1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: Toán học ĐỀ SỐ 07 ppt

2 200 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 118,62 KB

Nội dung

ĐỀ SỐ 07 ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: Toán học Thời gian: 180 phút I/ PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7đ) Câu I (2 điểm) Cho hàm số: y = - x 3 + 3x - 2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Tìm phương trình đường thẳng (d) đi qua điểm A(-2; 0) sao cho khoảng cách từ điểm cực đại của (1) đến (d) là lớn nhất. Câu II (2 điểm) 1. Giải phương trình: 8 1 3 tan. 6 tan 3cos.cos3sin.sin 33                  xx xxxx 2. Tìm m để phương trình sau có nghiệm: 03105)4(22 2  xmxmx Câu III (1 điểm) Tính:   2 6 2 sin )ln(sin.cos   dx x xx I Câu IV: (1 điểm)Cho lăng trụ tam giác ABC. A’B’C’ có các mặt bên là các hình vuông cạnh a. Gọi D, E, F là trung điểm các đoạn BC, A’C’, C’B’. Tính khoảng cách giữa DE và A’F. Câu V (1 điểm)Cho x, y, z là các số thực thỏa mãn: x + y + z = 0; x + 1 > 0; y + 1 > 0; z + 4 > 0. Tìm giá trị lớn nhất của biểu thức: 411       z z y y x x Q II/ PHẦN RIÊNG (Thí sinh chỉ được chọn làm một trong hai ban) Theo chương trình chuẩn Câu VI.a: (2 điểm) 1. Cho tam giác ABC cân, đáy BC có phương trình: x – 3y – 1 = 0; cạnh AB có phương trình: x – y – 5 = 0. Đường thẳng chứa cạnh AC đi qua M(-4; 1). Tìm tọa độ đỉnh C. 2. Trong không gian Oxyz cho tứ diện ABCD với A(1; -2; 3), B(1; 2; -1), C(1; 6; 3), D(5; 2; 3) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD. Câu VIIa: (1 đ)Trên các cạnh AB, BC, CA của tam giác ABC lần lượt cho 1, 2, và n điểm phân biệt khác A, B, C (n > 2). Tìm số n biết số tam giác có 3 đỉnh lấy từ n + 3 điểm đã cho là 166. Theo chương trình nâng cao Câu VI.b: (2 điểm) 1. Cho tam giác ABC có A( -1;2) , trọng tâm G(1;1) , trực tâm H(0;-3). Tìm toạ độ B,C và tâm đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian Oxyz cho tứ diện ABCD với A(1; -2; 3), B(1; 2; -1), C(1; 6; 3), D(5; 2; 3) Viết phương trình mặt phẳng (P) chứa trục Oz và đồng thời cắt mặt cầu (S) theo một đường tròn có bán kính bằng 4. (S) là mặt cầu ngoại tiếp tứ diện ABCD. Câu VIIb(1đ)Giải phương trình: log 2 (2 x - 1).log 4 (2 x+1 - 2) = 1. . ĐỀ SỐ 07 ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: Toán học Thời gian: 180 phút I/ PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7đ) Câu. THÍ SINH (7đ) Câu I (2 điểm) Cho hàm số: y = - x 3 + 3x - 2 (1) 1. Khảo sát sự biến thi n và vẽ đồ thị của hàm số (1). 2. Tìm phương trình đường thẳng

Ngày đăng: 10/03/2014, 11:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w