1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tunable lasers handbook f duarte

502 512 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • Cover

  • Frontmatter

    • Half Title Page

    • About the Author

    • Title Page

    • Copyright

    • Table of Contents

    • Contributors

    • Preface

  • Chapter 1: Introduction

    • 1. Introduction 1

    • 2. Tunable Laser Complementarity

    • 3. Goal of This Book

    • References 1

  • Chapter 2: Narrow-Linewidth Laser Oscillators and Intracavity Dispersion

    • 1. Introduction 2

    • 2. Dispersive Oscillator Configurations

    • 3. Physical Dimensions

    • 4. Generalized Interference Equation

    • 5. Dispersion Linewidth Equation

    • 6. Beam Divergence

    • 7. Intracavity Dispersion

    • 8. Intracavity Multiple-Prism Dispersion and Pulse Compression

    • 9. Transmission Efficiency of Multiple-Prism Arrays

    • 10. Wavelength Tuning

    • Appendix: Dispersion of Multiple-Prism Arrays and 4 x 4 Transfer Matrices

    • References 2

  • Chapter 3: Tunable Excimer Lasers

    • 1. Introduction 3

    • 2. Excimer Active Media

    • 3. Tuning of Discharge and Electron Beam Pumped Excimer Lasers

    • 4. Discharge Excimer Lasers

    • References 3

  • Chapter 4: CO2 Isotope Lasers and Their Applications in Tunable Laser Spectroscopy

    • 1. Introduction 4

    • 2. Vibrational Energy-Level Structure of the CO2 Molecule

    • 3. Rotational Energy-Level Substructure of the CO2 Molecule

    • 4. Processes Governing the Excitation of Regular Band Laser Transitions in CO2

    • 5. Additional Characteristics of Regular Band CO2 Laser Transitions

    • 6. Lineshape Functions and Broadening Due to Gas Pressure and Doppler Shift in CO2 Gas

    • 7. Spectral Purity and Short-Term Stability

    • 8. Long-Term Line-Center Stabilization of CO2 Lasers

    • 9. Absolute Frequencies of Regular Band Lasing Transitions in Nine CO2 Isotopic Species

    • 10. Pressure Shifts in Line-Center-Stabilized CO2 Lasers

    • 11. Small-Signal Gain and Saturation Intensity of Regular Band Lasing Transitions in Sealed-Off CO2 Isotope Lasers

    • 12. Laser Design

    • 13. Spanning the Frequency Range between Line-Center Stabilized CO2 Laser Transitions

    • 14. Spectroscopic Use of CO2 Lasers Outside Their Fundamental 8.9- to 12.4-M Wavelength Range

