1. Trang chủ
  2. » Tất cả

PowerPoint Presentation

20 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 863,26 KB

Nội dung

PowerPoint Presentation Fundamentals of Electric Circuits AC Circuits Chapter 16 Two port networks 16 1 Introduction 16 2 Impedance parameters 16 3 Admittance parameters 16 4 Hybrid parameters 16 5 Tr[.]

Fundamentals of Electric Circuits AC Circuits Chapter 16 Two-port networks 16.1 Introduction 16.2 Impedance parameters 16.3 Admittance parameters 16.4 Hybrid parameters 16.5 Transmission parameters 16.6 Interconnection of networks FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.1 Introduction + Port: A pair of terminals through which a current may enter or leave a network  is an access to the network and consists of a pair of terminals + One-port networks: two-terminal devices or elements (R, L, C) + Two-port networks: four-terminal devices (op amps, transistors, transformers) A two-port network is an electrical network with two separate ports for input and output + Study of two-port networks:  Useful in communications, control systems, power systems,…  Treat circuit as a “black box” when embedded within a larger network FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.2 Impedance parameters + Impedance & admittance parameters are commonly used in the synthesis of filters + A two-port network may be voltage-driven or current driven  the terminal voltage can be related to the terminal currents as:  V1  Z11 I1  Z12 I2    V2  Z 21 I1  Z 22 I V1   Z11   V2   Z 21 Z12   I1   I1      Z     Z 22   I  I  Z: impedance parameters FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.2 Impedance parameters + The value of the parameters: open circuit impedance Open circuit input impedance: Open circuit transfer impedance from port to port 1: Open circuit transfer impedance from port to port 2: Open circuit ouput impedance: V1  Z11  I  I1 V2 Z 21  I1 V1 Z12  I2 V2 Z 22  I I2  I1  I1  FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.2 Impedance parameters + Characteristics of impedance parameters  two-port network is said to be symmetrical when Z11 = Z22  two-port network is said to be reciprocal when Z12 = Z21 (a linear two- port network and no dependent sources  The T-equivalent circuit: FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.2 Impedance parameters R1 + Example 1: Determine the z-parameters for the given circuit V1 Solution R1  Open the output port: I2 = I2   R1  R3 I1  R  R3 I1 V2 Z 21  I1 I2  R3 I1   R3 I I1   R2  R3 I2  I2  R2  R3 Method 2: Using mesh current method V1  R1  R3 I1  R3 I2    V2  R3 I1  R2  R3 I V1 Z12  I2 I1  R3 I2   R3 I R2 R3 R1  Open the intput port: I1 = V2 Z 22  I2 R3 I1 Method 1: Using definition equation V1 Z11  I1 R2 R2 R3 I V2 FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3 Admittance parameters + There are some cases (i.e ideal transformer) that the impedance parameters may not exist for a two-port network  need an alternative means of describing + Express the terminal currents in terms of the terminal voltages  admittance parameters  I1  Y11V1  Y12V2     I  Y21V1  Y22V2  I1  Y11 Y12  V1  V1          Y      I  Y21 Y22  V2  V2  Y: admittance parameters FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3 Admittance parameters + The value of the parameters: short circuit admittance Short circuit input admittance: Short circuit transfer admittance from port to port 1: I1 Y11  V1 I2 Y21  V V2  V2  Short circuit transfer admittance from port to port 2: Short circuit ouput admittance : I1 Y12  V2 I2 Y22  V V1  V1  FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3 Admittance parameters + Characteristics of admittance parameters  two-port network is said to be symmetrical when Y11 = Y22  two-port network is said to be reciprocal when Y12 = Y21 (a linear two- port network and no dependent sources  The Π-equivalent circuit: FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3 Admittance parameters g3 I1 + Example 2: Determine the Y-parameters for the given circuit Solution g1 V1 I1 Y11  V1 V2   g1  g V1  g g3 V1  g3 I2 Y21  V1 V2   g 3V1    g3  V1  Shorten the intput port: V1 = I2 Y22  V2 V1    g  g V2 I   g  g Y12  V2 V2 Method 2: Using node voltage method  I1   g1  g V1  g 3V2     I   g 3V1   g  g V2 V1   g 3V2    g3  V2 g2 g1 g3 g1 I2 g2 Method 1: Using definition equation  Shorten the output