SỞ GD&ĐT QUẢNG NAM
TRƯỜNG THPT HIỆP ĐỨC
ĐỀ THAM KHẢO ÔN THI TỐT NGHIỆP THPT
MÔN TOÁN
Thời gian làm bài: 150 phút
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7,0 điểm )
Câu I ( 3,0 điểm ). Cho hàm số
4 2
2 3
y x x
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
2. Biện luận theo m số nghiệm thực của phương trình
4 2
2 2 0
x x m
.
Câu II ( 3,0 điểm )
1. Giải phương trình
2 1
3.13 68.13 5 0
x x
.
2. Tính tích phân
3
0
I= sin3
xdx
.
3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
2
.
x
f x x e
trên [-3;-1]
Câu III ( 1,0 điểm )
Cho hình chóp SABC có SA
mp(ABC). Đáy ABC là tam vuông tại A, AB = a,
AC = a
3
và SC = a
5
. Tính thể tích khối chóp S.ABC theo a.
II. PHẦN RIÊNG ( 3,0 điểm ). Thí sinh học theo chương trình nào thì chỉ được làm
phần dành riêng cho chương trình đó.
1. Theo chương trình Chuẩn:
Câu IV.a ( 2,0 điểm )
Trong không gian với hệ toạ độ Oxyz, cho điểm A( 6;-1 ;0) và mặt phẳng (P) có
phương trình:
4 3 1 0
x y z
1. Viết phương trình tham số đường thẳng d đi qua A và vuông góc với mp(P).
2. Viết phương trình mặt cầu có tâm là hình chiếu H vuông góc của điểm A lên
mp(P) và đi qua điểm A.
Câu V.a ( 1,0 điểm )
Giải phương trình
2
3 46 0
z z
trên tập số phức.
2. Theo chương trình Nâng cao:
Câu IV.b ( 2,0 điểm )
Trong không gian với hệ toạ độ Oxyz, cho điểm A( 3; 0 ;1), hai đường thẳng d
1
và
d
2
có phưong trình là: d
1 2
6 3
x t
y t
z t
, d’
1 2 3
1 1 1
x y z
.
1. Tìm toạ độ hình chiếu vuông góc của điểm A trên d
1
.
2. Xét vị trí tương đối của d
và d’.
Câu V.b ( 1,0 điểm )
Tìm căn bậc hai của số phức
- 24 10
z
i
.
Hết
TRƯỜNG THPT HIỆP ĐỨC ĐÁP ÁN - THANG ĐIỂM
Câu Đáp án Điểm
1. (2 điểm)
Tập xác định: D = R.
Sự biến thiên:
Chiều biến thiên:
Ta có:
3 2
' 4 4 4 1 ; ' 0 0, 1
y x x x x y x x
Trên các khoảng
; 1
và ( 0; 1), y’>0 nên hàm số đồng biến.
Trên các khoảng (-1;0) và
1;
, y’ < 0 nên hàm số nghịch biến.
0,25đ
0,25đ
Cực trị:
Hàm số đạt cực đại tại
1
x
, y
CĐ
= 4.
Hàm số đạt cực tiểu tại x = 0, y
CT
= 3.
Giới hạn:
4
2 4
2 3
lim lim 4
x x
y x
x x
4
2 4
2 3
lim lim 4
x x
y x
x x
0,25đ
0,25đ
Câu I
3 điểm
Bảng biến thiên:
0,5 đ
Đồ thị:
Đồ thị cắt trục tung tại điểm (0; 3).
Đồ thị cắt trục hoành tại hai điểm
3;0
và
3;0
.
Đồ thị nhận trục tung làm trục đối xứng.
0,5 đ
2. (1 điểm)
Phương trình:
4 2 4 2
2 2 0 2 3 1 *
x x m x x m
Số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số
4 2
2 3
y x x
và đường thẳng y = m+1.
