1. Trang chủ
  2. » Luận Văn - Báo Cáo

Trạng thái cân tĩnh đàn hồi

15 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 824,41 KB

Nội dung

Chương 12: Trạng thái cân tĩnh đàn hồi Giới thiệu Chương 10 11 trình bày kiến thức động lực học để khảo sát chuyển động vật rắn Trong chương 12 ta khảo sát vật rắn trạng thái cân tĩnh đàn hồi chúng Cân tĩnh trạng thái chuyển động đặc biệt vật rắn Khi đó, vật rắn có vận tốc chuyển động tịnh tiến vận tốc chuyển động quay hệ quy chiếu quán tính Trạng thái cân tĩnh ứng dụng nhiều kỹ thuật dân dụng, kiến trúc khí Phần sau chương ta nghiên cứu đàn hồi vật rắn Các vật rắn có tính đàn hồi có khả trở hình dạng cũ ngừng tác dụng lực gây biến dạng Tảng đá nặng 3.000.000 kg nằm cân tĩnh công viên quốc gia Arches, Utah suốt triệu năm Trong chương ta khảo sát điều kiện để tảng đá nằm cân 1.1 Mơ hình phân tích: Vật rắn trạng thái cân Cân có nghĩa vật chuyển động với vận tốc dài vận tốc góc khơng đổi so với quan sát viên hệ quy chiếu quán tính Ở ta quan tâm đến trường hợp đặc biệt mà hai loại vận tốc không  Trường hợp gọi cân tĩnh Cân tĩnh tình thường gặp kỹ thuật, đặc biệt xây dựng, kiến trúc khí Sự đàn hồi: Chúng ta thảo luận việc vật bị biến dạng điều kiện chịu tải Một vật đàn hồi trở lại hình dạng ban đầu khơng cịn lực làm biến dạng Người ta định nghĩa nhiều số đàn hồi khác nhau, tương ứng với kiểu biến dạng khác Trong mô hình hạt trạng thái cân hạt chuyển động với vận tốc không đổi hợp lực tác dụng lên khơng Với vật thật (dạng mở rộng) tình phức tạp nhiều  Thường khơng thể xem vật hạt Với vật thật trạng thái cân cần thỏa mãn điều kiện thứ hai:  Điều kiện liên quan đến chuyển động quay vật Một vật trạng thái cân tĩnh thì: tổng ngoại lực tổng mơmen ngoại lực tác dụng lên vật Các điều kiện mơ tả mơ hình vật rắn trạng thái cân  F ∑ ext  ∑τ ext (12.1) (12.2) Các lưu ý cân bằng: Cân tịnh tiến Điều kiện thứ cân phát biểu cân tịnh tiến  Gia tốc tịnh tiến khối tâm vật phải không  Điều áp dụng hệ quy chiếu quán tính Cân quay  Điều kiện thứ hai cân phát biểu cân quay  Gia tốc góc vật khơng  Điều phải với trục quay Cân động cân tĩnh Trong chương này, ta tập trung vào cân tĩnh  Vật không chuyển động  vCM = ω = Mômen hợp lực khơng khơng có nghĩa vật khơng chuyển động quay Cân động xảy  Vật quay với vận tốc góc khơng đổi  Vật chuyển động với vận tốc khối tâm khơng đổi Các phương trình cân Ta giới hạn ứng dụng cho tình mà lực nằm mặt phẳng xy  Các lực gọi đồng phẳng chúng nằm mặt phẳng  Giới hạn dẫn đến phương trình theo trục Các phương trình là:  ΣFx =  ΣFy =  Στz = (12.3) Vị trí trục phương trình mơmen quay chọn  1.2 Bàn thêm khối tâm vật rắn Có thể chia vật thành nhiều phần tử nhỏ  Mỗi phần tử có khối lượng tọa độ riêng Tọa độ x khối tâm vật cho Có thể tìm thấy biểu thức tương tự cho tọa độ y z (12.4) Khi khảo sát chuyển động vật rắn, trọng lực lực quan trọng