1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: Toán học ĐỀ SỐ 06 ppt

3 243 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 166,02 KB

Nội dung

ĐỀ SỐ 06 ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: Toán học Thời gian: 180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số     3 2 2 3 2 3 12 2 3       y x m x m m x có đồ thị là (C m ) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 0. 2. Chứng minh rằng (C m ) luôn có hai điểm cực trị với mọi m 2   . Tìm m để đoạn thẳng nối hai điểm cực trị của (C m ) nhận điểm I(2; - 29) làm trung điểm. Câu II (2 điểm) 1. Giải phương trình:   2 3 tan 1 15 3tan 1 4 2 sin cos 4            x+ x x x 2. Giải bất phương trình:     12 2 82 12 2 2 12 3 x x x x x x         Câu III (1 điểm) Tính tích phân:     1 0 3 2 2 x x x x x x e e e e I dx e e           Câu IV (1 điểm) Cho hình lăng trụ . ABCD A B C D     có đáy là hình vuông cạnh a . Điểm B cách đều ba điểm A ,B ,D    .Đường thẳng CD  tạo với mặt phẳng   ABCD góc 0 60 . Hãy tính thể tích khối lăng trụ đã cho và khoảng cách từ A đến mặt phẳng   CDD C   theo a . Câu V ( 1 điểm) Cho ba số thực , , x y z thuộc đoạn   0;1 . Tìm giá trị lớn nhất của biểu thức sau :     1 1 1 1 1 1 x y z P x y z y z z x x y              . II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần a, hoặc b) a. Theo chương trình Chuẩn Câu VIa (2 điểm) 1.Trong mặt phẳng với hệ trục toạ độ Oxy cho tam giác ABC với A(6; 3), B(4; -3),   9; 2 C   . Viết phương trình đường tròn có tâm I thuộc cạnh BC và tiếp xúc với hai cạnh AB, AC. 2. Trong không gian với hệ tọa độ Oxyz, cho điểm A(-1; 1; 2), B(3; 5; - 2) và mặt phẳng (P) có phương trình x – 2y + 2z – 4 = 0. Tìm điểm C thuộc mặt phẳng (P) sao cho tam giác ABC vuông cân tại A. Câu VIIa (1 điểm) Gọi 1 z và 2 z là 2 nghiệm phức của phương trình: 2 2 10 0 z z    . Tính giá trị của biểu thức: 2 2 1 2 1 2 2 . A z z z z    . b. Theo chương trình Nâng cao Câu VIb. (2,0 điểm) 1. Trong mặt phẳng với hệ trục toạ độ Oxy cho điểm A(0; 2) và đường thẳng d: x – 2y + 2 = 0. Tìm trên d hai điểm B, C sao cho tam giác ABC vuông tại B và AB = 2BC. 2. Trong không gian Oxyz cho mặt phẳng   : 5 0 x y z      và hai đường thẳng 1 1 1 4 3 3 : ; : 1 1 2 1 1 1 x y z x y z d d            .Tìm tọa độ các điểm A , B lần lượt trên 1 2 , d d sao cho đường thẳng AB song song với    và đoạn AB có độ dài bằng 6 . Câu VIIb. (1,0 điểm) Tìm mô đun của số phức z 2 biết:       2 4 7 2 5 2 3 1 i z i i i i        . . ĐỀ SỐ 06 ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: Toán học Thời gian: 180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu. điểm) Cho hàm số     3 2 2 3 2 3 12 2 3       y x m x m m x có đồ thị là (C m ) 1. Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số khi m =

Ngày đăng: 10/03/2014, 11:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w