Undergraduate Handbook Department of Industrial & Systems Engineering

32 7 0
Undergraduate Handbook Department of Industrial & Systems Engineering

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

The State University of New Jersey Undergraduate Handbook: Department of Industrial & Systems Engineering Academic Year 2014-2015 The State University of New Jersey Industrial and Systems Engineering (ISE) Welcome to ISE! In today’s complex and competitive world, industrial engineers are in great demand to design, improve, and operate integrated systems of people, materials, equipment, and energy The industrial and systems engineering discipline applies fundamentals from the mathematical, physical, and engineering sciences to efficiently design and analyze large systems that serve industry and government both in manufacturing and service sectors The undergraduate industrial and systems engineering program at Rutgers provides students with a broad engineering education along with specialization in the industrial engineering and manufacturing fields We believe that a broad education is necessary to understand the impact of engineering solutions in a global/societal context Academic strength in mathematics, physics, and basic engineering science is required Specialization is offered in mathematical modeling, quality engineering and statistical techniques, computer-aided design, computer-aided manufacturing, simulation, manufacturing processes, engineering economics, production planning and control, design of engineering systems and information technology Students have access to state-of-the-art laboratory facilities where hands-on instruction is emphasized in robotics, machine vision, manufacturing, automated material handling, quality engineering, electronic and sensor devices, simulation, and computer information systems The undergraduate program focuses on classroom instruction fostered by learning in multi-disciplinary project-teams These teams frequently formulate and find engineering solutions to real-world industry problems The ability to communicate effectively is emphasized by having students provide both oral and written reports ISE graduates work in a number of areas including electronic, pharmaceutical, and other manufacturing; health services, transportation, distribution, and communication; and computers, finance, marketing, and management Students pursue graduate studies in engineering and in management at leading institutions The ISE faculty is dedicated to excellence in teaching, research, and professional service They bring experience, real-life industrial problems, and enthusiasm to the classroom, setting a standard for students to follow in their professional careers WELCOME TO INDUSTRIAL AND SYSTEMS ENGINEERING! We have carefully prepared this handbook for you It contains information about the undergraduate program in Industrial and Systems Engineering (ISE) at Rutgers Here, you will find descriptions of the ISE curriculum and electives We’ve also enclosed information on academic policies, department facilities, faculty advisors, and student societies Currently, students in the classes of 2015/2016/2017/2018 require a total of 129 credit hours with major credit hours totaling 62 This change updates the curriculum and provides design-focused engineering education The Department of Industrial and Systems Engineering offers courses in various areas including: work design and ergonomics, optimization, simulation modeling, probability, manufacturing processes, design of engineering systems, facilities layout, production planning and control, and quality engineering and statistics In addition, the department gives students the opportunity to attain hands-on experiences in the ISE labs with work design, manufacturing processes; computer controlled manufacturing systems, and quality engineering and statistics Our labs include the Manufacturing Automation Lab, the Quality and Reliability Lab, the Microcomputer Lab, and the Manufacturing Processes Lab This handbook and other information about the Department of Industrial and Systems Engineering at Rutgers can be found on the web at http://www.ise.rutgers.edu Our mailing address is Department of Industrial and Systems Engineering, Rutgers University, 96 Frelinghuysen Road, Piscataway, NJ 088548018; fax (732) 445-5467; telephone (848) 445-3654; email for the undergraduate director, Dr M K Jeong, is mjeong@rci.rutgers.edu Once again, we welcome you to the Department of Industrial and Systems Engineering If you have any questions regarding your undergraduate study please feel free to stop by the departmental office We are located in Room 201 of the CoRE Building We are always available to help Enjoy Your Studies, Dr M Jafari, Chairman Dr M K Jeong, Undergraduate Director, CORE 204 Ms Cynthia Ielmini What Is Industrial Engineering? According to the Institute of Industrial Engineers (1975), the Industrial Engineering profession is described as follows: “Industrial Engineering is concerned with the design, improvement, and installation of integrated systems of people, materials, equipment, and energy It draws upon specialized knowledge and skill in the mathematical, physical, and social sciences together with the principles and methods of engineering analysis and design to specify, predict and evaluate the results to be obtained from such systems.” What are the educational objectives of the Industrial and Systems Engineering Department at Rutgers University? The Industrial Engineering Program educates its graduates to achieve the program educational objectives within a few years after graduation More specifically, the IE curriculum prepares its majors so that, within a few years after graduation, graduates’ attainments are: Professional positions that result in a strong understanding of the knowledge and skills of the engineering profession Specializations in industrial and systems engineering which enable them to achieve successful employment and academic opportunities Professional, intellectual and leadership skills necessary to lead a productive life and contribute to the economic advancement and quality of life in the region, state and the nation In order to meet these objectives, the department has designed its curriculum in order to insure the following student educational outcomes: To prepare students to apply their creativity in solving complex engineering design problems, to approach unstructured problems, to synthesize and design potential solutions and to evaluate the impact of their solutions in the broader context of the organization or society To educate students with the ability to collect, analyze, and interpret data relevant to problems arising in the industrial engineering domain To provide students with analytical and computational skills to operate effectively within the industrial engineering domain through training in problem representation, abstraction, and validation To prepare students to function as professionals in the workplace by fostering their ability to form, facilitate, lead, coordinate, and participate in teams as well as understand organizational processes and behavior To prepare students to effectively and convincingly present their solutions and to so in the context of written, oral, and electronic media To provide students with the skills and ability to apply current technology to solve industrial problems To sensitize students to a need for and to provide an ability to accomplish life-long growth within the field/profession of industrial and systems engineering Table of Contents INDUSTRIAL ENGINEERING CURRICULUM 1.1 Class of 2014/15 1.2 Class of 2016/17 1.3 Dept/Tech Electives ALL CLASSES-ACCEPTABLE HUMANITIES/SOCIAL SCIENCE ELECTIVES 2.1 List of Acceptable Humanities/Social Science Electives ACADEMIC STANDING 9 10 SUMMARY OF ACADEMIC PROGRAMS 11 4.1 Five Year Dual Degree Program 11 4.2 James J Slade Scholar (Honors Program) 4.3 Five Year BS/MBA Program 11 11 4.4 Four Year and One Semester Co-Op Program 11 4.5 Study