Ta phải xác định vị trí điểm đặt lực này: trọng tâm (CG: Center of Gravity) Trong trường hợp giá trị gia tốc trọng trường tồn vật vị trí trọng tâm vật rắn xác định bởi: Mômen quay trọng lực gây vật có khối lượng M lực Mg tác dụng lên trọng tâm vật Nếu g đồng tồn vật trọng tâm trùng với khối tâm vật Nếu vật đồng đối xứng trọng tâm trùng với tâm hình học vật 1.3 Ví dụ vật rắn trạng thái cân Chiến lược giải toán cân Khái niệm hóa  Tìm tất lực tác dụng lên vật  Hình dung ảnh hưởng lực đến quay vật có lực tác dụng lên vật Phân loại  Khẳng định vật vật rắn cân  Vật phải có gia tốc tịnh tiến gia tốc góc khơng Phân tích  Vẽ sơ đồ  Vẽ đặt tên tất ngoại lực tác dụng lên vật  Mơ hình hạt chịu tác dụng hợp lực: biểu diễn vật điểm sơ đồ lực ta khơng quan tâm đến điểm tác động lực lên vật  Mô hình vật rắn cân bằng: Khơng thể biểu diễn vật điểm điểm tác động lực quan trọng  Lập hệ tọa độ thuận tiện  Tìm thành phần lực theo hai trục tọa độ  Áp dụng điều kiện thứ cân (ΣF=0)  Cẩn thận với dấu cộng, trừ  Chọn trục thuận tiện cho việc tính mơmen quay tổng hợp vật rắn: Nhớ việc chọn trục tùy ý  Chọn trục cho phép tính đơn giản nhất: Lực tác dụng dọc theo đường thẳng qua gốc có mơmen quay khơng  Áp dụng điều kiện thứ cân  Hai điều kiện cân cho ta hệ phương trình  Giải hệ phương trình Hồn tất  Bảo đảm kết phù hợp với sơ đồ ban đầu  Nếu lời giải cho thấy lực âm lực ngược với chiều mà ta vẽ sơ đồ  Kiểm tra kết để bảo đảm rằng: ∑F x = 0,∑ Fy = 0, ∑ Fz = Sự cân hệ chai rượu giá đỡ hình 12.1 ví dụ thú vị trạng thái cân tĩnh vật rắn Để chai Trọng tâm chai rượu rơi vào điểm đặt giá đỡ rượu đứng cân giá đỡ cần hai điều kiện: tổng hợp lực tổng mômen lực tác dụng lên hệ phải không Để điều kiện thứ hai thỏa mãn trọng lực chai phải qua điểm đặt giá đỡ bàn Ví dụ 12.2: Người đứng xà Hình 12.1: Hệ chai rượu giá đỡ cân ngang: Một xà đồng chất nằm ngang có chiều dài l= 8.00 m trọng lượng Wb=200 N gắn vào tường trục quay Đầu cịn lại xà móc vào cáp treo lập góc Φ=53° so với xà (hình 12.8a) Một người có trọng lượng Wp=5600 N đứng xà cách tường khoảng d=2.00 N Tìm lực căng cáp treo độ lớn hướng lực mà tường tác dụng lên xà Khái niệm hóa  Thanh xà đồng chất  Trọng tâm xà tâm hình học xà (trung điểm xà)  Người đứng xà  Lực căng cáp lực mà tường tác dụng lên xà gì? Phân loại  Hệ đứng yên, phân loại toán vật rắn nằm cân Phân tích  Vẽ sơ đồ lực (hình 12.8b)  Dùng trục quay cho toán (nằm tường) làm trục quay: Cách đơn giản  Lưu ý có ẩn số (đại lượng cần tìm) T, R, θ  Có thể phân tích lực thành thành phần  Áp dụng điều kiện cân bằng, ta thu phương trình  Giải hệ phương trình để tìm ẩn số Hồn tất  Giá trị θ cho thấy hướng R đồ thị Ví dụ 12.3: Thang dựng nghiêng Một thang đồng chất có chiều dài l tựa vào tường nhẵn, thẳng đứng (hình 12.9a) Khối lượng thang m hệ số ma sát thang sàn nhà µ=0,40 Tìm góc nghiêng nhỏ θmin để thang không