Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844
1
Tuy
ển sinh khu vực Tp Đông H
à
và các huy
ện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể
h
ọc
tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí
.
SỞ GIÁO DỤC ĐÀO TẠO
NINH THUẬN
KỲ THI TUYỂNSINHVÀOLỚP10THPT
NĂM HỌC2012–2013
Khóa ngày: 24 – 6 –2012
Môn thi:TOÁN
Thời gian làm bài: 120 phút
Bài 1: (2,0 điểm)
a) Giải hệ phương trình:
2 3
3 4
x y
x y
b) Xác định các giá trị của m để hệ phương trình sau vô nghiệm:
( 2) ( 1) 3
3 4
m x m y
x y
( m là tham số)
Bài 2: (3,0 điểm)
Cho hai hàm số y = x
2
và y = x + 2.
a) Vẽ đồ thị hai hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b) Bằng phép tính hãy xác định tọa độ các giao điểm A, B của hai đồ thị trên (điểm A có hoành
độ âm).
c) Tính diện tích của tam giác OAB (O là gốc tọa độ)
Bài 3: (1,0 điểm)
Tính giá trị của biểu thức H =
( 10 2) 3 5
Bài 4: (3,0 điểm)
Cho đường tròn tâm O, đường kính AC = 2R. Từ một điểm E ở trên đoạn OA (E không trùng với A và
O). Kẻ dây BD vuông góc với AC. Kẻ đường kính DI của đường tròn (O).
a) Chứng minh rằng: AB = CI.
b) Chứng minh rằng: EA
2
+ EB
2
+ EC
2
+ ED
2
= 4R
2
c) Tính diện tích của đa giác ABICD theo R khi OE =
2
3
R
Bài 5: (1,0 điểm)
Cho tam giác ABC và các trung tuyến AM, BN, CP. Chứng minh rằng:
3
4
(AB + BC + CA) < AM + BN + CP < AB + BC + CA
ĐÁP ÁN:
Bài 1: (2,0 điểm)
a) Giải hệ phương trình:
2 3 2 3 5 5 1
3 4 2 6 8 3 4 1
x y x y y x
x y x y x y y
b) Hệ phương trình vô nghiệm khi:
2 1
3 6 1
2 1 3 5
1 3
1 3 4 4 9
1 3 4 2
3 4
m m
m m
m m
m
m m
Bài 2: (3,0 điểm)
a) Vẽ (d) và (P) trên cùng một hệ trục tọa độ.
x -2 -1 0 1 2
2
y = x
(P)
4 1 0 1 4
Đ
Ề CHÍNH THỨC
Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844
2
Tuy
ển sinh khu vực Tp Đông H
à
và các huy
ện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể
h
ọc
tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí
.
x - 2 0
y = x + 2(d) 0 2
b) Tọa độ giao điểm của (P) và (d) là nghiệm của hệ phương trình:
2 2 2
1 2
1 2
1; 2
2 2 0
1; 4
2 2 2
x x
y x x x x x
y y
y x y x y x
Tọa độ các giao điểm của (d) và (P): A (-1;1) và B (2;4)
c) S
OAB
=
1
2
.(1+4).3 -
1
2
.1.1 -
1
2
.2.4 = 3
Bài 3: (1,0 điểm)
H =
( 10 2) 3 5 5 1 6 2 5 5 1 5 1 5 1 4
Bài 4: (3,0 điểm)
a) Chứng minh rằng: AB = CI.
Ta có: BD
AC (gt)
DBI
= 90
0
( góc nội tiếp chắn nửa đường tròn)
BD
BI
Do đó: AC // BI
AB CI
AB = CI
b) Chứng minh rằng: EA
2
+ EB
2
+ EC
2
+ ED
2
= 4R
2
Vì BD
AC
AB AD
nên AB = AD
Ta có: EA
2
+ EB
2
+ EC
2
+ ED
2
= AB
2
+ CD
2
= AD
2
+
CD
2
= AC
2
= (2R)
2
= 4R
2
c) Tính diện tích của đa giác ABICD theo R khi OE =
2
3
R
S
ABICD
= S
ABD
+ S
ABIC
=
1
2
.DE.AC +
1
2
.EB.(BI + AC)
6
4
2
-2
-4
-6
1
-10
-5
5
10
2
O
A
B
1
-2
E
O
A
C
B
D
I
Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844
3
Tuy
ển sinh khu vực Tp Đông H
à
và các huy
ện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể
h
ọc
tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí
.