    • References 4

  • Chapter 5: Dye Lasers

    • 1. Introduction 5

    • 2. Laser-Pumped Pulsed Dye Lasers

    • 3. Flashlamp-Pumped Dye Lasers

    • 4. cw Laser-Pumped Dye Lasers

    • 5. Femtosecond-Pulse Dye Lasers

    • 6. Solid-State Dye Lasers

    • Appendix of Laser Dyes

    • References 5

  • Chapter 6: Transition Metal Solid-State Lasers

    • 1. Introduction 6

    • 2. Transition Metal and Lanthanide Series Lasers

    • 3. Physics of Transition Metal Lasers

    • 4. Cr:Al2O3

    • 5. Cr:BeAl2O4

    • 6. Ti:Al2O3

    • 7. Cr:LiCaAlF6 and Cr:LiSrAlF6

    • 8. Cr:GSGG, Cr:YSAG, and Cr:GSAG

    • 9. Co:MgF2, Ni:MgF2, and V:MgF2

    • 10. Wavelength Control Methods

    • References 6

  • Chapter 7: Optical Parametric Oscillators

    • 1. Introduction 7

    • 2. Parametric Interactions

    • 3. Parametric Oscillation

    • 4. Spectral Bandwidth and Acceptance Angles

    • 5. Birefringence Effects

    • 6. Average Power Limitations

    • 7. Nonlinear Crystals

    • 8. Phase-Matching Calculations

    • 9. Performance

    • 10. Tuning

    • References 7

  • Chapter 8: Tunable External-Cavity Semiconductor Lasers

    • 1. Introduction 8

    • 2. Semiconductor Optical Gain Media

    • 3. Classes of External-Cavity Lasers

    • 4. First-Order Properties

    • 5. Feedback Model

    • 6. External-Cavity Design

    • 7. Cavity Components

    • 8. Survey of External-Cavity Laser Designs

    • 9. Mode Selectivity of Grating Cavities

    • 10. Phase-Continuous Tuning

    • 11. Characterization Methods for External-Cavity Lasers

    • 12. Measurement of Facet and External-Cavity Reflectances

    • 13. Multimode Suppression

    • 14. Multiple-Wavelength Operation

    • 15. Wavelength Stabilization

    • 16. Advanced Modeling Topics

    • 17. Construction and Packaging

    • 18. Applications

    • References 8

  • Chapter 9: Tunable Free-Electron Lasers

    • 1. Introduction 9

    • 2. Methods of Wavelength Tuning

    • 3. Broadly Tunable Optical Cavities

    • 4. Wiggler Considerations

    • 5. Tunable Laser Facilities and Their Characteristics

    • 6. Summary

    • References 9

  • Backmatter

    • Index

  • Back Cover

Nội dung

Đây là bộ sách tiếng anh về chuyên ngành vật lý gồm các lý thuyết căn bản và lý liên quan đến công nghệ nano ,công nghệ vật liệu ,công nghệ vi điện tử,vật lý bán dẫn. Bộ sách này thích hợp cho những ai đam mê theo đuổi ngành vật lý và muốn tìm hiểu thế giới vũ trụ và hoạt độn ra sao.

