz , mặt phẳng ( P) qua điểm M(3;  1; 4) đồng thời vng góc với giá  vectơ a (1;  1; 2) có phương trình A x  y  2z  12 0 B 3x  y  4z  12 0 C 3x  y  4z  12 0 D x  y  2z  12 0 Câu 37 Gọi z1 , z2 hai nghiệm phức phương trình z  4z  0 Gọi M , N điểm biểu diễn số phức z1 , z2 Tính độ dài đoạn MN A B 1 x Câu 38 Nghiệm phương trình A x  B x 3 Câu 39 Cho cấp số nhân A u4 600  un  16 C D C x 7 D  với u1  cơng bội q 5 Tính u4 B u4  500 C u4 200 D u4 800 Câu 40 Phương trình phương trình mặt cầu 2 A x  y  z  4x  y  2z  0 2 B x  y  z  8x  y  2z  62 0 2 C 3x  y  2z  4x  y  z  0 2 D x  y  z  4x  y  2z  14 0 Câu 41 Cho tam giác ABC có diện tích s1 AH đường cao Quay tam giác ABC quanh đường thẳng AH ta thu hình nón có diện tích xung quanh s2 Tính 2   13 13 13 S1 S2 A  B C D Câu 42 Trong hộp có bi đỏ, bi xanh bi vàng Bốc ngẫu nhiên viên Xác suất để bốc đủ màu A 13 B C D z i z Câu 43 Cho hai số phức z1 2  3i z2 3  i phần thực số phức   A  B C D x 1  I e Câu 44 Xét tích phân A u.eu du  dx , đặt u  x  I B u e du  u C ue du u D ue du Câu 45 Tìm số thực a b thỏa mãn 4ai  (2  bi)i 1  6i với i đơn vị ảo A a 1, b 1 B a  , b  C a  , b 6 D a 1, b  Câu 46 Trong không gian, cho hình vng ABCD cạnh Gọi M , N trung điểm AB CD Khi quay hình vng ABCD xung quanh cạnh MN đường gấp khúc MBCN tạo thành hình trịn xoay Diện tích xung quanh hình trịn xoay A 4 B 6 C 8 D 2 Câu 47 Giá trị lớn hàm số A B  13 f ( x) x  x  6x khoảng (0;1) C Không tồn 5/6 - Mã đề 365 D 13 Câu 48 Cho hai hàm số f ( x) g( x) liên tục  a, b, c , k số thực Xét khẳng định sau 1) kf (x)dx k f (x)dx  ( f (x)) dx  f ( x)  C 2)   f  x   g  x   dx  f  x  dx  g  x  dx   3)  b  c c  f (x)dx f ( x)dx  f ( x)dx  4) A a a b B C D x x Câu 49 Tập nghiệm bất phương trình  2   A [0;1] B (0;1) C (1; ) D ( ; 0) Câu 50 Trong không gian Oxyz , cho mặt phẳng ( P) : x  y  2z  0 Khoảng cách từ điểm A(1;  2;1) đến mặt phẳng ( P) A Câu 51 Gọi A B z1 z2 C hai nghiệm phức phương trình B C  HẾT 6/6 - Mã đề 365 D z  z  0 z z Giá trị   D 

Ngày đăng: 28/02/2023, 15:35

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w