132(02): - Tap chi KHOA HOC & CONG NGHE X A Y DlTNG M O H I N H T O A N H O C V A T I N H T O A N L U A T D I E U K H I E N TOI U U C H O V O N G D I E U K H I E N N H I E T D O TIT B A N G D C L I E U T H C C N G H I E M Do Thi Mai Dai hoc Cong nghe Thong tin • d Truyen thdng - DH Thai Nguyen TOM TAT Qua trinh san xuat la mot qua trinh phirc tap Nhiet dp la mot yeu to v6 cung quan trong qua trinh san xuSt Tuy theo yeu ciu c5ng nghe ma nhiSt can tri b^m theo gia tri dat cho tructc de dam bSo dugc tinh chat cila skn phdm nhu mong mu6n, Mu6n vay ta cka tinh todn va dua luSt dilu khien thich hgp nh§t, Co thi sii dung phuong phap ly thuylt, phuong ph^p thirc nghiSm hoac k6t hgp ca phuong phdp tren Trong bai bao nay, tac gia muon gidi thieu each xac dinh ham truyen dat va luat dieu khien toi uu cho vong dilu khien nhiet vimg I true vit mdy ep nhua 410/100 (KUASY- HIng TRUSIOMA) tir bang du lieu thuc nghiem thu dugc qua trinh san xuat san pham c6 ma s6 K ^ y - Tii'kh6a: may ep nhua; phuong phap thycc nghiem, irucvtt; luat diiu khiin; tdi uu GIOI T H I E U Chat lugng san phfim la y l u td quan trgng dac biet quyet dinh den san pham dua thi trudng Dieu khien on djnh cd vai trd quyet dinh chat l u g n g san pham n h u m o n g mudn Cd nhieu p h u o n g phap de xac dinh m d hinh toan hgc va cac bg dieu khien thich h g p cho he, N h u n g de lua chgn d u g c bg dieu khien tdi uu ta can xay d u n g d u g c cac dac tinh tdi uu cho tirng bg, va phan tich chat l u g n g dieu khien cua he vdi cac bg dieu khien tdi uu dd Trong bai bao nay, n h o m tac gia m u d n de xuat mgt p h u o n g an xac dinh bg dieu khien tdi uu cho vdng dieu khien nhiet true vit tijr Buac J: D u a tren d a n g c o ban cua ham qua dd va mdi quan he phu thugc vao cac tinh chat v^t ly cua h8 da'ng nghien cii'u ta d u a d a n g ham truyen cua he Bieac 2: Xac dinh he sd cua ham truyen tir dieu kien cd Igi nhat thich u n g m d hinh va ddi tugng, Bwyc 3: Danh gia chinh x i c cua phuong phap tinh toan (phucmg phap tinh gia tri gan dung) C h o ham sd h(t) thu d u g c tir cac gia tri thuc nghiSm bo qua tre ciia h a m Gia sir h(0) = h'(0)=0 Khi tinh xap xi ham h(t) tren t h g c te dua m d hinh sau: bang dir lieu t h u c nghiem, n h i m tri nhiet theo gia tri dat d u g c tinh toan danh rieng chg san pham d a n g san xuat nham dat d u g c chi tieu chat l u g n g c a o nhat f^Ap) C O SCJ L Y T H U Y E T f^Ap) X a c dinh m o hinh h a m truyen dat cua ddi t u g n g dieu khien dija tren ham qua d o thux nghiem bang phirong p h a p tinh dien tich[ll;|3) Ham t r u y i n dat d u g c xac dinh theo p h u o n g (11) a^p^ +a2P^ +a^p + \ = a^p^ + « , / ? + ! ' t,p + l Vcji OjP +a^p (1.2) (1.3) +a,p + l l~l-S,p + S^p^ + + 5^p* H'AP) V a i m o hinh (1.1); (1.2) : a,=8,: a2=Si: di'Si phap tinh dien tich- p h u o n g phap tinh xSp xi V0iiii6hlnh(1.3)=>al=bl+SI qua trinh qua dd tren may tinh Theo phuong a3=bl'S2+S3;a2=bl*Sl+S2;0=bl*S3+S4; ; phap nay, chiing ta can thuc hien cac b u d c sau: Neu