H A N D B O O K t I 'TICS AND PHOTONICS Tunable Lasers H A N D B O O K OPTICS AND PHOTONICS (formerly Quantum Electronics) SERIES EDITORS PAUL E LIAO Bell Communications Research, Inc Red Bank, New Jersey PAUL L KELLEY Lincoln Laboratory Massachusetts Institute of Technology Lexington, Massachusetts IVAN P KAMINOW AT&T Bell Laboratories Holmdel, New Jersey A complete list of titles in this series appears at the end of this volume Tunable Lasers A N D B O Edited by F J Duarte Eastman Kodak Company Rochesrer, New York ACADEMIC PRESS San Diego New York Boston London Sydney Tokyo Toronto This book is printed on acid-free paper @ Copyright 1995 by ACADEMIC PRESS, INC All Rights Reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher Academic Press, Inc A Division of Harcourt Brace & Company 525 B Street, Suite 1900, San Diego, California 92101-4495 United Kingdom Edition published by Academic Press Limited 24-28 Oval Road, London NW1 7DX Library of Congress Cataloging-in-Publication Data Duarte, F J (Frank J.) Tunable lasers handbook / F J Duarte cm - (Optics and photonics series) p Includes index ISBN 0-12-222695-X Tunable lasers I Title 11 Series TA1706.D83 1995 621.36'6-dc20 PRINTED IN THE UNITED STATES OF AMERICA 95 96 9 99 0 E B 95-8165 CIP Contents Contributors xi Preface xiii Introduction Tunable Laser Complementarity GoalofThisBook References and Intracavity Dispersion F J Duarte Introduction Dispersive Oscillator Configurations 10 vi Contents Physical Dimensions 15 Generalized Interference Equation 16 Dispersion Linewidth Equation 17 Beam Divergence 19 Intracavity Dispersion 19 Intracavity Multiple-Prism Dispersion and Pulse Compression 23 Transmission Efficiency of Multiple-Prism Arrays 24 10 Wavelength Tuning 26 Appendix: Dispersion of Multiple-Prism Arrays and x Transfer Matrices 29 References D G Harris Introduction 33 Excimer Active Media 35 Tuning of Discharge and Electron Beam Pumped Excimer Lasers 41 Discharge Excimer Lasers 53 References 59 Charles Freed Introduction 63 Vibrational Energy-Level Structive of the CO, Molecule 65 Rotational Energy-Level Substructure of the CO, Molecule 69 Processes Governing the Excitation of Regular Band Laser Transitions in CO, Additional Characteristics of Regular Band CO, Lasers Transitions 74 Lineshape Functions and Broadening Due to Gas Pressure and Doppler Shift in CO, Gas 76 Spectral Purity and Short-Term Stability 79 Contents vi Long-Term Line-Center Stabilization of CO, Lasers 82 Absolute Frequencies of Regular Band Lasing Transitions in Nine CO, Isotopic Species 95 10 Pressure Shifts in Line-Center-Stabilized CO, Lasers 137 11 Small-Signal Gain and Saturation Intensity of Regular Band Lasing Transitions in Sealed-off CO, Isotope Lasers 144 12 Laser Design 149 13 Spanning the Frequency Range between Line-Center Stabilized CO, Laser Transitions 154 14 Spectroscopic Use of CO, Lasers outside Their Fundamental 8.9- to 12.4-pm Wavelength Range 159 References 161 Introduction 167 Laser-Pumped Pulsed Dye Lasers 172 Flashlamp-Pumped Dye Lasers 179 cw Laser-Pumped Dye Lasers 184 Femtosecond-Pulsed Dye Lasers 191 Solid-state Dye Lasers 195 Appendix of Laser Dyes 200 References 215 Transition Metal Solid-state Lasers Norman P Barnes 18 Introduction 219 Transition Metal and Lanthanide Series Lasers 225 Physics of Transition Metal Lasers 232 Cr:A1,0, 246 Cr:BeA1,04 251 Ti:Al,O, 258 Cr:LiCaA1F6and Cr:LiSrAlF, 263 Cr:GSGG, Cr:YSAG, and Cr:GSAG 270 Co:MgF,, Ni:MgF,, and VMgF, 275 Wavelength Control Methods 281 References 288 Index Achromatic multiple-prismbeam espander 181 Acousto-optic filter 369,380.393-397, 105407,411.420,132 Amplified s;Jontaneous emission (ASE), 12,12 177,178,181.223,299 Amplifier, 36,48 dye laser, 178-180 excimer laser 36.12,48 master-oscillatorpower (MOP.