Abroad 12 4.6 BS in IE/MBA Program _12 4.7 Co-Op Internship Option _ 14 ACADEMIC POLICIES 16 5.1 Major Average 16 5.2 Courses Included in Major Average 5.3 Withdrawal From Courses 5.4 Course Substitution 17 5.5 Academic Dishonesty 18 UNDERGRADUATE TRACKS 16 17 18 PREREQUISITE/COREQUISITE FLOW 20 UNDERGRADUATE COURSE DESCRIPTIONS STUDENT SOCIETIES 10 FACULTY 23 24 11 FACULTY ADVISORS 28 12 DEPARTMENTAL FACILITIES 13 GENERAL INFORMATION 28 29 14 ADDITIONAL INFORMATION 30 15 SECURITY AND SAFETY 31 21 INDUSTRIAL ENGINEERING CURRICULUM 1.1 CLASS OF 2014/2015 Freshman Year (17 cr hrs.) 01:160:159 Gen Chem for Eng 01:160:171 Intro to Experiment 01:355:101 Expository Writing 01:640:151 Calc Math Phy Sci 01:750:123 Analytic Physics I 14:440:100 Intro to Engr : _: _ Hum/Soc Elective 01:160:160 01:640:152 01:750:124 14:440:127 14:440:221 : _: _ Sophomore Year (16 cr hrs.) 01:640:251 Multivar Calc 01:750:227 Analytic Phys IIA 01:750:229 Anal Phys II Lab 14:180:243 Mech of Solids 3M 14:540:201 Work Des & Ergo 3M 14:540:202 Work Des Lab 1M 14:540:213 IE Lab 1M (18 cr hrs.) Gen Chem for Eng Calc Math Phy Sci Analytic Physics I Intro to Computers Engr Mech-Statics Hum/Soc Elective (17 cr hrs.) 01:220:102 Intro to Micro Econ 01:640:244 Diff Eqns Eng & Ph 01:750:228 Analytic Physics IIB 01:750:230 Anal Physics II Lab 14:440:222 Eng Mech-Dyn 14:540:210 Eng Probability 3M Junior Year (17 cr hrs.) 01:355:302 Sci & Tech Writing 14:180:215 Eng Graphics 14:332:373 Elements of EE 3M 14:635:407 Mech Prop Materials 3M 14:540:338 Prob Models in OR 3M 14:540:382 Comp Contr Mfg Sys 3M 14:540:383 Comp Contr Lab 1M Senior Year (13 cr hrs.) 14:540:400 Design of Eng Syst II 3M 14:540:433 Quality Eng & Stat 3M 14:540:434 Quality Eng Lab 1M 14:540:453 Prod Plan & Control 3M 33:010:310 Account for Eng 3M 14:540:303 14:540:304 14:540:311 14:540:343 14:540:384 14:540:399 (16 cr hrs.) Mfg Processes 3M Mfg Processes Lab 1M Deter Models in OR 3M Eng Economics 3M Simulat Models IE 3M Design of Eng Syst I 3M 14:540:462 : _: _ : _: _ : _: _ : _: _ (15 cr hrs.) Fac Layout & MH 3M Dpt/Tech Elec (List A) 3M Dpt/Tech Elec (List B) 3M Hum/Soc Elective Hum/Soc Elective M - Course is included in major average Total credit hours: 129 Major credit hours total 62 The Dept/Tech electives (List A & List B) for Class are given in Section 1.2 1.2 CLASS OF 2016/2017 Freshman Year (17 cr hrs.) 01:160:159 Gen Chem for Eng 01:160:171 Intro to Experiment 01:355:101 Expository Writing 01:640:151 Calc Math Phy Sci 01:750:123 Analytic Physics I 14:440:100 Intro to Engr : _: _ Hum/Soc Elective 01:160:160 01:640:152 01:750:124 14:440:127 14:440:221 : _: _ Sophomore Year (16 cr hrs.) 01:640:251 Multivar Calc 01:750:227 Analytic Phys IIA 01:750:229 Anal Phys II Lab 33:010:310 Account for Eng 3M 14:540:201 Work Des & Ergo 3M 14:540:202 Work Des Lab 1M 14:540:213 IE Lab 1M (18 cr hrs.) Gen Chem for Eng Calc Math Phy Sci Analytic Physics I Intro to Computers Engr Mech-Statics Hum/Soc Elective (17 cr hrs.) 01:220:102 Intro to Micro Econ 01:640:244 Diff Eqns Eng & Ph 01:750:228 Analytic Physics IIB 01:750:230 Anal Physics II Lab 14:440:222 Eng Mech-Dyn 14:540:210 Eng Probability 3M Junior Year (17 cr hrs.) 01:355:302 Sci & Tech Writing 14:180:215 Eng Graphics 14:332:373 Elements of EE 3M 14:635:407 Mech Prop Materials 3M 14:540:338 Prob Models in OR 3M 14:540:382 Comp Contr Mfg Sys 3M 14:540:383 Comp Contr Lab 1M Senior Year (13 cr hrs.) 14:540:400 Design of Eng Syst II 3M 14:540:433 Quality Eng & Stat 3M 14:540:434 Quality Eng Lab 1M 14:540:453 Prod Plan & Control 3M 14:332:402 Sustainable Energy 3M 14:540:303 14:540:304 14:540:311 14:540:343 14:540:384 14:540:399 (16 cr hrs.) Mfg Processes 3M Mfg Processes Lab 1M Deter Models in OR 3M Eng Economics 3M Simulat Models IE 3M Design of Eng Syst I 3M 14:540:462 : _: _ : _: _ : _: _ : _: _ (15 cr hrs.) Fac Layout & MH 3M Dpt/Tech Elec (List A) 3M Dpt/Tech Elec (List B) 3M Hum/Soc Elective Hum/Soc Elective M - Course is included in major average Total credit hours: 129 Major credit hours total 62 The Dept/Tech electives (List A & List B) for Class are given in Section 1.2 1.3 Departmental/Technical Electives Students are required to take one course from the Departmental/Technical Electives List A (Design Elective) and one course from the Departmental/Technical Electives List B These two lists are given below If a student has a particular interest, the advisor may approve courses not on the list For example, a student planning to go to medical school may wish to take biology and organic chemistry These are appropriate technical electives that can be substituted for List B electives ISE and other graduate courses are possible electives for students with a 3.0 major average or greater Students must obtain permission from the Undergraduate Director in order to take a graduate course Note: This is a good practice for many students who are interested in pursuing graduate studies See the Dr Undergraduate Luxhoj if you have any ifquestions ISE department technical See Director you have about any questions about ISE electives departmental technical electives NOTE: Course # and title may be changed by other departments without our knowledge! Please inform the Undergraduate Director of any changes you are aware of List A - Design Electives 10:762:315 Designing Cities 10:762:316 Physical Design & Site Planning 10:762:472 Transportation Planning 10:762:475 Designing for Sustainability 10:762:492 Design Studio: Plan and Design a Sustainable Small Town 14:540:484 Design of a Manufacturing Enterprise 14:540:485 Industrial Information Systems 14:540:486 Automated Manufacturing Systems 14:540:487 Energy Systems Modeling and Optimization 14:635:405 Solar Cell Design and Processing 14:650:342 Design of Mechanical Components 14:650:388 Computer Aided Design in Mechanical Engineering 14:650:455 Design of Mechanisms List B 01:220:322 Econometrics 01:640:250 Introductory Linear Algebra 01:960:384 Intermediate Statistical Analysis 11:375:434 Principles of Industrial Hygiene 14:332:402 Sustainable Energy: Choosing Among Options 14:332:476 Virtual Reality with corequisite 14:332:478 Virtual Reality Laboratory 14:440:404 Innovation and Entrepreneurship for Science and Technology 14:540:461 Engineering Law 14:540:485 Industrial Information Systems 14:540:486 Automated Manufacturing Systems 14:540:487 Energy Systems Modeling and Optimization 14:540:496 Co-Op Internship in ISE (upon approval of the undergrad director) 14:635:440 Electromechanical Materials and Devices 33:799:300 Global Procurement and Sourcing Strategies* 33;799:320 Fund of Sc Sol Sap* 33:799:380 Project Management* 33:799:460 Introduction to Six Sigma & Lean Manufacturing* * Requires a 3.2 GPA or better NOTE: For students who are enrolled in the Certificate in Packaging Engineering, two of the four courses may be used for ISE electives See Undergraduate Director for details ALL CLASSES - ACCEPTABLE HUMANITIES/SOCIAL SCIENCE ELECTIVES 2.1 List of Acceptable Humanities/Social Science Electives NOTE: This list is based on the New Brunswick Undergraduate Catalog, 2009-2011, and supersedes all previous lists Any new courses added after publication of the 2009-2011 Catalog are subject to review Questions or appeals regarding course acceptability should be directed to the Associate Dean Rationale for H/SS Electives in the Curriculum: A good undergraduate education should provide more than the development of technical skills Properly chosen, H/SS electives can complement your technical courses by helping you to develop an understanding of the problems facing our society, a historical consciousness, a sense of values, knowledge of other cultures, an appreciation of the fine arts, and an ability to think logically and communicate effectively Think seriously about your choices, and use them to enhance your educational experience Engineering students may also complete a minor or second major in these disciplines; see http://soe.rutgers.edu/oaa/declaration.php for more details School Requirements: All candidates