cac he so S, d u o n g , t u o n g irng voi m o • Tel: 0966 643949 Email domai07I987@gmail.com s6 Si am, tirong iing voi m o hinh (1.3) hinh (1.1) hoac (1.2) N6u s5 cac he 25 Tap chi KHOA HQC & CONG NGHE fianh gia chinh xac cua md hinh ham truyen [3] De danh gia thich ung ciia md hinh toan hgc va ddi tugng, ta danh gia thdng qua sai lech giiia dudng chuin va dudng thuc nghiem Md hinh dugc coi la thich u'ng neu nhu sai lech dd khdng vugt qua 0.05-0,08,tuc sai sd khdng vugt qua 5-8% - Cac diem tren dudng chuin (dang chuan Kosi) dugc tinh toan dga tren phan mim tren CO sd giai bai toan he phuong trinh vi phan bac nhat: yo=/o(^ l'o V|, ,.!'„_,) 132(0' -30 Theo nhung yeu cau tren, tinh toan 'ye tinh toi uu ciia cac bg dilu khien phai trni qua buac: Bir&c T Xac dinh mien dn dinh ciia he Buac 2: Tim dac tinh tdi uu cua bg dilu khiln ma vdi chung, hg dat chit lugng dilu khiln toi uu Cd nhilu tieu chi khac de danh gia dg on dinh cua he: Xet dn dinh theo tieu chu5n dai sd; xet tinh on dmh theo tieu chuan tin s6 Cac phuong phap thuong hay sii dung nhat: Phuong phap md rgng pha-bien do; phuong phap dac tinh Idn nhat cua bien-tSn; phuong phap dao dgng t5t din Trong bai bao nhdm tac gia trinh bay phuong phap md rgng pha-bien y' = fix,y) Phuong phap dugc phat bieu nhu sau: NIU dac tmh bien-pha md rgng ciia he hd In dinh hoac nam tai bien gidi dn dinh W/,j,(m,y£y)khi O) chay tu —•oo di qua diem (-1; jO), khdng bao diem tai nhimg tan sd Idn hon, thi nghigm cua phuong trinh dac tinh ciia he hd se phan bd hoan toan ben nua mat phang trai dugc gidi han bdi cac tia -mo) ± jO) Vdi dieu kien ban dau: y(xo) = yo Thuat toan tinh toan theo phuong phap tren timg budc tich phan cd dang nhu sau; k,=hf{x,y) Dieu kien tren dugc viet dudi dang Wft;,(m,y£y)= W„(m,7fl;).W,,(w,» = - l '^Am,Ja) = U + jV y„-i-/„.,(j^,3'o,j'„-,:v„.|) Vdi x-ddi sd ciia yk(x) He phuong trinh vi phan bac nhat thu dugc se duoc giai vdi su trg giup cua tinh toan tich phan sd theo phuong phap Runge-Kutta bac lc,^hf(x + -h,y + -k,) 3 ' Ay = l(A,+3ft,) Vdi h-budc tich phan ^ ) Ag{m,co) -Dac tinh tSn sd-bien dd md rgng ciia ddi tugng f,,(m,(B)-Dac tinh tan sd-pha md rgng cua ddi tugng Dd thj cho bilu thirc (*); (**) dugc bieu diln nhu hinh ve Do Thi Mai Tap chi KHOA HOC & CONG NGHE 132(02): 25-30 BSng 2: Bdng gid trj quy doi tin hieu quy chudn Wnpa-l 0.5 1.5 2.5 3,5 tlnhifg G 0.04 0.12 0.2 0,28 0.J6 0,4* 0.56 Tlmgiiii t TmhiGD ,G Hinh 1: Dudng dac tinh bQ diiu khien vdi m=0; m^m^si -Xac dinh dac tinh tdi uu cua cac bg dilu khiln dua tren dilu kien tich phan binh phuong nhd nhat: /,, = m\xi\yit)-y{c^)]' dt Kp 4.5 5.5 6,5 7,5 0,72 0.76 0.84 0.92 0.96 1 Theo chuong trinh KP 1, ta thu dugc: S1=3.32; (aJ) 52-3,8724; (a2) S3-l,844;(a3) =>Ham truyen K(P) = - 3,32p' + 3,8724p' +1,844/? +1 Banh gia tinh diing &in cua mo hinh toan hgc Theo chuong trinh KP2: Bang 3: Bdng gid tri quy ddi tin hieu thuc nghiem Hwigjnbt (?f ^ 0.62 T m h i k -( 0,5 D 1.5 2,5 3.3 0,00499 0.1417 0,2484 0.3533 0.4337 0.541! 