\), 178 multistagc, 180 Antireflection coatings 365-367, 377,315117 Bandwidth, 34,171,183,281 Beam divergence 19,44, 186 360 equation 19 B i r e h g e n t filters, 285-286.393.392,404,405 Bistability 365, 377,424,425 Boltzman distribution, 74 Broadening Doppler, 82 homogeneous 77 inhomogeneous, 78 Cavity cw dye laser 187-189 linear 189.190 ring, 189 190 dumping, 221 femtosecond dye laser, 193, 196-197 linear, 193,194: 196197 ring, 193, 193, 196197 free electron laser, 45-59 gazing-incidence grahg, 10, 13,14,35,36, 4647,284 hybrid multiple-prism grazing incidence (HMPGI) grating, 10-13, 178 Littrow grating, 10,284 loss ratio, 378,407 Michelson interferometer.47 multipass grating interferometer, 35 37 multipleztalon, 10,35.36 &4 multiple-prism Littrow @PL) grating, 1 , 35,36 178 Q 79 semiconductorlaser double ended, 368-369.378 extended, 368: 378 471 472 Index Cavity (continued) external 349468 ring 369, 378 telescopic, 13 Cesium atomic standard, 89-90 Complementarity tunable laser 4-5 Compton regime, 416,418 Chromatic aberration, 382.383 Confinement factor 353 Degenerate resonator, 381.101,103.131,435 Density X , , 219 10 BeAI,O,, 254 GSGG 272 LiCaAIF,, 165 MgF, 277 YAG 272 Diffraction, 16-18 equation 16-17 Diffraction grating, 15 17, 369,380, 384 385-390,393.396,398101,404-409 111,418,119421,428,129,431-434 efficiency 26,388-389 equation, 19, 21.45.283 grazing-incidence 387-389, 399.407,408 120.421 Littrow 369,381, 387 388: 389, 398.107 408.41 1,118,120.128,429 Dirac formalism 16-17 Dispersion equations, 17 etalon, 28 generalized, 1-23 grating 19 21, 284 intracavity, 19, 21-24 28 multiple-prism, 21-24.43.14 prism materials, 195 zero 181 Dispersive cavity (see Oscillators) linewidth (see Linewidth) Distributed Bragg reflector 351, 390 feedback laser 351.423,431 Divergence (see Beam divergence) Double heterostructure, 358 Electron beam, 446,147.451,454 Electronic configuration, 226 230 Energy 3, 13-11 35.36, 175 178 179, 183 186 199 electronic 37, 168-170 rotational, 69-70 vibrational 65-69, 169 171 Energy l a e l diagram CO, laser, 67, 70.71,94 d e laser 173 ! excimer laber, 37 transition metal solid-state laser, 227 23 213,217,252 Etalon IO 13,20 28.48 186,186 373, 376, 380.383,391,392.395,402104,118 421423,129 dispersion 28 finesse, 28 Excimer laser transitions 31 bandmidth 34 rare gas 1 rare gas halide 37-41 Fabry-Perot (see Etalon) Femtosecond pulse free electron laser 417 pulse dye lasers 191-197 pulses, 194, 196-197 Forced oscillator (see Oscillator) Fourier transform, 15j Frequency absolute 95 CO, laser, 99-136 stabilization 79-95 137-143 189-192 Fresnel number, 16, 18 Gain 352 bandwidth 362 361 stripe, 360-362, 375 Gaussian (see also Transverse mode, single) 78 296,299,300,356.458 Geometrics cell, 176-177 excitation 175-176 Grating (see Diffraction grating) Group velocity dispersion (GVD) 23, 192, 194 Heat capacity A1,0,, 219 BeAI,O,, 254 GSGG, 272 Index LiCaA1F6.265 MgF: 277 YAG 272 Heterodyne CO, laser system 87-88, 137-133 Homogeneous broadening (see Broadening) HMPGI grating oscillator (see Oscillators) Inductive stabilization, 57 Inhomogenems broadening (see Broadening] Injection seeding 435 Interfexnce equation 16-1 filter, 392.102.431 one-dimensional, 16 two-dimensional 17 Lamb dip, 83.84.86 Laser dye molecule, 168 173 175 182-183 196-198.200-213 absorber 191 196197 Lasers