for the B.S degree must complete a minimum of 18 credits of humanities/social science courses including the following:  01:355:101;  01:220:102 AND 103 (Note: credit not granted for 220:102 or 220:103)  Four free electives chosen from courses listed below (if 220:102/103 taken, choose electives);  Free electives must be selected in a manner such that at least two courses are at the 300/400 (upper) level, at least two courses, including one upper level, are from the same subject area; and at least two different subjects are represented All courses may be from the same subject ONLY IF a minor or 2nd major in a H/SS subject is earned Even with a minor/major, upper level courses from this list must be chosen  Elementary language courses are normally NOT accepted for H/SS credit However, four semesters of a language (2 elementary and intermediate) that were not taken in high school and is not the student's native language will count as general, H/SS lower, and H/SS upper elective The second upper level H/SS elective must come from another subject unless a minor is earned Department 01:013 African Lang & Lit 01:014 Africana Studies 01:016 Africana Area Studies 01:050 American Studies 01:070 Anthropology 01:082 Art History 01:090 Arts and Sciences 01:098 Asian Studies 01:145 Catalan 01:165 Chinese 01:190 Classics 01:192 Communication 01:195 Comparative Lit 01:202 Criminal Justice 01:214 East Asian Studies 01:220 Economics 05:300 Education 14:332 Elec/Cmptr Eng’g 01:350-354 English 01:355 English (Writing) 01:360 European Studies 11:372 Environ Planning 11:373 Environ & Business Econ 11:374 Environ Policy, Courses 201,211,221,231,240-243, 252,253,260,261,276,277,280,286,290,294, 295,301,312,314,322,340-342,353,355,376,377,390,391,401,402,476 All Courses EXCEPT: 140,223,224,341,342,460, 490-498 All Courses EXCEPT: 301-304 All Courses EXCEPT: 281-284 All Courses EXCEPT: 291-294,334,335,349,354,355,358,359,390-395,495-498 All Courses EXCEPT: 111,112,291-94,345,462,473,491-499 320 241,242,262,321,322,444 301,302,305 All Courses EXCEPT: 101,102,103,111,112,121,490-498 All Courses EXCEPT: 101,102,431,432,491-496 380 All Courses EXCEPT: 160,399,493-496 201,301,310,311,312,322,327,405 241, 242, 310, 338 All Courses EXCEPT: 102,322,326,386,,397-399,401-410,421,490-496 306 301 All Courses 201,302, 402,425 Note, if 355:302 is a req’t for your major, you cannot also use it to fulfill a h/ss elective 301, 401 202,444 323,331,361,362,363,371 101,102,175,211,220,223,269,279,301,308,312,313,314, 315,322,331,335,336,341 Instit & Behavior 33:382 Entrepreneurship 01:420 French 14:440 General Engineering 01:450 Geography 01:470 German 01:489 Modern Greek 01:490 Greek 01:505 Hindi 01:506-512 History 37:533 Human Res Mgmt 01:535 Hungarian 11:554 Interdisc Studies SEBS 01:556 Interdisc Studies 01:560 Italian 01:563 Jewish Studies 01:565 Japanese 01:574 Korean 37:575 Labor Studies 01:580 Latin 01:590 Latin Amer Studies 01:595 Latino & Hispanic Carribean Studies 01:615 Linguistics 33:620 Management 33:630 Marketing 07:631 Mason Gross Arts Online 01:667 Medieval Studies 01:685 Middle East Studies 07:700 Music 01:730 Philosophy 10:762 Planning & Public Policy (formerly 975-Urban Studies) 01:787 Polish 01:790 Political Science 33:799 Supply Chain Mgt 01:810 Portuguese 01:830 Psychology 01:840 Religion 01:860 Russian 01:920 Sociology 01:940 Spanish 07:965 Theatre Arts 01:988 Women’s Studies 202,302, 303,310,342,355 All Courses EXCEPT: 101-121,171,210,275,276,299,331,393,394,399,493-498 404 100,102,103,205,211,222,240,262,307,309,311, 320, 322, 323, 330-338, 341, 342, 361, 363, 370, 380, 405, 406, 411, 413, 419, 470 All Courses EXCEPT: 101-122,281,282,299, 393-396,495,496 201,202,205,207,241,245,305,306,312,316,347,351,358,380-383,493,494 207,208,211,304-306,308-312,315,335,352, 353, 391,392,400,402 201, 202 All Courses 321 201, 202, 259, 260, 301,321,355,360,401,402,460,490 196,296 103, 104, 220 All Courses EXCEPT: 101-124,283,284,299,317,318 All Courses EXCEPT: 101-104,381,382,482,483 All Courses EXCEPT: 101-104 201,202,210,220,221,230,250,301,302,303,304,401,410,411,450 All Courses EXCEPT: 401,450-499 203,204,302-304,310,321,323-325,327-329,335,401-404, 407 All Courses All Courses EXCEPT: 304, 354, 356, 493-496 All Courses 301 301,368 101,103,106,120,121,210,211,226,230,281,282,295,425,(For Online Music, 200+ counts as Upper Level) 281,282,388,481 All Courses EXCEPT: 480-499 101-122,125,131,211-222,226-238,295,296,301-322 (For Music, 200+ counts as Upper Level) All Courses EXCEPT: 493-496 101, 233,303-306,310,315, 324, 331, 335, 350, 352,413, 421, 444,448, 451, 460,462, 471, 473, 474, 476,478, 483, 485, 495 201,202,259,370,401,402,470,475 All Courses EXCEPT: 250-253,300,392-400,481-498 300, 301, 380 All Courses EXCEPT: 101,102,135,141,142, 160, 201,493-498 All Courses EXCEPT: 200,300,323,395-398, 411,413, 490-498 All Courses All Courses EXCEPT: 101,102,105-108,215,338,339,351,352,375-380,487-497 All Courses EXCEPT: 311,312,393,398,399,493-498 All Courses EXCEPT: 100-105,121,139,160,201,287,288,298,299,317,318, 327, 399, 416, 470-498 211, 212, 300, 311, 312, 398, 401 All Courses EXCEPT: 370,399,425,426,430,493-498 ACADEMIC STANDING PROBATION: Do not take probation lightly Each semester, students’ grades are reviewed The IE policy is that students may be on academic probation for any of the following reasons: if the term average falls below 1.7 for sophomores, below 1.8 for both juniors and seniors; if the major average falls below 1.9 for students with semesters, below 1.9 for students with semesters, below 2.0 for students with or more semesters; or the university average falls below 1.0 DISMISSAL: If you have been on probation twice during your Rutgers Engineering career, you have no chances left If your grades are such that you would be eligible for probation again, you will be 10 650:351 704:351 780:382 930:266 All 180 courses 635:407 All technical electives ELECTRICAL ENGINEERING (332/331) APPLIED SCIENCE (073) All 332 courses All technical electives All engineering electives All technical electives All math/science electives INDUSTRIAL & SYSTEMS ENGINEERING (540/541) All 540 courses CERAMIC ENGINEERING (150/151180:243) 33:010:310 332:373 635:407 180:243 All technical electives All 150 courses except: 150:201, 202, 205, 206, 270 271, and 150: 010:310 332:373, 375 635:407 460:301 540:343 630:301 960:401, 490 All technical electives One 150 may be used to satisfy one Dept/Tech MECHANICAL ENGINEERING(650/651) All 650 courses 332:373,375 540:343 640:421 655:407 5.3 Withdrawal From Courses It happens, unfortunately, that students encounter major problems during their college years Don't wait to be dismissed from the School of Engineering to seek help Take responsibility for your situation If you know you are unable to the required work, you must what is necessary to let the college know of your difficulty Further, there are many resources at Rutgers that can help you with your situation - from substance abuse to the death of a parent or friend Here are the rules: If you fail a course, it is computed into your university and major averages If you drop a course, it is not computed into these averages You may withdraw from courses up to the 8th week without permission Between the 8th and 12th weeks you may withdraw with the permission of Dean Bernath If you are severely behind in your course work, you may get permission from the Dean After the 12th week, permission from the Dean is required and your reason for withdrawal must be significant and beyond your control 5.4 Course Substitution As a matter of policy, there are no course substitutions for ISE courses If there is an excellent reason, with the permission of the Undergraduate Director, students may substitute courses from other schools for electives or for required courses not given in the ISE department 5.5 Academic Dishonesty The Industrial and Systems Engineering Department expects each student to conduct him or herself in a professional manner The policy of the ISE Department is as