0.6383 |.j,^-^\Vp Tlifngm.l ^ 4.S 5.5 6.5 fmhieu ,9 0.7013 7847 0,8489 0,9153 0,9493 0,9773 0,939 P' Wp Kp ^^ii:a.po,i-^t^^ ^ga 7,5 «„ih,«, Hinh 2: Diem dac tinh tdt uu bd dieu khien PID Dlic tinh tdi uu ciia bd dieu khien PID xet theo tieu chuan tren: KT =0.2—i' T, LTNG DUNG Cho bang dir lieu thuc nghiem nhiet vimg I true vit Bang 1: Kenh tin hieu dieu khien Itwina.l 0,J i 1.5 rmliieada.8 W:S 187,6 187.8 116] gian.t 4,5 riBbi^&).8 189.0S 189,3 i 188 5,5 189,4 139.6 2J J.5 IS8.2 188.4 18GT 188,9 6,5 189.8 189.9 7.5 I9D 190 Ham truyen ciia ddi tugng dugc cho dudi dang khau quan tinh bac T=1.9phiit;K=0,25; w,.= ^ Tp+^ Xac dinh he so ham truyen theo kenh tin hieu dieu khien[2] ^^-^' D.J / '' / - | Tl, '"" ' ^ , U ' ' ' ' ' " ' " Hinh 3: Dd thi sai lech dudng chuan vd dudng th^c nghiem Sai lech Idn nhat giira dudng thuc nghiem va dudng chuan la 7.9%, tuc nhd hon gia tri cho phep 8% Md hinh toan hgc tuong thich He sd truyen dat thuc nghiem OK-O 190-187,5 1,25 K^ Kp.e Xay dung mat phdng dac tinh cua bo dieu khien PI gi&i han miin dn dinh Miln gidi han dugc xay dung bdi SO(Kp/T,), Sl(Kp) va dudng thing S0=0 la miln dn dinh dy tru- ciia he 27 Tap chi KHOA HOC & CONG NGHE Hi so dac tinh cua cac bo dieu khien PI PID X^ / / k y.i \\ • \ ; \ / / y \ '/////////////A , , I, I V , , ^ Hinh 4: Ditang giai han dac tinh cua bg dieu tthiin PI Bang 4: He so dac tinh ciia cdc bo disii (.hien S2 B$ digu khien SO SI 0,484 1,256 0.7S4 1,97 0,652 PIDl 1,012 2,272 0,978 PID2 3.317 1,63 1.25 PID3 Xay dyng ham qua he dieu khien vffi cac luat dieu khien khac Voi bo di6u khien PI: SO = 0,484; SI = 1,256; S2=0 He so thirc nghiem: K=I,25; He so ham truyJn: a,=3,32; a2=3,8724; a3=l,844; He so khuech dai: K2=0,25; Hang • so thai gian : T=l,9; Thay doi kenh dieu khien: 2; Kenh nhieu:20%; Buac tich phan h=0,5 Gia tri thai gian cuoi ciing w2=30 ' Ham qua I ';/ \1 l-Theo kenh tin hieu dat Hinh 5: Cdu triic he su dung bo di^it lihiin PID /i—^\ Ham truyen dat cua bg dieu khiln c6 dang: W^(p)^K^ + -^+ K Tjp = S, +^ + S^p; ~i KJ, P K' ^ =0,2— J So(Max)- Wo-> Wp=l,2*Wo I So(opT) — Si(OpT) =>Dac tinh bp dieu khi6n PID 5„=5;"" • , ^ •^0 •^22 - -^1 cop' • , - ^ Thoiaaas Hinh 6: Qua trinh qud he thdng su di^ngPI Bg dieu khiln PID PIDl SO = 0,784, SI - 1,97,82=0,652 /^' j\ i\\J r\ - i 1^ / 1A S^,=S^'"0 , - ^ '? V ; l-Tkokenhlii Ueudieukti^ 2-Theo kenh So hieu nhieu / * ^^ ^\^> * */ sr $1 sr 28 Hinh 7: Qud trinh qud he thdng su dung PIDl PID2 S0=l,012, SI=2,272, S - 0,978 Tap chi KHOA HOC & CONG NGHE 132(02): 25-30 Tir ket qua phan tich chat lugng he dieu khien vdi cac luat dilu khiln khac nhau, ta thay chat lugng dieu khien cua PI tdt hon cua PID, vdi sai sd ddng thap hon, he sd tat dan cao hon, va dp qua dd nhd hon, KET LUAN Hinh 8: Qud trinh qud he thdng su dung PID2 PID3 S0=I,25,S1=3,I37, S2=I,63 Tii bang dii lieu thuc nghiem thu dugc qua qua trinh lam viec ciia he thdng, md hinh toan hoc ciia ddi tugng dugc xay dyng, tinh toan va kiem chiing Bd dieu khien tdi