bị trượt Khái niệm hóa  Thang đồng chất  Trọng lượng thang đặt tâm hình học (cũng trọng tâm)  Giữa thang sàn nhà có ma sát nghỉ (ma sát tĩnh) Phân loại  Mơ hình hóa vật vật rắn nằm cân bằng: ta khơng muốn thang trượt Phân tích  Vẽ sơ đồ tất lực tác động lên thang  Lực ma sát ƒs = µs n  Chọn O làm trục quay  Áp dụng phương trình điều kiện cân  Giải phương trình 1.4 Thuộc tính đàn hồi chất rắn Từ trước đến nay, ta thường giả sử vật vật rắn ngoại lực tác động lên nó, ngoại trừ lò xo Trong thực tế, tất vật bị biến dạng theo cách đó: bị thay đổi kích thước hình dạng bị ngoại lực tác động Các nội lực chống lại biến dạng Các định nghĩa liên quan đến biến dạng + Ứng lực (Stress): Ứng lực tỉ lệ với lực gây biến dạng ngoại lực tác dụng lên đơn vị diện tích tiết diện + Biến dạng (strain): Là kết ứng suất Biến dạng số đo độ biến dạng Sự biến dạng vật định lượng thông qua giá trị suất đàn hồi (Elastic modulus): Chúng ta xét dạng biến dạng định nghĩa suất đàn hồi cho dạng: (12.5) + Ứng suất Young: đo cản trở (resistance) vật rắn thay đổi chiều dài + Ứng suất trượt: đo cản trở chuyển động mặt song song với bên vật rắn (biến dạng trượt) + Ứng suất khối: đo cản trở vật rắn chất lỏng thay đổi thể tích 1.4.1 Ứng suất Young: Đàn hồi theo chiều dài Là biến dạng chiều dài vật chịu tác dụng ngoại lực dọc theo chiều dài (hình 12.2) gây biến dạng dài với suất đàn hồi Young: Dưới tác dụng ngoại lực, bị biến dạng đoạn L (12.6) Y: suất Young (N/m) F: ngoại lực gây biến dạng vật rắn (N) A: tiết diện mà lực tác động vào (m 2) ∆L: độ biến dạng theo chiều dài vật rắn (m) L: chiều dài vật rắn chưa biến dạng (m) 1.4.2 Ứng suất (trượt): Đàn theo hình dạng cắt hồi Hình 12.2: biến dạng dài Sự biến dạng xảy phần vật dịch chuyển sang phải so với phần bên Là dạng biến dạng hình dạng vật xảy vật rắn chống lại cặp lực tác dụng song song lên hai mặt vật (minh họa hình 12.3a) với suất biến dạng là: (12.8) (12.7) S: suất trượt (N/m) Sự biến dạng xảy phần sách chuyển sang phải so với phần bên sách F: ngoại lực tác dụng (N) A: tiết diện mà lực tác dụng lên vật rắn (m2) b) ∆x: độ biến dạng vật theo lực tác dụng h: chiều cao vật 1.4.3 Ứng suất khối: biến dạng thể tích Là biến dạng thể tích vật xảy vật chịu tác dụng lực khắp phương (12.8) Khối hộp bị biến dạng thể tích khơng biến dạng hình dạng B: ứng suất khối F: ngoại lực tác dụng (N) A: tiết diện tác dụng lực lên vật rắn (m2) ∆V: độ biến dạng thể tích V: thể tích chưa biến dạng Hình 12.14: Sự biến dạng thể tích Tóm tắt chương 12 Các định nghĩa Sự biến dạng vật định lượng thông qua giá trị suất đàn hồi (Elastic modulus): (12.5) Các khái niệm nguyên lý Có ba dạng biến dạng định nghĩa suất đàn hồi cho dạng: + Ứng suất Young: đo cản trở (resistance) vật rắn thay đổi chiều dài + Ứng suất trượt: đo cản trở chuyển động mặt song song với bên vật rắn (biến dạng trượt) + Ứng suất khối: đo cản trở vật rắn chất lỏng thay đổi thể tích Các mơ hình phân tích để giải tốn Một vật trạng thái cân tĩnh thì: tổng ngoại lực tổng mômen ngoại lực tác dụng lên vật  ∑F  ∑τ ext ext Điều kiện thứ (12.1) cân tịnh tiến (12.2) điều kiện thứ hai cân quay 10 Một số câu hỏi nhanh Câu 1: Xét vật chịu tác dụng hai lực có độ lớn hình Hãy chọn câu cho tình sau (a) (b) (c) (d) Vật cân lực không cân mômen Vật cân mômen không cân lực Vật cân lực cân mômen Vật vừa không cân lực vừa không cân mômen Câu 2: Xét vật chịu tác dụng ba lực hình Hãy chọn câu tả lời cho trường hợp sau (a) (b) (c) (d) Vật cân lực không cân mômen Vật cân mômen không cân lực Vật cân lực cân mômen Vật vừa không cân lực vừa không cân mômen Câu 3: Một dài mét tiết diện có mật độ khơng đổi treo sợi dây, dây buộc vị trí 25 cm Một vật 0,50kg treo đầu cân theo phương ngang Khối lượng gì? (a) (b) (c) (d) (e) (f) 0,25kg 0,50kg 0,75kg 1,0kg 2,0kg Không xác định Câu hỏi lý thuyết Câu 1: Gia tốc trọng trường giảm ba phần triệu cho mét tăng độ cao bề mặt trái đất giả sử tòa nhà chọc trời cao 100 tầng với mật độ trung bình tần So sánh vị trí khối tâm trọng tâm tòa nhà Chọn câu đúng: (a) (b) (c) (d) (e) Khối tâm cao vài mét Khối tâm cao vài milimet Khối tâm trọng tâm trùng Trọng tâm cao vài milimet Trọng tâm cao vài mét Câu 2: Một thẳng dài 7.0m quay quanh trục cách đầu bên trái khoảng 2.0m Tác dụng lực 50N hướng xuống đầu mút bên trái lực hướng xuống 200N đầu mút bên phải Tại vị trí bên phải tác dụng lực 300N hướng lên để đạt trạng thái cân bằng? Chú ý: Bỏ qua khối lượng (a) 1.0m (b) 2.0m 11 (c) 3.0m (d) 4.0m (e) 3.5m Câu 3: Xét vật hình Tác dụng lực lên vật, phương lực không qua khối tâm vật Gia tốc khối tâm vật tác dụng lực này: (a) (b) (c) (d) Như trường hợp lực tác dụng khối tâm Lớn lực tác dụng khối tâm Nhỏ lực tác dụng khối tâm Hoặc không lực gây gia tốc góc cho vật Câu 4: Hai lực tác dụng lên vât Khẳng định sau đúng? (a) (b) (c) (d) (e) Vật trạng thái cân hai lực phương ngược chiều độ lớn Vật trạng thái cân tổng mômen lực tác dụng lên vật không Vật trạng thái cân lực tác dụng điểm vật Vật trạng thái cân tổng lực tổng mômen lực tác dụng lên vật không Vật khơng trạng thái cân có nhiều lực tác dụng lên vật Câu 5: Một ván ngang dài 4.00m nằm yên hai giá đỡ, đầu thứ bên trái đầu thứ hai cách đầu bêm phải 1.00m Độ lớn lực tác dụng lên đầu bên phải bao nhiêu? (a) (b) (c) (d) (e) 32.0N 45.2N 112N 131N 98.2N Bài tập Câu 1: Một thước vng thợ mộc có hình chữ L hình bên Xác định trọng thước tâm Câu 2: Xét bốn vật sau: vật có khối lượng 5.00kg với khối tâm vị trí (0, 0)m, vật hai có khối lượng 3.00kg với khối tâm vị trí (0, 4.00)m vật ba có khối lượng 4.00kg với khối tâm vị trí (3.00, 0)m Hỏi vật thứ tư đặt đâu cho vị trí trọng tâm bốn vật (0, 0) Câu 3: Pat làm mơ hình đường đua xe để trượt khỏi gỗ rắn hình Đường đua 5.00 cm cao 1.00 m dài 