follows: we not 18 hesitate to report offenses of cheating to the college or the university An engineer starting out a career cannot afford to have this kind of report on his or her record A student who gives information is considered guilty as well as a student who receives information The University Policy on Academic Dishonesty is carefully spelled out in your catalog Note that copying from or giving others assistance or using forbidden material on an hourly or final examination is a level three violation The recommended sanction is suspension from the university for one or more terms with a notation of academic disciplinary suspension placed on the student's transcript UNDERGRADUATE TRACKS The ISE program provides tracks that enable students to choose a specialization area in order to emphasize specific areas of interest The ISE curriculum offers four tracks as shown and explained below: BS IE 129 credits (62 major credits) Manufacturing Supply Engineering Financial Systems (135 credits) (135 credits) Co-Op Option (135 credits) or (132 credits) BS/MBA Option In Supply Chain Management (177 credits) ISE Undergraduate Tracks Financial Systems Track Requires a total of credit hours (3 credit hours used as part of List B Dpt/Tech Elec) Required: 33:390:300 Introduction to Financial Management (Fall, Spring, Summer) Select two: 16:540:530 16:540:575 33:390:380 33:390:400 Forecasting and Time Series Analysis (Fall) Advanced Engineering Economics I (Fall or Spring) Investment Analysis (Spring, Summer) Corporate Finance (Spring, Summer) Note: Course substitutions are accepted with permission of the Undergraduate Director **************************************************************************** IMPORTANT: In order to complete the ISE Financial Systems Track, you must complete certain prerequisites and follow prescribed administrative processes 19 NOTES: 33:390:300 Introduction to Financial Management (Fall, Spring, Summer) The prerequisites for this course are calculus, economics (either 01:220:102 Intro to Micro Economics or 14:540:343 Engineering Economics), 33:010:310 Accounting for Engineers, statistics, and computer programming The statistics prerequisite will be met when you successfully complete 14:540:210 Engineering Probability Note that with the ISE Financial Systems Track, you must take 33:010:310 Accounting for engineers some time before the Fall semester of your senior year If you are following the prescribed ISE undergraduate curriculum and have completed 33:010:310 Accounting for Engineers in the Fall semester of your junior year (at least prior to the Fall semester of senior year), then you may register for 33:390:300 Introduction to Financial Management in the Fall semester of your senior year (or Summer after your junior year) Note that taking the 33:010:310 Accounting for Engineers in the Fall semester of your junior year is an exception to the base ISE curriculum 33:390:300 Introduction to Financial Management is a prerequisite for both: 33:390:380 Investment Analysis (Spring, Summer) 33:390:400 Corporate Finance (Spring, Summer) After completing 33:390:300 Introduction to Financial Management in the Fall semester of your senior year (or Summer after your junior year), you are then able to register for 33:390:380 Investment Analysis and 33:390:400 Corporate Finance in the Spring semester of your senior year Special Permission Numbers for the ISE Financial Systems Track: The process for obtaining a special permission # for the Rutgers Business School courses is that the ISE Undergraduate Director will verify that the ISE students have met the prerequisites for 33:390:300 (and 33:390:380 and 33:390:400 as well) and then send a confirmation e-mail to the Undergraduate Program Coordinator at the Rutgers Business School The ISE students will then be advised to contact the Rutgers Business School Undergraduate Program Coordinator directly for the special permission # Manufacturing Engineering Track Requires a total of credit hours (3 credit hours used as part of List B Dpt/Tech Elec) 14:540:486 Automated Manufacturing Systems Select two: 14:540:485 Industrial Information Systems 14:150:330 Introduction to Nanomaterials Science and Engineering (open to school 14) 16:540:520 Supply Chain and Logistics Engineering (Requires 3.0 GPA) Note: Course substitutions are accepted with permission of the Undergraduate Director 20 ISE PREREQUISITE/COREQUISITE ISE Prerequisite / Corequisite Flow 200 540:201 540:202 01:640:15 540:210 300 440:221 635:407 540:382 540:303 540:383 540:399 400 540:304 01:640:24 540:338 540:311 540:384 540:400 540:433 540:462 540:453 540:486 540:434 Corequisite Prerequisite 21 UNDERGRADUATE COURSE DESCRIPTIONS Note: M denotes course is included in major average 14:540:201 Work Design and Ergonomics (3M) Corequisite: 14:540:202, Prerequisite: 01:640:151 or 21:640:135 or 50:640:121 or 01:640:191 Man-machine analysis, motion economy, time study, predetermined time systems, work sampling; introduction to robotics, facilities layout, material handling; introduction to ergonomics and anthropometric, biomechanical, and human-machine interface models 14:540:202 Work Design and Ergonomics Laboratory (1M) Corequisite: 14:540:201, Prerequisite: 01:640:151 or 21:640:135 or 50:640:121 or 01:640:191 Experiments in robotics, time study, work measurement, workplace design and the human-machine interface, facilities layout 14:540:210 Engineering Probability (3M) Prerequisite: 01:640:144 or 01:640:152 or 01:640:154 or 01:640:192 or 21:640:136 or 50:640:122 Probability problems in engineering, conditional probability, discrete and continuous distributions, functions of random variables, interval estimates 14:540:213 Industrial Engineering Laboratory (1M) Prerequisite: 01:640:151 or 21:640:135 or 50:640:121 or 01:640:191 Introduction to programming, fundamental data types, flow control, and function; arrays, pointers, and loops; algorithms and flow charts; GUI concepts 14:540:303 Manufacturing Processes (3M) Corequisite: 14:540:304, Prerequisite: 14:440:221, 14:635:407 Properties of engineering materials; metals, polymers, ceramics and composites, bulk and sheet forming, traditional and non-traditional material removal processes, polymer processing, laser and energy-beam processes, additive layered manufacturing processes and micro/nano fabrication processes Basic and computerized machine tools Process chains, planning and process optimization Engineering metrology and product quality 14:540:304 Manufacturing Process Laboratory (1M) Corequisite: 14:540:303 Experiments on machine tools: lathes, drilling machines, milling machines, and CNC milling machines; robot workplace design and computer control of machine tools 14:540:305,306 Honor Candidacy Problems Prerequisite: Permission of departmental chairperson Prerequisite for industrial engineering students who wish to be James J Slade Scholars Extensive reading and study in a particular problem area of industrial engineering under the guidance of a faculty member 14:540:311 Deterministic Models in Operations Research (3M) Prerequisite: 01:640:244 or 21:640:314 or 50:640:314 Elements of modeling and problem solving Use of a software package like LINDO, EXCEL to solve real life industrial engineering problems Linear programming, duality, sensitivity analysis, integer programming, transportation and assignment problems 14:540:338 Probability Models in Operations Research (3M) Prerequisite: 14:540:210, 01:640:244 or 21:640:314 or 50:640:314 Modeling and decision making under uncertainty Markov chains, poisson processes, inventory models and queueing systems 22 14:540:343 Engineering Economics (3M) Open only to junior and senior engineering students Economic decisions involving engineering alternatives, annual cost, present worth, rate of return, and benefit-to-cost; before and after tax replacement economy; organizational financing; break-even charts; unit and minimum-cost public sector studies 14:540:382 Computer Control of Manufacturing Systems (3M) Corequisite: 