argon ion 187 CO, 6,13.35 COz isotope, 63-161 absolute frequencies 95-1 37 broadening, 76-79 design, 149-151 pressure shift, 137-143 regular band laser transitions 71-76 reference, 88 small signal gain, 144-119 spectral purity 79-82 specrroscopicapplications 159-160 stability, 79-95 137-143 dye, 2, 13 14 CW 1.3 185-191 femtosecond, 191-197 flashlimp-pumped, 179-1 85 laser-pumped 177-180 184 195, 198, 199 pulsed, 2.3, 13 172-185 195 198, I99 solid-state, 11, 195 198 199 excimer 33-59 Ar2* 1 4rC1, 40 AI%, 3.6 13 34, 35 37 discharge 53-59 Kr2*, d l KrCI 30 KrF 3.6 13.31.35,38 473 Xe,”, 41 Xeir 40 XeCI, 6.13.34,35,40, 174.175 XeF, 6.3438, 35.40 174 free electron laser ( E L ) , 2, , 4 4 cavities, 456459 facilities 460468 general characteristics, 447449 harmonic operation, 453455 oscillator 444 physics, 443417 polarization, 45.153 power, 61 tuning 5 wavelength range 361 wiggler 4 5 , 5 ~ HgBr, 174 krypton ion 187 metal-vapor cadmium 174 calcium 171 copper 174, 175, 178 gold, 171 strontium 174 nitrogen 3, 173 semiconductor, 1.3,5 13.319435 AlGaAsIGaAs, 363 AIGaInPIGaAs 363 alignment stability 380 alignment tolerance, 381 astigmatism 356 359, 363 bulk active region, 358 chromatic aberration, 382.383 GaAIAs 13.358 GaAlAsIGaAs, 364 GaAsIAlGa4s, 363 internal loss, 353 InGaAIP/GaAs 363 InGaWAlGaAs 365 InGaWInGaAsP, 365 InGaAsflnP 363 lnGaAsPIGi~4s 363 InGaAsPfinP, 2, 13,363.361 lead-salt 15.5-158 mirror loss 353,376.377 mode hopping 377 mode selectivity, 378,407409 multimode oscillation, 373 multimode suppression 417419,424 quantum well, 358.363-365.103 reflectance facet 361 365-368, 374, 399 115118,123426 171 sidemodesuppression Lu)1,403.404,418,431 474 Index Lasers (coiirinired) threshold current, 352-354,356.358-361 363, 376.405.412118.122 vertical cavity, 351 wavelength stabilization, 42 transition metal solid-state, 219-288 Co:hlgF, 275-281 Cr: A1,O; (ruby), 174,246251 Cr:BeAU,03 (alexandrite) 2.3,6,13.251-258 Cr:GSAG, 270-275 Cr:GSGG 270-275 C r : Y G 270-275 Cr:LiCaAIF, 263-269 Cr:LiSrAIF,, 263-269 NiMgF,, 275-281 Nd:YAG 171, 222,262,263 physics of, 232-746 Ti:AI2Oj (titanium sapphire), , 13, 258-263 VMgF, 275-281 Lattice constant 41,O, 219 Be;@O4 251 GSGG 272 LiCaAlF, 265 h.lgF, 277 YAG, 272 Lens aspheric 383 ball, 382 384, 399 camera 384, 398, 428 cylinder, 382 399 GRIN, 382,383,399,409,428 microscope objective, 382, 383, 329 silicon, 383 Linewidth, 13-14, 17-19, 22, 35, 36,11 44 77-78 178, 186 190 broadzning factor, 355.124426 dispersive, 17-19 22.44 Doppler, 78 82 double-longitudinal-mode 182 external cavity laser, 350 355, 360, 373 multiple-pass, 22.14 Schawlou-Townes 80 82 155 sinele-longitudinal-mode, 190 solitary laser diode, 319 355 Lineshape function, 76-79 Liquid-phase epitaxy, 358 Lorentzian profile, 76, 79 Magnetic pulse compression, 55 56 h'lagnets Maxwelian distribution 78 Melting point 41203, 249 Be.L\1,0, 251 GSGG 272 LiCaAIF, 265 MgF2 277 YAG, 272 Metrology, 433 Modal instability, 365, 377,424 325 Mode locking colliding pulse (CPhl) 191 192, 191 hybrid, 197 passive, 196 R.lolecular constants CO, laser, 95-136 hlpL grating oscillator (see Oscillators) MPMMA (see Lasers, dye, solid-state) Multiple-prism beam expander 11 17.20-22 generalized arraq 22 pulse compression array, 23-25 transmission efficiency, 21-25 Optical fiber 375, 390,421.431 lensed, 381 429 Optical isolator, 369, 376.397, 399.101,401 129 Optical parametric oscillators (OPOsj 1-3 , 12.293-345 acceptance angles 306-3 14 ADP 323,325.331,332 AgGaS,, 323.325.331 AgGaS;, 306.307-308,310.323.325.331 337.338 alerage poner limitations 