3.00 m Đường đượt cắt cho tạo thành parabola y = ( x − 3) / xe rộng băng với phương trình Tìm tọa độ tâm theo phương ngang đường đua trọng Câu 4: Tìm khối lượng m để xe tải có khối lượng M = 1500 kg đường nghiêng với góc (như hình) trạng thái cân Giả sử bỏ qua ma sát khối lượng hai ròng rọc 12 Câu 5: Một thang xem đồng chất dài 15,0 m có trọng lượng 500 N nằm dựa vào tường không ma sát Thang hợp với tường góc theo phương ngang (a) Tìm lực sàn tác động lên thang theo phương ngang dọc có lính cứu hỏa nặng 800-N leo lên độ cao 4.00 m tính từ mặt đất (b) Nếu thang trượt lính cứu hỏa lên 9.00 m tính từ mặt đất Tính hệ số ma sát tĩnh thang sàn? Câu 6: Một thang đồng chất có chiều dài L khối lượng m tựa cố định không ma sát vào tường Thang hợp với phương ngang góc θ (a) Tìm lực tác dụng lên phương ngang phương đứng chân thang lính cứu hỏa m2 có khối lượng leo lên thang cách chân thang khoảng x (b) Khi lính cứu hỏa cách chân thang khoảng d thang bắt đầu trượt, tìm hệ số ma sát thang mặt đất Câu 7: Một đầu đồng dài 4.00m trọng lượng Fg treo góc Đầu áp vào tường giữ ma sát hình Hệ số ma sát tường Xác định khoảng cách tối thiểu x từ điểm A mà tại vật trọng lượng Fg mà khơng trượt phía điểm A cáp tĩnh treo Câu 8: Một dây thép có đường kính mm chịu lực căng 0.2 N Để dây căng 20kN đường kính cáp chịu lực Câu 9: Khi nước đóng băng, dãn nở khoảng 9,00% Áp suất tăng bên khối động ô tơ bạn nước đóng băng? (Ứng suất khối băng ) Câu 10: Một vật 200 kg treo dây có chiều dài 4.00 m, diện tích mặt cắt ngang 0., ứng suấtYoung Chiều dài tăng lên bao nhiêu? Câu 11: Trong nghiên cứu vật lý trị liệu việc xác định khối tâm quan trọng Cách xác định xếp hình Một người ván phẳng Fg1 = 380N nằm yên hai cân với giá trị cân Fg1 = 320N Khoảng cách hai cân mằm ván 1.65m Fg Hãy xác định vị trí khối tâm tính từ chân gái 2L Câu 12: Một hiệu đồng trọng lượng dài treo thẳng nằm ngang Thanh có đầu gắn vào lề tường, đầu giữ sợi dây cáp hình Xác định: lại 13 (a) Độ lớn lực căng dây Fg , d , L θ (b) Xác định thành phần phản lực tường lên ngang theo θ Câu 13: Một đồng chất khối lượng m đặt nghiêng góc so với phương ngang Một sợi dây thừng vắt qua đầu điểm P thành góc 900 Một đầu dây cột vào tường, đầu lại treo vật µs (như hình) Thanh đứng n khơng trượt sàn, sàn Giả sử µ nhỏ cotang tạo nặng hệ số ma sát tĩnh θ (a) Tìm biểu thức mơ tả khối lượng tối đa M để bắt đầu trượt sàn (b) Độ lớn phản lực sàn (c) Lực căng dây P theo m, M, µs Câu 14: Một ke chữ L dùng đỡ kệ sách gắn tường vít hình, bỏ qua trọng lượng ke Tác dụng lực thẳng đứng 80 N lên ke tìm lực tác dụng lên vít theo phương ngang hình, Câu 15: Một sợi dây cáp thép có diện tích mặt cắt 3,00cm 2, khối lượng 2.,40 kg mét chiều dài Nếu sợi dây cáp dài 500m treo thẳng đứng giãn thêm trọng lượng riêng bao nhiêu? Biết Ysteel = 2.00 × 1011 N / m 14

Ngày đăng: 07/12/2022, 11:06

w