0,25đ
0,25đ
Dựa vào đồ thị ta có kết quả biện luận số nghiệm của phương trình (*):
m+1 m số nghiệm của phương trình (*)
m+1 > 4 m > 3 0
m +1= 4 m = 3 2
3< m+1 < 4 2 < m < 3 4
m+1= 3 m = 2 3
m+1< 3 m < 2 2
0,5 đ
1. (1 điểm)
Phương trình
2
39.13 68.13 5 0
x x
, Đặt
13
x
t
điều kiện t > 0
Phương trình trở thành
2
1 5
39 68 6 0
13 3
t t t t
( thoả điều kiện)
0,5 đ
Với
1
13
t
thì
1
1
13 13 13 1
13
x x
x
Với
5
3
t
thì
13
5 5
13 log
3 3
x
x
Vậy phương trình đã cho có hai nghiệm
13
5
1, log
3
x x
0,5 đ
Câu II
3 điểm
2. (1 điểm)
3
3
0
0
1
I= sin3 cos3
3
xdx x
0,5 đ
1 2
I cos - cos0
3 3
0,5 đ
3. (1 điểm)
Xét trên đoạn [-3;-1] hàm số đã cho có đạo hàm:
2 2
' 2 2
x x x
f x xe x e e x x
2
' 0 2 0 0, 2
x
f x e x x x x
Ta có
2 3; 1 ,0 3; 1
0,25đ
0,25đ
3 2
9 4 1
3 , 2 , 1f f f
e e e
Vậy
2
3; 1 3; 1
1 4
min , af x M x f x
e e
0,25đ
0,25đ
Ta có SA
mp(ABC) nên chiều cao của khối chóp
S.ABC là SA.
Tam giác SAC vuông tại A nên
SA
2
= SD
2
- AD
2
Hay SA
2
= 5a
2
- 3a
2
= 2a
2
SA 2
a
.
0,5 đ
Câu III
1 điểm
Đáy ABC là tam giác vuông tại A nên
2
ABC
1 1 3
S AC.AB . 3
2 2 2
a a a
Thể tích khối chóp S.ABC là:
2 3
S.ABC ABC
1 1 3 6
V .SA.S . 2.
3 3 2 6
a a a
(đvtt).
0,25đ
0,25đ
1. (1 điểm)
(P) có vectơ pháp tuyến
4; 1;3
n
ur
.
Do d vuông góc với (P) nên d nhận
4; 1;3
n
ur
làm vectơ chỉ phương.
0,25đ
0,25đ
Câu
IV.a
( 2,0
điểm )
Đường thẳng d đi qua điểm A(6;-1;0) và có vectơ chỉ phương
4; 1;3
n
ur
0,25đ
0,25đ
a 5
a 3
a
A
C
B
S
Vậy phương trình tham số của d là
6 4
1
3
x t
y t
z t
2. (1 điểm)
H là giao điểm của d và mặt phẳng (P).
Toạ độ H là nghiệm của hệ:
6 4
1 4 6 4 1
3 24 24 1
4 3 1 0
x t
y t t t
z t t t
x y z
Vậy H( 2; 0;-3)
0,5 đ
Do mặt cầu đi qua A nên có bán kính:
R=AH =
2 2 2
2 6 2 1 3 0 26
Vậy phương trình mặt cầu (S):
2 2
2
2 3 26
x y z
0,25đ
0,25đ
Câu
V.a
( 1,0
điểm )
Ta có
2
3 4.1.46 175
Vậy phương trình có hai nghiệm phức là:
1
3 175 3 5 7
2 2
i i
z
,
2
3 175 3 5 7
2 2
i i
z
0,5đ
0,5đ
1. (1 điểm)
Câu
IV.b
( 2,0
điểm )
Gọi (P) là mặt phẳng đi qua điểm A và vuông góc với d.
Đường thẳng d có vectơ chỉ phương là:
1;2;3
u
ur
Do (P) vuông góc với d nên (P) có vectơ pháp tuyến là
1;2;3
u
ur
Phương trình của (P) là:
1 3 2 3 1 0 2 3 6 0
x y z x y z
0,25đ
0,25đ
. bậc hai của số phức - 24 10 z i . Hết TRƯỜNG THPT HIỆP ĐỨC ĐÁP ÁN - THANG ĐIỂM Câu Đáp án Điểm 1. (2 điểm) Tập xác định: D = R. Sự biến thi n: Chiều biến thi n: Ta có: 3. SỞ GD&ĐT QUẢNG NAM TRƯỜNG THPT HIỆP ĐỨC ĐỀ THAM KHẢO ÔN THI TỐT NGHIỆP THPT MÔN TOÁN Thời gian làm bài: 150 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7,0. 3 3 0 0 1 I= sin3 cos3 3 xdx x 0,5 đ 1 2 I cos - cos0 3 3 0,5 đ 3. (1 điểm) Xét trên đoạn [-3 ;-1 ] hàm số đã cho có đạo hàm: 2 2 ' 2 2 x x x f x