317-321 BBO, 2,323,325.331 335 CD*A, 323,325,331.333 CdSe, 323.325.331.339 KDP 323 324.331.332 KTP 323,325,331 LBO, 323.325.331 LiNbO,, 3,323.325.331.333.334.336 nonlinear crjstals, 321-328 biaxial 321 index, 323 nonlinear coefficients, 321-325 Sellmeier coefficients 33 thermal conduction 323 transmission 323 uniaxial 321 performance 331-342 Index phase matching calculations, 328-334 spectral bandwidth, 306-3 14 Tl,AsSe, 323,325,331,311 tuning, 343-315 ZnGeP2,323.325.331.340 Optical transparency A1,0, 249 Be.340, 254 GSGG, 272 LiCaAlF, 265 MgF2:277 Y4G 272 OpTogalvanic effect 422 ORhlOSIL (see Lasers, dye solid-state) Oscillator CO, laser 144-118 dispersive, 10-16! 35 dye laser, 13-11 176-179, 182, 183 185 186 solid-state 14 38 excimer laser, 42,13, free electron laser 44-4 forced, 36 183 183, 186 27 grazing-incidence grating 10 13 , 35 36 HbPGIgrating lk15.16, 177 178, 181 I84 Littrow grating 10,27 local 141, 157.351,131 master: 36, 178, 181 183 185 186 MPL grating 10-14, 16 26 35: 36 177 178, 181 182,181186 multiple-etalon 35>36.48 186 narrovv-line\vidth:5 $ 6.9-3 ruggedized, 182, 183 184, 186 solid-state laser 14 semiconductor laser 13 tuning range, 13-14 Parametric mrrractiom 297-301 oscillation, 301-306 PhIhfA (see Laaers dye, solid-state) Polarization 12, 26 218,253 255, 160 266 267.178.280 782285,297.298 302, 3l1.317,356.388.115.153 Polarizer output cokpler 12, 15, 182 Power average a t 190 pulsed 41 $61 Prepulse discharge 57 47 Preionization corona 55 UV, 53 VU\' 5j X-ray, 55 55 Prism (see a h Multiple-prismj 23,282,349 351.384,387.399.409 Probability 16-17 amplitude 16-17 Pulse compression, 23-24 192-195 double-prism compressor 23-24, I91 four-prism compressor, 23-24, 194 intracavity multiple-prismdispersion 23-14, 192-195 sir-prism compressor 23-24 Q-switch 220-221 Rate equations dqe laser 168-172 Ra) transfer matrix, 20.29-30 distance 20 eralon 30 grating 20 lens 20 mirror 20 multiple-prism 10 29-30 telescope 20 Refracthe index A1,0:, 249 BK7, 195 BeA1?0, 251 F2 195 GSGG 272 LaSF9, 195 LiCa-21F6,265 RlgF, 177 quartz 195 SF10 195 Y%G.172 2nSe 195 Saturable absorber (see Laser dye absorber) Telescope Galilean, 17 20 multiple-prism 11 17 Newtonian, 10 476 Index Thermal conductivity AlzOj 219 Be,41,0,, 251 GSGG 277 LiCaAIF, 265 MgF,, 277 YAG, 272 expansion A1,0,, 249 BeA1,0, 251 GSGG 272 LiCaA1F6,265 MgF,, 277 YAG 272 Transition 173, 171 186 cross sections, 173 electronic, 168 169 rates 173 vibronic, 228 Transmission efficiency prismatic, 25 Transverse mode calculations 16, I8 single 10, 15 93, 153 Tuning CO: laser 98 energ) 51 excimer lassr 13,41 dye laser 13-14 168 190 etalon, 78 grating, 26 lead-salt semiconductor laser, 155 nonlinearity 372, 377.326 optical parametric oscillators, 343-315 phase continuous 409112 prismatic 27-28 quasi continuous 372 range, 2, , 13-14.98, 154, 168, 190 362-364.161 semiconductor laser 14, 362-364.372, 377 399407,109412.126 solid state laser, 11 281-288 synchronous 27 wiggler 452455 Ultrashort pulses 3.1 194 196-197 Unidirectional device 188 Unstable resonator dye laser 185 excimer laser, 50-53 free electron laser, 457 Waveguide, 358-3 60 Wavelength division mulitplexing 43 1,132 jitter, 186 stabilization, 42 2 tuning (see Tuning) X-ray preionization (see Preionization) ZnSe 195,458 Optics and Photonics Edired by Paul F Liao, Bell Con7niunicarions Research Inc., Red Bank ilreH> Jet-sex Paul L Kelley, E!ectro-Optics ~echno/ogp Center: Tufts Universih, itfedford, If assach usetts Ivan P Kaminow, AT&T Bell Laboratories Holmdel, Neb!, Jersey N.S Kapany and J.J