14:540:383 Programmable automation applied to manufacturing Computer architecture, sensors and automatic data acquisition, computer control of actuators, continuous and discrete control of processes, computer integration, and local area networks 14:540:383 Computer Control of Manufacturing Systems Laboratory (1M) Corequisite: 14:540:382 Use of microcomputers and industrial controllers in controlling machines and processes Assembly language programming, ladder logic programming, and interfacing controllers to sensors and actuators Experiments in manufacturing applications 14:540:384 Simulation Models in Industrial Engineering (3M) Prerequisite: 14:540:210, 14:540:338 Modeling and analysis of industrial and service systems using ARENA, simulation modeling prospectives, discrete event and continuous simulation, simulation languages, statistical aspects of simulation 14:540:399 Design of Engineering Systems I (3M) Prerequisites or Corequisites: 14:540:303, 14:540:304, 14:540:382, 14:540:384 Design principles, material selection, design for assembly, design for manufacturing, and effect of environmental issues on product design 14:540:400 Design of Engineering Systems II (3M) Prerequisite: 14:540:399, OPEN TO 540 STUDENTS ONLY A team approach to the redesign of a “real-life” product Alternative engineering plans for improved designs will be developed and implemented Both written and oral reports will be completed 14:540:433 Quality Engineering and Statistics (3M) Prerequisite or Corequisites: 14:540:210, 540:434 Statistical methods for monitoring and improving product quality and decreasing variation Factorial experiments, variables and attribute control charts, acceptance sampling, on- and off-line process controls 14:540:434 Quality Engineering Laboratory (1M) Corequisite: 14:540:433 Practical application of quality engineering methodologies, statistical software, gage studies, online process control, design of experiments to improve product design, industrial manufacturing processes, and system design 14:540:453 Production Planning and Control (3M) Prerequisite: 14:540:311, 338 Coordination of activities of both manufacturing and service systems Systems design; input and output; planning and scheduling Decision-making problems employing mathematical techniques of linear programming Sequencing jobs on machines and line balancing techniques 14:540:461 Engineering Law (3M) Prerequisite: Permission of department Open only to seniors and graduate students in engineering Legal and ethical aspects of engineering; bids, awards, and negotiated contracts Liabilities to the public and to employees, contract labor law Contracts, patents, copyrights, trademarks, and engineering specifications 23 14:540:462 Facilities Layout and Materials Handling (3M) Prerequisites: 14:540:201, 303 Fundamentals of the design, layout, and location of industrial and nonmanufacturing facilities Selection of machines and material handling equipment and their efficient arrangement Emphasis on quantitative methods Warehouse layout Facility location theory 14:540:484 Design of an Industrial Enterprise (3M) Open only to senior industrial engineering majors Senior-level capstone course Students in small groups select product(s) to be manufactured, and design and justify the enterprise 14:540:485 Industrial Information Systems (3M) Design of information systems for integrated manufacturing Modeling, specification, and implementation of factory information systems Relational database model and structured query language Methods of automatic data acquisition and integration of factory floor information with factory host database for production planning and control 14:540:486 Automated Manufacturing Systems (3M) Introduction to computer-aided design and computer-aided manufacturing (CAD/CAM), numerical control, hardware and programming, mechatronics systems, robotics hardware and programming, and machine vision with applications in manufacturing 14:540:487 Energy Systems Modeling and Optimization (3M) Prerequisite: 14:540:311 Deterministic Models in OR, 14:332:402 Sustainable Energy: Choosing among Options This course addresses the design, analysis, modeling and optimization of selected energy systems (including conventional fossil fuels and renewable wind and solar) This course will provide the basis for applying mathematical modeling and optimization techniques in energy systems A set of projects and case studies focused on modeling and optimization of a variety of energy systems will be assigned to students and discussed in details The course will have hands on experience with data collection, experimentation, simulation and optimization tools as they apply to energy systems 14:540:488 Design of Decision Support Systems (3M) Prerequisite: 14:540:485 Designing, building and testing computer systems that emulate human thinking and can draw conclusions based on incomplete and fuzzy data Design and implementation of user interfaces Students are required to design and build a decision support system Students will use various test tools to validate their systems 14:540:491, 492 Special Problems Studies in phases of industrial engineering of special interest 14:540:496, 497 Co-op Internship in Industrial Engineering (3,3) Prerequisite: Permission of department, Graded Pass/No credit Intended to provide a capstone experience to the student’s undergraduate studies by integrating prior course work into a working industrial engineering professional environment Credits earned for the educational benefits of the experience and granted only for a continuous, six-month, full-time assignment STUDENT SOCIETIES ALPHA PI MU Alpha Pi Mu is the Industrial Engineering Honor Society Both academic excellence and leadership in service activities is emphasized for membership Scholarship opportunities are also available Faculty Advisor: Dr Baykal-Gursoy 24 INSTITUTE OF INDUSTRIAL ENGINEERS (IIE) The student chapter of IIE at Rutgers University is committed to the promotion of the industrial engineering profession Professional activities include plant tours, industry speakers, alumni night, technical paper contests, and an engineering outreach program Social activities include fall and Spring picnics, Freshman night, and a holiday mixer By joining this society, each student receives a complimentary copy of Industrial Engineering with dues payment Faculty Advisor: Dr Luxhoj SOCIETY OF MANUFACTURING ENGINEERS (SME) The student chapter of SME at Rutgers University is committed to the promotion of manufacturing engineering There are plant tours, industry speakers, professional development conferences, certification and scholarship opportunities Social activities include joint picnics with IIE student chapter and meetings Upon joining this society, each student receives a free subscription to Manufacturing Engineering with dues payment Faculty Advisor: Dr Ozel TAU BETA PI Tau Beta Pi is the National Engineering Honor Society Academic excellence and service to the University community are stressed Membership is open to juniors and seniors who rank near the very top in their respective classes Faculty Advisor: Dr Luxhoj 10 ISE FACULTY Susan Albin is Professor in Industrial and Systems Engineering Her areas of research are quality engineering, process monitoring and control in high dimensional space, data mining and stochastic modeling Her work has been applied in areas including medical device manufacturing, semiconductor manufacturing, food processing, advanced display technology, and plastics recycling Prof Albin's research has been supported by NSF, FAA, DOD, the Council for Solid Waste Solutions, and industrial partners Prof Albin received her D.Eng.Sc in Operations Research from Columbia University and her MS and BS in Industrial Engineering from NYU Prof Albin was the 2010 President of INFORMS, the Institute for Operations Research and the Management Sciences, the largest professional society in the world for educators, investigators, scientists, students, managers, and