* OE =
2
3
R
AE =
3
R
và EC =
2
3
R
+ R =
5
3
R
* DE
2
= AE.EC =
3
R
.
5
3
R
=
2
5
9
R
DE =
5
3
R
. Do đó: EB =
5
3
R
* BI = AC – 2AE = 2R – 2.
3
R
=
4
3
R
Vậy: S
ABICD
=
1
2
.
5
3
R
.2R +
1
2
5
3
R
.(
4
3
R
+ 2R) =
5
6
R
.
16
3
R
=
2
8 5
9
R
(đvdt)
Bài 5: (1,0 điểm)
Cho tam giác ABC và các trung tuyến AM, BN, CP. Chứng minh rằng:
3
4
(AB + BC + CA) < AM + BN + CP < AB + BC + CA
Gọi G là trọng tâm của
ABC, ta có: GM =
1
3
AM; GN =
1
3
BN; GP =
1
3
CP
Vì AM, BN, CP các trung tuyến, nên: M, N, P lần lượt là trung điểm của BC, AC, AB
Do đó: MN, NP, MP là các đường trung bình của
ABC
Nên: MN =
1
2
AB; NP =
1
2
BC; MP =
1
2
AC
Áp dụng bất đẳng thức tam giác, ta có:
* AM < MN + AN hay AM <
1
2
AB +
1
2
AC (1)
Tương tự: BN <
1
2
AB +
1
2
BC (2)
CP <
1
2
BC +
1
2
AC (3)
Từ (1), (2), (3) suy ra: AM + BN + CP < AB + BC + CA (*)
* GN + GM > MN hay
1
3
BN +
1
3
AM >
1
2
AB (4)
Tương tự:
1
3
BN +
1
3
CP >
1
2
BC (5)
1
3
CP +
1
3
AM >
1
2
AC (6)
Từ (4), (5), (6) suy ra:
1
3
BN +
1
3
AM +
1
3
BN +
1
3
CP +
1
3
CP +
1
3
AM >
1
2
AB +
1
2
BC+
1
2
AC
2
3
(AM + BN + CP) >
1
2
(AB + AC + BC)
3
4
(AB + BC + CA) < AM + BN + CP (**)
Từ (*), (**) suy ra:
3
4
(AB + BC + CA) < AM + BN + CP < AB + BC + CA
G
M
P
N
A
B
C
Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844
4
Tuy
ển sinh khu vực Tp Đông H
à
và các huy
ện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể
h
ọc
tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí
.
“Bề dày thời gian tồn tại – Chất lượng giáo viên, lòng nhiệt tình - Số lượng lớn họcsinh theo học và đạt
thành tích cao- Số lượng tài liệu khổng lồ được học sinh, giáo viên, phụ huynh sử dụng CHÍNH LÀ
NIỀM TỰ HÀO, SỰ KHẲNG ĐỊNH CỦA TT GIA SƯ – TT LUYỆN THI TẦM CAO MỚI”
- Các em họcsinh trên địa bàn Đông Hà (Quảng Trị) và các huyện lân cận (Cam Lộ, Triệu Phong, Gio
Linh,…) hoàn toàn có thể đăng kí và học tại nhà, để được hướng dẫn cụ thể các em hãy gọi theo số máy
trung tâm. Ngoài ra các em có thể học tại trung tâm hoặc học tại nhà các giáo viên của trung tâm.
- Các em có thế đăng kí học các môn: Toán, Lý, Hóa, Sinh, Anh, Văn (các khối 9-12, Luyện thi đại học
cấp tốc, luyện thivàolớp10 cấp tốc, luyện thi tốt nghiệp 12 cấp tốc). Riêng các lớphọc từ khối 8 trở
xuống, phụ huynh hay họcsinh nào yêu cầu trung tâm sẽ cho giáo viên phù hợp về dạy kèm các em
- Đối với giáo viên muôn tham gia trung tâm hãy điện thoại để biết thêm chi tiết cụ thể
MỌI CHI TIẾT XIN LIÊN HỆ 01662 843 844 – 0533 564384 – 0536 513844 – 0944323844
. đề thi trắc nghiệm miến phí
.
SỞ GIÁO DỤC ĐÀO TẠO
NINH THUẬN
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2012 – 2013
Khóa ngày: 24 – 6 – 2012. có thế đăng kí học các môn: Toán, Lý, Hóa, Sinh, Anh, Văn (các khối 9-12, Luyện thi đại học
cấp tốc, luyện thi vào lớp 10 cấp tốc, luyện thi tốt nghiệp