Burke Optical Whreguides Dietrich Marcuse, Theory ofDialectric Optical 1,iarepides Benjamin Chu, Laser Light Scattering Bruno Crosignani Paolo DiPorto and Mano Bertolotti, Statistical Properties qf Scattered Lighr John D Anderson Jr Gasdynamic Lasers, An Infroduction W.Vi Duly, CO, Lasers: Effects arid 4pplicarions Henry Kressel and J.K Butler Semiconductor Lasers and Heterojiinction LEDs H.C Casey and M.B Panish h'eterostructiii-e Lasers: Parr A Fiindanwntal Principles Pat-r B ,Ifarerials and Opet-ating Characteristics Robert K Erf, editor, Speckle Metrology Marc D Leuenson, Introducriori to !\'onlinear Laser Spectroscopp David S Kliger, editor C~lrrasensitii~e Laser Specrroscopp Robert A Fisher, editor Opticcl Phase Conjcigariotz John E Reintjes, Nonlinear- Optical Parametric Processes in Liquids and Gases S.H Lin, Ti Fnjimura, H.J Neusser and E.W Schlag, Multiphoton Spectroscopy qfMolecciles Hyatt M Gibbs Oprical Bistabiliryc Controlling Light with Light D.S Chemla and J Zyss editors iVonlinrar Optical Properties of Organic ~Molecrilesand Crystals, I%lume I , ?Olunie I Marc D Levenson and Saturo Kano Inrrodirction to Nonlinear Laser Spectroscopy Revised Edition Govind P Agrawal Nonlinear Fiber Optics EJ Duarte and Lloyd W Hillman, editors, Dxe Laser Principles: With 4pplications Dietrnch Marcuse, Theory of Dielectric Optical Navegiiides Zi7d Edition Govind P AgraLvaI and Robert W Boyd editors Conteniporary Nonlinear Optics Peter S Zory Jr., editor, Quantum IVelI Lasers Gar) A Evans and Jacob M.Hammer, editors Surface Enzitring Sen7icotiductor Lasers and AI-rays John E Midiuinter, editor, Phoronics in Sirirching Voolunie I Backgrorcnd and Componerirs John E Midwinter, editor Photonics in Sn.itching Voliinie II, Spstenis 3oseph Ziss, editor Moleciilar Nonlinear Optics William Bums, editor Optical Fiber Rotariori Sensing Mario Dagenais editor Integrated Optoelectronics Robert H Kingston, Optical Sources Derecrors and Systems: Fiindanienrals and App:icurions - _ editor, Tiinable Lasers Handbook t ~ Dume, Yo-Han Pao, Case tl'esrern Resei.1.e lTniversin'.Cleveland Ohio.Founding Editor 1972-1979 - I , (formerly Quantum Electronics) Tunable lasers Handbook provides an up-to-date survey on the physics, technology, and performance of widely applicable sources of tunable coherent radiation Topics include dispersive oscillators, excimer lasers, CO, lasers, dye lasers, tunable solid state lasers, optical parametric oscillators, tunable semiconductor lasers, and free electron lasers This book gives active resea ' r s and engineers the practical information they need to ch their particular applica appropriate tunable laser for t b perspective on tunable lasers Includes coverage of optical parametric oscillators and tunable gas, liquid [lid state, and semiconductor lasers Provides sources spanning the electromagnetic spectrum from the UV to the FIR Contains 182 fiat , and 68 tables I S B N 0-12-222675-X ... the effective finesse is given by [41] where FR ,F, , and represent the reflective, flatness, and aperture finesses, respectively, The reflective finesse is a function of the reflectivity of the... more efficient configuration Detailed information on grating efficiency as a function of wavelength and other parameters is provided by manufacturers A detailed discussion of grating efficiency... Amplified spontaneous emission (ASE) level A basic illustration of complementarity is the use of different types of lasers to provide tunable coherent radiation at different spectral regions For

Ngày đăng: 17/03/2014, 14:28