consultants in the field of Operations Research She has served as INFORMS Secretary and as a Member of the Board of Directors and was the founding chair of the INFORMS Section on Quality, Statistics and Reliability advisory board Prof Albin served as the Editor-in-Chief of IIE Transactions, the flagship journal of the Industrial Engineering profession and also as the Focus Issue Editor for Quality and Reliability Engineering She served as Director of the Rutgers Graduate Program in Industrial and Systems Engineering for 14 years and, as a visiting professor at Peninsula Technikon in South Africa, helped establish their program in Quality Engineering Prof Albin has been a keynote speaker at conferences in China and Brazil She is the recipient of the Rutgers Engineering Governing Council Excellence in Teaching Award and the Exxon Education Foundation Award She is a Fellow of IIE, the Institute of Industrial Engineers and a recipient of the INFORMS George Kimball Medal Melike Baykal-Gursoy is an Associate Professor, in the department of Industrial and Systems Engineering at Rutgers University She received her BS in Electrical Engineering and hr MS in Electrical Engineering with a major in Control from Bogazici University, Istanbul, Turkey She received her doctorate in Systems Engineering from the University of Pennsylvania, Philadelphia Her specific fields of interest include stochastic modeling, queueing, Markov decision processes, stochastic games, and their applications to transportation and supply chain systems Dr BaykalGursoy’s research activities are in the areas of modeling, optimization and control of stochastic systems, such as transportation, telecommunication and supply chain networks She is developing new models that will realistically represent complex phenomena such as congestion; traffic flow interrupted by random incidents; or retailer’s behavior when selling substitutable products She is developing optimization algorithms for adjustment of inventories in supply chains, for incident response and resource allocation in incident and emergency management, for dynamic traffic flow 25 management under incidents, and for stochastic games Dr Baykal-Gursoy is currently focusing on the analysis and mitigation of congestion; on infrastructure security; on minimizing the effect of extreme weather events on human health; and on finding optimal production policies for competing retailers selling substitutable products when demand and yield are uncertain Dr Baykal-Gursoy teaches courses in optimization, stochastic processes, queueing theory, inventory control, supply chains and logistics, process modeling and control, and time series analysis Her research and teaching have been supported through grants from NSF, United Nations, DOD, Rutgers Transportation Coordinating Council/Federal Transit Administration, Rutgers University Center for Disaster Preparedness and Emergency Response, and Rutgers Academic Excellence Fund She is a member of INFORMS, and is listed in Who’s Who in America Dr Baykal-Gursoy has received the 2008-2009 Rutgers Engineering Governing Council Excellence in Teaching Award in I&SE Professor Thomas Boucher received his BS in Electrical Engineering from the University of Rhode Island, an MBA from Northwestern University, and an MS and Ph.D in Industrial Engineering from Columbia University His teaching and research interests include engineering economics, manufacturing automation, and production planning and control His research has been sponsored by NSF, the Defense Logistics Agency, the Robert Wood Johnson Foundation and industry He is the author of “Computer Automation in Manufacturing,” (Chapman-Hall, 1996) and co-author of “Analysis and Control of Production Systems,” (Prentice-Hall, 1994) and “Design of Industrial Information Systems,” (Elsevier, 2006) The latter book won the 2007 Book-of-the-Year Award from the Institute of Industrial Engineers He is a four-time winner of the Eugene L Grant Award for his journal articles in The Engineering Economist and he is the 2002 recipient of the Wellington Award for outstanding contributions in the field of engineering economics Dr Boucher has served as a department editor for The Engineering Economist and IIE Transactions He is currently Editor-inChief for The Engineering Economist and is an editorial board member of the International Journal of Industrial and Systems Engineering He is a senior member of IIE, SME, and IEEE and is listed in Who's Who in Science and Engineering and Who's Who in America Professor David W Coit received his BS in Mechanical Engineering from Cornell University, an MBA from Rensselaer Polytechnic Institute, and MS and PhD degrees in Industrial Engineering from the University of Pittsburgh His research interests are in the areas of reliability, optimization and energy systems modeling In 1999, he was awarded a CAREER grant from the NSF to develop reliability optimization strategies that consider reliability estimation uncertainty Previously, he worked for twelve years at IIT Research Institute (IITRI), Rome, NY, where he was a reliability engineer and project manager, and then later, the Manager of Engineering at IITRI's Assurance Technology Center He is a member of IIE, INFORMS E A Elsayed is Distinguished Professor and Interim Chairman of the Department of Industrial and Systems Engineering, Rutgers University He is also the Director of the NSF/ Industry/ University Co-operative Research Center for Quality and Reliability Engineering His research interests are in the areas of quality and reliability engineering and Production Planning and Control He is a coauthor of Quality Engineering in Production Systems, McGraw Hill Book Company, 1989 He is also the author of Reliability Engineering, Addison-Wesley, 1996 These two books received the 1990 and 1997 IIE Joint Publishers Book-of-the-Year Award respectively His recent book Reliability Engineering 2nd Edition, Wiley, 2012 received the 2013 Outstanding IIE Publication Dr Elsayed is also a co-author of Analysis and control of Production Systems, Prentice-Hall, nd Edition, 1994 His research has been funded by the DoD, FAA, NSF and industry Dr Elsayed has been a consultant for AT&T Bell Laboratories, Ingersoll-Rand, Johnson & Johnson, Personal Products, AT&T Communications, BellCore and other companies He served as the Editor-in-Chief of the IIE Transactions and the Editor of the IIE Transactions on Quality and Reliability Engineering He is Editor-in-Chief of Quality Technology and Quality Management Dr Elsayed is also the Editor of the International Journal of Reliability, Quality and Safety Engineering He serves on the editorial boards of eight journals in different capacities He served an external evaluator for many undergraduate and graduate programs Dr Elsayed is a frequent keynote speakers in National and International Conferences and is the recipient of many awards including Golomski Award for the outstanding paper, William Mong Distinguished Lecturers Award, David F Baker Research Award of the Institute of Industrial 26 Engineers for Research Contributions to the discipline of Industrial Engineering, , inducted member of the Russian Academy for Quality, IIE (Institute of Industrial Engineers) Fellow Award, ASME Fellow, Senior Fulbright Award and the Recipient of 2011 Thomas Alva Edison Award for US Patent 7,115,089 B2 Mohsen A Jafari is a professor of Industrial & Systems Engineering at Rutgers University He has directed or co-directed a total of over $15.5M funding from various government agencies and industry, in areas of automation, system optimization, data modeling, information systems, and risk analysis His research application areas include energy systems, manufacturing, transportation, and healthcare His work has led to major technological advances and product development including, multi-material deposition in solid free form fabrication; decision support system for traffic safety (Plan4Safety); integrated closed loop approach to planning, operation and