port: V2 = g2 V2 FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3 Admittance parameters + Example 3: Obtain the Y parameters for the given circuit Solution Shorten the output port V1  V0 V0 V0 V1  V0 V0 V0  At node 1:  I1       V1  5V0 8      I  V1  V0   5V0  V0  0.75V  Y  I1  0.15S 11 8 V1 At node 2:  1.25V V1  I  I1  I2   I2  1.25V0  Y21    0.25S   V1  5V0 FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.3 Admittance parameters + Example 3: Obtain the Y parameters for the given circuit Solution Shorten the input port  V0 V0 V0  V2  V0 V0 V0  V2  At node 1:  I1   2    V2  2.5V0 8 I1  V0 Y12    0.05S   V2 2.5V0 At node 2:   V0  V2 625 V I  I1  I2   I2  0.625V0  Y22    0.25S   V2 2.5V0  network is not reciprocal FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.4 Hybrid parameters + Input voltage and output current as function of input current and output voltage of a two-port network V1   H11      I   H 21 H12   I1   I1      H     H 22  V2  V2  + Value of the parameters: V1 Short circuit input impedance H11  I1 I2 Short circuit forward current gain H 21  I V2  V2  I2 H 22  Open circuit output admittance V2 V1 Open circuit reverse voltage gain H 12  V2 I1  I1  FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.4 Hybrid parameters + Input current and output voltage of a two-port network as function of input voltage and output current  G parameters  I1  G11 G12  V1  V1        G     V2  G21 G22   I  I  + Value of the parameters: I1 Open circuit input admittance G11  V1 V2 Open circuit forward voltage gain G21  V I2  I2  V2 Short circuit output impedance G22  I2 I1 Short circuit reverse current gain G12  V1 V1  V1  FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.5 Transmission parameters + Transmission parameters:  relates the variables at the input port to those at the output port + Transimission parameters  useful in the analysis of transmission lines (cable, fiber) and in the design of telephone system, microwave network,… + A - parameters: V1   A11    I1   A21 + Value of the A parameters: Open circuit voltage ratio A12  V2  V2      A     A22   I  I2  V1 A11  V2 I2  I1 Open circuit transfer admittance A21  V2 I2  V1 Short circuit transfer impedance A12  I2 I1 Short circuit current ratio A22  I V2 0 V2  FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.5 Transmission parameters + Inverse transmission parameters  express the variables at the output port in term of the variables at the input port + B - parameters: V2   B11    I   B21 + Value of the B - parameters: Open circuit voltage gain B12  V1  V1      B     B22   I1   I1  V2 B11  V1 I1  I2 Open circuit transfer admittance B21  V1 + Reciprocal network: A11 A22  A12 A21  B11 B22  B12 B21  I1  V2 Short circuit transfer impedance B12  I1 I2 Short circuit current gain B22  I V1 0 V1  FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.5 Transmission parameters + Example 4: Find the transmission parameters for the given circuit Solution  Open the output port: I2 = V1  10  20 I1  30 I1 V  20 I  3I  17 I 1 V1 A11  V2 I1 A21  V 30   1.765 I2  17 I1   0.059 I2   17 I  Shorten the output port: V2 = At node A: V1 13I1 V1  Va Va   15.29   I  A12   V2 0    17 / 20I1 I2 10 20 Va  3I1 I1 I1 A22    1.176 V2         13I1  3I1 3I1 I2 I  V1  Va  10 20 10 FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.6 Interconnection of networks + Large, complex network  divided into sub-networks (2 port network) for the purposes of analysis and design + Two-port networks - as building blocks - that can be interconnected (in series, in parallel, or in cascade) to form a complex network + The value of parameters of the complex network:  calculated from the value of each parameters of each building block FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.6 Interconnection of networks Series connection [Z] = [Za] + [Zb] Cascade connection [T] = [Ta][Tb] Parallel connection [Y] = [Ya] + [Yb] FUNDAMENTALS OF ELECTRIC CIRCUITS – AC Circuits 16.6 Interconnection of networks Zd + Example 5: Find the transmission parameters of the given Pi circuit Zn1    Zd I1 I2 V1   I1 I2  V1 Zn1  V2  V2   V    V     Z d             I1   I2     V        I   Z n1 0     V        I2  Tn1 Zn2 Td Tn2 T  Tn1.Td Tn2  T  Tn1 Td Tn   Z  n1 0    Zd   1       Zn2  Zd 1  Zn2 T    Zd     Z n1 Z n Z n1 Z n2     Zd 1  Z n1  Zd 0   

Ngày đăng: 15/11/2022, 13:09