uu cho he dugc tinh toan va lua chon dua tren md hinh toan hgc Phuong phap dugc ung dung ehii yeu ddi vdi nhung he cd phiic tap d mirc trung binh va thap Ngoai bai toan tren da xay dyng, tinh toan bd dieu khien dieu kien cd nhieu, nhimg khong xet tre ciia ham truyen Vi vay, hudng phat trien tiep theo cd the danh cho vice nghien ciiu cac ddi tugnng phiic tap hon va xet din khau tre cua ham tmyln Hinh 9: Qud trinh qud dg h? thdng sir d^ngPID3 Danh gia chat lugng he dieu khien Danh gia theo cac chi tieu chat lugng true tiep Bang 5: Chi lieu chat luang he thdng su d\ing cdc bd dieu khien khdc Bo dieu UiisL' d l liit Hioi fiii iioi Sii SD Sii so Do III Do qsa So lio dio diitbos; 2J BJ OJ W l,)i PIDl 11 1,11 a «.! PD! ll,S 1,1 0)1 V) « 13 PID] K 0,1 OJ) m l;j !J PI M w !i TAI LIEU THAM KHAO Nguyen Doan Phuoc, Ly thuyet dieu khien tu dgng Nha xuat ban khoa hoc kj thuat, 2009 Nguyen Do3n Phudc, Phan Xuan Minh, Nhan dang diiu khiin Nha xuk b^n khoa hoc va kj thu§t, 2001 TeopHH aBTOMaTHHccKoro ynpaBJieHua yHe6.ii)ifl By30B/C.E.7IyiuHH, H.C.SOTOB, A-X.MMaeB, H.H.KysMHH, B.B„aKOBJieB,2005 MeroflHiecKoe yKasaHwe K JiaSoparopHbiM pa6oTaM, KGTU,2008 Tap chi KHOA HQC & CONG NGHE SUMMARY DETERMINING THE TRANSFER FUNCTION AND OPTIMAL CONTROL LAW FOR TEMPERATURE LOOP FROM EXPERIMENTAL DATA T.l BLE !5-S Do Thi Mai College of Information and Communication Technology - TNU The production prosess is a complex prosess The temperature is one of the most important factor in the production process Depending on the technology require, to achieve the desired character of product, temperature should be controlled for maintaining a value to the setpoint In this case, we should calculate and provide the optimal control law Having two methods: theoretical and experimental methods Sometime we have to combinate both above methods.In this paper, the authors would recommend the way to get transfer function and optimal control law for temperature loop l" zone screw injection molding machine (KUASY-TRUSIOMA) from experimental data table, gettingfromproduction K/t52y-01 prosess Keyword; injection molding machine; experimental method; screw; control law; optimal Ngay nhdn bdi.30/9/20I4; Ngay phan bien:09/I0/2O14: Ngay duyet ddng: 05/3/2015 Phan biin khoa hoc: TS Pham Due Long- Trudng Dgi hgc Cong ngh4 Thdng tin & Truyin thong - D Tel- 0966 643949 Email: domai07!987@gmaiicom 30 ... nhat cua he Tinh toan dac tinh toi iru cho he vong don Til'' day ta cd thi tim djc tinh cac bd dilu khien ma vdi nhung dac tinh dd, cac bd dieu khien lam cho he hoat ddng vdi du trif dn dinh m... toan hoc ciia ddi tugng dugc xay dyng, tinh toan va kiem chiing Bd dieu khien tdi uu cho he dugc tinh toan va lua chon dua tren md hinh toan hgc Phuong phap dugc ung dung ehii yeu ddi vdi nhung he... tSn sd-bien dd md rgng ciia ddi tugng f,,(m,(B)-Dac tinh tan sd-pha md rgng cua ddi tugng Dd thj cho bilu thirc (*); (**) dugc bieu diln nhu hinh ve Do Thi Mai Tap chi KHOA HOC & CONG NGHE 132(02):