1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ ĐẠI HỌC NĂM 2014 Môn thi: TOÁN; khối A và khối A1, lần 9

6 217 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 2,22 MB

Nội dung

ĐỀ VÀ ĐÁP ÁN ĐỀ 9

Khóa học Luyện thi 9 – 10 môn Toán – Thầy Đặng Việt Hùng Facebook: LyHung95 Tham gia trọn vẹn khóa LTĐH Luyện giải đề tại Moon.vn để đạt được kết quả cao nhất trong kỳ TSĐH 2014! ĐỀ THI THỬ ĐẠI HỌC NĂM 2014 Môn thi: TOÁN; (Khóa LTĐH 9 – 10, đề số 9) Thời gian làm bài: 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm). Cho hàm số 3 2 3 4 = − + y x x có đồ thị là (C). a) Khảo sát sự biến thiên vẽ đồ thị (C) b) Gọi d là đường thẳng đi qua điểm A(–1; 0) với hệ số góc là k. Tìm k để đường thẳng d cắt đồ thị (C) tại ba điểm phân biệt hai giao điểm B, C (với B, C khác A) cùng với gốc tọa độ O tạo thành một tam giác có diện tích bằng 8. Câu 2 (1,0 điểm). Tìm nghiệm của PT: 2 2 π 7 sin .cos4 sin 2 4sin 4 2 2   − = − −     x x x x , với 1 3 x − < . Câu 3 (1,0 điểm). Giải hệ phương trình ( ) ( ) ( ) 2 1 3 1 1 1 0 7 2 1 5 x x y y x x y  + + − + + + =   + + + =   Câu 4 (1,0 điểm). Tính tích phân π 2 0 1 sin . 1 cos x x I e dx x + = + ∫ Câu 5 (1,0 điểm). Cho hình chóp S.ABCD có đ áy ABCD là hình ch ữ nh ậ t, AB = a, AD = 2a, c ạ nh SA vuông góc v ớ i đ áy, c ạ nh SB t ạ o v ớ i đ áy góc 60 0 . Trên c ạ nh SA l ấ y đ i ể m M sao cho 3 . 3 = a AM M ặ t ph ẳ ng (BCM) c ắ t SD t ạ i N. Tính th ể tích kh ố i chóp SBCMN? Câu 6 (1,0 điểm). Cho ba s ố th ự c , , x y z th ỏ a mãn đẳ ng th ứ c 0 x y z + + = . Tìm giá trị nhỏ nhất của biểu thức cos cos cos P x y z = + + . II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC nhọn có  67 30 ABC ′ =  , đường cao AH (H thuộc cạnh BC) song song với trục hoành thỏa mãn 2 BC AH= . Lập phương trình đường thẳng AC biết AC đi qua điểm ( ) 6;13 M . Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz cho hai điểm (0; 1;2) M − ( 1;1;3) N − . Viết phương trình mặt phẳng (P) đi qua M, N sao cho khoảng cách từ ( ) 0;0;2 K đến (P) đạt giá trị lớn nhất. Tìm điểm I thuộc mặt phẳng (xOy) sao cho IM + IN nhỏ nhất . Câu 9.a (1,0 điểm). Giải bất phương trình 2 2.5 5 3 5. 5 4 + > − x x x B. Theo chương trình Nâng cao Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6; 6), đường thẳng đi qua trung điểm của các cạnh AB AC có phương trình x + y − 4 = 0. Tìm tọa độ các đỉnh B C, biết điểm E(1; −3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho. Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ Oxyz cho điểm ( ) 1,2, 2 I − và đường thẳng 2 2 3 : 1 1 1 − + ∆ = = x y z và m ặ t ph ẳ ng ( ): 2 2 5 0 + + + = P x y z . Vi ế t ph ươ ng trình m ặ t c ầ u (S) có tâm I sao cho m ặ t ph ẳ ng (P) c ắ t kh ố i c ầ u theo thi ế t di ệ n là hình tròn có chu vi b ằ ng 8 π . T ừ đ ó l ậ p ph ươ ng trình m ặ t ph ẳ ng (Q) ch ứ a ∆ ti ế p xúc v ớ i (S). Câu 9.b (1,0 điểm). Gi ả i ph ươ ng trình sau trên t ậ p s ố ph ứ c 2 4 3 1 0. 2 − + + + = z z z z

Ngày đăng: 18/03/2014, 20:58

TỪ KHÓA LIÊN QUAN

w