investment of energy systems; cyber risk assessment of power networks; building energy asset management (BEAM); and Berth Planning He actively collaborates with universities and research institutes in the US and abroad He has advised thirteen Ph.D theses and nine post doctoral & research fellows Presently, he is advising additional ten Ph.D theses focusing on energy systems, zero-net communities, risk analysis and process improvement in healthcare He is a member of IEEE and was recipient of the IEEE excellence award in service and research He has been consultant to several fortune 500 companies, and national and international government agencies Dr Myong K (MK) Jeong is an Associate Professor and Undergraduate Director in the Department of Industrial and Systems Engineering and the Rutgers Center for Operations Research at Rutgers University He received his MS in Statistics from Georgia Institute of Technology, Atlanta, Georgia, in 2002, and Ph.D in Industrial and Systems Engineering from Georgia Institute of Technology, Atlanta, Georgia, in 2004 He was formerly an Assistant Professor in the Department of Industrial and Information Engineering, the University of Tennessee, Knoxville He worked as a senior researcher from 1993 to 1999 at the Electronics and Telecommunications Research Institute (ETRI) His research interests include data mining, health monitoring, quality and reliability engineering, stochastic processes, and sensor data analysis He received the Freund International Scholarship and the National Science Foundation (NSF) CAREER Award in 2002 and in 2007, respectively His research has been funded by the NSF, United States Department of Agriculture (USDA), National Transportation Research Center, Inc (NTRCI), and industry He has been a consultant for Samsung Electronics, ETRI, and other companies He is an associate editor of the IEEE Transactions on Automation Science and Engineering and International Journal of Quality, Statistics and Reliability, and Advisory Board Member of International Journal of Advanced Manufacturing Technology He is a senior member of IEEE Assistant Professor Kang Li received his Bachelor of Science degree in Mechanical Engineering (Precision Instruments and Mechanology) from Tsinghua University, China, in 1999, and completed a Master of Science in Industrial Engineering from Mississippi State University in 2004 He received his Ph.D in Mechanical and Industrial engineering from the University of Illinois at UrbanaChampaign in May 2009 His research interests are in the areas of Human Factors/Ergonomics, Occupational Biomechanics, Human-Centered Computing, Orthopaedic Biomechanics, Medical Imaging, Computer-integrated Surgery, Rehabilitation Engineering, Physical Therapy, Assistive Device, Prosthetics, Biomedical Manufacturing, and Healthcare System Engineering He has been actively working with surgeons, medical students, residents, and fellows in the healthcare field for more than years He is currently an adjunct assistant professor of the Department of Orthopaedics at Rutgers New Jersey Medical School and a graduate faculty member of Departments of Biomedical Engineering and Computer Science at Rutgers University His work has been funded by NSF, NIH, NASA-New Jersey Space Grant Consortium, Charles and Johanna Busch Memorial Fund, Rutgers Faculty Research Grant, University Research Council Grant, and New Jersey Health Foundation, He is a finalist for the New Investigator Recognition Award (NIRA) by the Orthopaedic Research Society (2011) and a co-recipient of the 2011 O’Donoghue Sports Injury Research Award He is a member of IIE, HFES, ISB, and ORS James T Luxhoj is Professor of Industrial and Systems Engineering Dr Luxhoj received his Ph.D in Industrial Engineering and Operations Research from Virginia Polytechnic Institute and State University in 1986 He was an ASEE/Office of Naval Research Distinguished Faculty Fellow at the U.S Navy Air Systems Command at Patuxent River, MD and Lakehurst, NJ during the summers of 27 2012 and 2013 He was also an ASEE/NASA Langley Faculty Fellow during the summer of 1987 Dr Luxhøj was a Visiting Professor at Aalborg University in Denmark from 1994-1995 and Fall 2001 His research interests include risk analysis, system safety and engineering economics The Federal Aviation Administration, NASA and the U.S Navy have supported Dr Luxhøj's research in aviation safety risk analysis He is a past Chairman and Director of the engineering economy divisions of the American Society for Engineering Education and the Institute of Industrial Engineers Dr Luxhoj was the recipient of a SAE Ralph R Teetor Award for Engineering Education Excellence (1989), a Sigma Chi Outstanding Professor for Rutgers University Award (1991), the Rutgers University Parents' Association Teacher of the Year Awards for the College of Engineering (1988,1997), and a six-time recipient of the Rutgers Engineering Governing Council’s Excellence in Teaching Awards An IIE Fellow, he currently serves as the IIE Faculty Advisor Dr Luxhoj is a former Department Editor for the IIE Transactions on Operations Engineering He is a member of IIE, Tau Beta Pi, Alpha Pi Mu, and Sigma Xi and is the co-author of Engineering Economy, 13th ed (Prentice-Hall, 2006) Tuğrul Özel is Associate Professor and Director of Manufacturing & Automation Research Laboratory in the Department of Industrial and Systems Engineering at Rutgers He received his Ph.D degree in Mechanical Engineering from Ohio State University in 1998 His research interest includes sustainable and advanced manufacturing, computational modeling and optimization of manufacturing processes, physics-based process simulations, mechatronics, automation and control, micro/nano manufacturing systems His research has been well funded by National Science Foundation, NASA/New Jersey Space Grant Consortium, Rutgers Research Council and automotive, aerospace, machine tool, and medical device industry He is the Editor-in-Chief of the International Journal of Mechatronics and Manufacturing Systems and has been serving as editorial board member for several international journals including International Journal of Machine Tools and Manufacture, and Production Engineering He is the co-author of four edited books “Intelligent Machining”, (ISTE-Wiley, 2009), “Micro-Manufacturing: Design and Manufacturing of MicroProducts”, (Wiley, 2010); “Modern Manufacturing Processes”, (Wiley forthcoming in 2014); and “Biomedical Devices: Design, Prototyping, and Manufacturing”, (Wiley, forthcoming in 2014) He has published over 50 articles in engineering journals and authored nearly 50 conference publications He has been organizer and member of scientific or program committee over 30 international conferences Dr Özel is active senior member of SME, ASME, North American Manufacturing Research Institute and associate member of CIRP- International Academy for Production Engineering He is listed in The Marquis Who's Who in the World, Who's Who in America, and Who's Who in Science and Engineering Hoang Pham is Professor in the Department of Industrial and Systems Engineering at Rutgers University Before joining Rutgers, he was a Senior Engineering Specialist with the Idaho National Engineering Laboratory and Boeing Company Dr Pham received his Ph.D from the State University of New York at Buffalo His research areas include system reliability modeling, maintenance, and software reliability Dr Pham is the Editor-in-Chief of the International Journal of Reliability, Quality and Safety Engineering and an associate editor of several journals He is also the Editor of Springer Series in Reliability Engineering, Editor of World Scientific Series on Industrial and Systems Engineering, and an editorial board member of several journals Dr Pham is the author/coauthor of books, edited books and has published 125 journal articles He is a Fellow of IEEE and IIE Dr Honggang Wang is an Assistant Professor in Industrial and Systems Engineering at Rutgers University He received his Bachelor of Science degree in Power Engineering from Shanghai Jiao Tong University, Shanghai, China, in 1996, Master of Science in Manufacturing Engineering from University of Missouri-Rolla, in 2004, and Ph.D in Industrial Engineering from Purdue University, Indiana, in 2009 He has worked as a Postdoctoral Scholar in Energy Resources Engineering at Stanford University for two years before he joined the department of Industrial and Systems Engineering at Rutgers in 2011 Dr Wang's research and teaching interests lie in system uncertainty modeling and analysis, stochastic optimization, operations research, and their applications in energy production, supply chains, and manufacturing systems Dr Wang has won IBM faculty award 2012 His research has been supported by Rutgers Research Council and IBM 11 FACULTY ADVISORS 28 CLASS ADVISOR E-MAIL ADDRESS 2019 2018 Dr K Li kl419@rci.rutgers.edu 2017 Dr H Pham hopham@rci.rutgers.edu 2016 Dr H Wang hw260@rci.rutgers.edu 12 DEPARTMENTAL FACILITIES Manufacturing Automation Laboratory: This laboratory is equipped with state-of-the-art equipment in CAD/CAM (Computer Aided Design and Computer Aided Manufacturing) and manufacturing automation systems It includes production type CNC milling machines, a CNC lathe equipped with force dynamometers and an acoustic emission sensor, a mini-CNC laser-micro machining station, an innovative sheet folding machine, an impact testing machine, an automated storage and retrieval system, a material handling carousel and a robot assembly work station Manufacturing Processes Laboratory: Basic machine tools such as turning, milling, drilling, grinding, welding and measuring machines are available to help the student become familiar with metal-processing operations The equipment is also used to perform laboratory experiments in heat treatment, tool life and chip formation assessments Microcomputer Laboratory: This lab is equipped with state-of-the-art PCs The lab has the latest simulation software such as ARENA, Matlab/Simulink, and optimization software LINDO, GINO,.etc It has software for Quality Control, Plant Layout, Production Control, Statistical Analysis and text processing It also has CAD/CAM/CAE software including AutoCAD, SolidWorks, ABAQUS and FeatureCAM The laboratory is connected to a university-wide network and the Internet Quality and Reliability Engineering Laboratory: This lab has been developed to allow the students to have hands on experience in actual methods for quality control and reliability engineering A variety of software for control charts, sampling plans and design of experiments is available The laboratory has a wide array of metrology equipment such as digital calipers and micrometers, roundness measurement equipment, surface profilometers and a coordinate measuring machine It also has various materials testing equipment, a Rockwell hardness tester temperature chambers, vibration test stands, and failure analysis equipment such as voltage stressing equipment, and measuring microscopes LABVIEW, Minitab and STATGRAPHICS software are available for students use 13 GENERAL INFORMATION 29 IMPORTANT OFFICES: School of Engineering Dean Thomas Farris, Dean, School of Engineering, Room B204, Engineering Building, 445-2214 Dean Fred Bernath, Associate Dean for Academic Affairs, Room B100, Engineering Building, 4452212 Dean Ilene Rosen, Assistant Dean for Special Programs, Room B110, Engineering Building, 4452687 Dean Jeffery Rankin, Assistant Dean for First Year Students, Room B100, Engineering Building, 445-2212 The Undergraduate Registrar - Room 200F, Administrative Service Building, Davidson Road, Busch Campus, 445-3557 Career Services - 56 College Avenue, College Avenue Campus, 932-7997 Financial Aid Room - 140 Records Hall, College Avenue Campus, 932-7057 Housing - On-Campus - Taylor Road, Busch Campus General Information, 445-2992; Off-Campus - 445-7766 International Student Center - 180 College Counselor to International Students - 932-7015 Avenue, College Avenue Campus, Student Accounting Records Hall, College Avenue Campus, Room 138, 932-7581 Undergraduate Course Periods: Undergraduate courses mostly meet during the day The time periods are as follows: Period Starts 8:40 AM 10:20 AM 12:00 AM 1:40 PM 3:20 PM 5:00 PM 6:40 PM Ends 10:00 11:40 1:20 3:00 4:40 6:20 8:00 Class Periods - Start and End Times 30 14 ADDITIONAL INFORMATION Departmental Office: The Department of Industrial and Systems Engineering office is located on the second floor of the CORE Building (Room 201) The office has copies of most forms you might need and the staff working there can answer many questions Office hours are 8:30-4:30 PM, Monday through Friday Closed for lunch between 12:00 - 1:00 PM Electronic Mail: All Rutgers students may obtain a computer account on the Eden machine in order to send and receive electronic mail Go to the Micrographic Center in the basement of the Hill Center, Room 17, and the counselor there will show you how to create your account The phone number is (848) 445-2296 and they are open 10-6 PM Monday through Saturday Employment Opportunities: Job announcements are posted on the ISE bulletin boards Students are encouraged to make use of the Career Development and Placement Office on Busch campus Bulletin Boards: In the hallways on the 1st and 2nd floors, there are bulletin boards, which list course changes, seminars, fellowships, and other miscellaneous notices The Telephone Number for the Department of Industrial and Systems Engineering is (848) 445-3654 and the fax number is (848) 445-5467 The area code and prefix is (848) 445 for all telephones - the extensions are given below NAME Albin, Susan Boucher, Thomas O Coit, David Elsayed, Elsayed A Gursoy, Melike B Jafari, Mohsen A Jeong, Myong K Li, Kang Luxhoj, James T Ozel, Tugrul Pham, Hoang Wang, Honggang EXT CORE 2238 EMAIL 2033 3859 5465 3627 4858 8787 3625 1099 5471 5469 206 salbin@rci.rutgers.edu tboucher@rci.rutgers.edu 214 coit@rci.rutgers.edu 226 elsayed@rci.rutgers.edu 218 gursoy@rci.rutgers.edu 201 jafari@rci.rutgers.edu 204 mjeong@rci.rutgers.edu 228 kl419@rci.rutgers.edu 210 jluxhoj@rci.rutgers.edu 208 ozel@rci.rutgers.edu 216 hopham@rci.rutgers.edu 212 hw260@rci.rutgers.edu Ielmini, Cindy Lippencott, Joseph Smith-Perrillo, Helen 3654 5480 3654 201 114 201 Manufacturing Automation Lab MicroComputer Lab Quality & RelibilityLab Manufacturing Processes Lab Conference Room 5480 3671 5480 5480 8555 116 106 114 112 203 3657 224 31 ielmini@rci.rutgers.edu lippen@rci.rutgers.edu helen@rci.rutgers.edu 15 SECURITY AND SAFETY Providing a secure and safe environment for all is a top priority Emergency Phone Number: The number is 932-7111 for university police and emergency CORE Building Access: The door is open weekdays from AM to PM Access to First Floor IE Corridor: The door is open weekdays from 9-12 and 1-4:30 PM For your safety, the corridor is under camera surveillance Access to Labs: The labs are open from 8:30 AM to 4:30 PM DON'T LET STRANGERS IN: Don’t open the door for people who have no entry keys Don't keep any door ajar by placing an object in front of it Laboratory Rules:  No food or beverages  Know the hazards of the material and equipment you are using  Use goggles in manufacturing laboratories Obtain permission of the lab director to use power Last Update 32 January 15, 2015 ... INFORMATION Departmental Office: The Department of Industrial and Systems Engineering office is located on the second floor of the CORE Building (Room 201) The office has copies of most forms... of IIE, the Institute of Industrial Engineers and a recipient of the INFORMS George Kimball Medal Melike Baykal-Gursoy is an Associate Professor, in the department of Industrial and Systems Engineering. .. Manager of Engineering at IITRI's Assurance Technology Center He is a member of IIE, INFORMS E A Elsayed is Distinguished Professor and Interim Chairman of the Department of Industrial and Systems Engineering,

Ngày đăng: 18/10/2022, 02:33

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan