1. Trang chủ
  2. » Luận Văn - Báo Cáo

Technical efficiency of vietnam rice farms a stochastic frontier production approach

87 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 87
Dung lượng 421,04 KB

Nội dung

UNIVERSITY OF ECONOMICS HO CHI MINH CITY INSTITUTE OF SOCIAL STUDIES THE HAGUE VIETNAM THE NETHERLANDS VIETNAM — NETHERLANDS PROGRAMME FOR M.A IN DEVELOPMENT ECONOMICS TECHNICAL EFFICIENCY OF VIETNAM RICE FARMS A STOCHASTIC FRONTIER PRODUCTION APPROACH By NGUYEN THANH DONG TRINH NGUYEN MASTER OF ARTS IN DEVELOPMENT ECONOMICS He Chi Minh, December 2011 UNIVERSITY OF ECONOMICS HO CHI MINH CITY VIETNAM INSTITUTE OF SOCIAL STUDIES THE HAGUE THE NETHERLANDS VIETNAM - NETHERLANDS PROGRAMME FOR M.A IN DEVELOPMENT ECONOMICS TECHNICAL EFFICIENCY OF VIETNAM RICE FARMS A STOCHASTIC FRONTIER PRODUCTION APPROACH A thesis submitted in partial fulfilment of the requirements for the degree of MASTER OF ARTS IN DEVELOPMENT ECONOMICS By NGUYEN THANH DONG TRINH NGUYEN Academic Supervisors DR NGUYEN TRONG HOAI DR PHAM LE THONG He Chi Minh, December 2011 CERTIFICATION “I certificate that the substance of the thesis has not already been submitted for any degree and is not currently submitted for any other degree I certify that to the best of my knowledge and help received in preparing the thesis and all sources used have been acknowledged in the thesis.” Signature Nguyen Thanh Dong Trinh Nguyen Date: ACKNOWLEDGMENTS Firstly, I would like to say thank you to Dr Nguyen Trong Hoai and Dr Pham Le Thong — my academic supervisors, for their devoted recommendation Without their precious advice and instruction could not complete this thesis By the way, I am very proud to attend this program Every teacher sets an example of hard working for me and other students to follow And I will never forget the support from all employees of the program Their enthusiastic and friendly attitude makes we feel comfortable to study and research Moreover, I received the enormous and continue encouragement from my closed friends and my family, especially my mother Their loves have given me more strength and belief to overcome difficulties during the studying I am very grateful for everything that all of you gave me How can I pay your debt of gratitude! Nguyen Thanh Dong Trinh Nguyen ABSTRACT The research investigates the technical efficiency level and determinants of rice production in Vietnam The analysis employs the Vietnam Household Living Standard Survey 2008 data set and stochastic production frontier approach The mean technical efficiency level is 80% Credit approach, land policy, and , experience are not significant elements of technical efficiency models while the irrigation, promotion program, education and gender of household head are significant ones Key words: technical efficiency, rice production, stochastic production frontier TABLE OF CONTENT • CERTIFICATION ACKNOWLEDGMENTS ii ABSTRACT iii TABLE OF CONTENT iv LIST OF FIGURES ×i LIST OF TABLES ×1 LIST OF ABBREVIATION vii CHAPTER I INTRODUCTION 1.1 Problem Statements 1.2 Research Objectives 1.3 Research Questions and Hypotheses .5 I Research Methodology .6 1.6 Thesis Structure CHAPTER II LITERATURE REVIEW ON TECHNICAL EFFICIENCY AND CONCEPTUAL FRAMEWORK 2.1 Key Concepts l Technical Efficiency .8 1.2 Production Frontier l Stochastic Production Frontier 10 2.2 Approaches to Measure Technical Efficiency 1 2.2.1 Data Envelopment Analysis 1 2.2.2 Stochastic Frontier Analysis 12 2.3 Stochastic Frontier Analysis Framework 12 2.3.1 Stochastic Frontier Model 12 2.3.2 Estimation method 14 2.4 Empirical Studies 15 2.5 Conceptual Framework 25 CHAPTER III RESEARCH METHODOLOGY FOR TECHNICAL EFFICIENCY AT THE FAMRS LEVEL 31 3.1 Data Source 31 3.2 Models Specification and Variables Definition 31 3.2 Stochastic Frontier Production Function 31 3.2.2 Efficiency Model: 38 CHAPTER IV RESULTS AND DISCUSSION 45 4.1 Results of Data Analysis .45 4.1 I Stochastic Frontier Production Function 45 4.1.2 Efficiency Model 49 • 4.2 Results Discussion 52 4.2.1 Discussion on Determinants of Stochastic Frontier Production Function , 52 4.2.2 Discussion on Determinants of Technical Efficiency 54 CHAPTER V CONCLUSION AND RECOMMENDATION 60 5.1 Conclusion .60 5.2 Policy recommendation 61 5.3 Research limitation and further studies 63 REFERENCE 64 APPENDIX 69 LIST OF FIGURES Figure 2.1: Technical Efficiency Figure 2.2: Production Frontier 10 Figure 2.3: The Stochastic Frontier Production Function 11 Figure 2.4: Conceptual Framework .26 Figure 4.1: Distribution of Technical Efficiency 56 LIST OF TABLES Table 2.1: Summary of Empirical Studies 22 Table I : Definition of Variables in Stochastic Frontier Production Function 32 Table 3.2: Definition of Variables in Technical Efficiency Model 38 Table 4.1: Statistical Summary of Variables in Frontier Model 45 Table 4.2: Maximum Likelihood Estimation of Stochastic Frontier Production Function 46 Table 4.3: Statistical Summary of Variables in Efficiency Model 49 Table 4.4: OLS — Robust Model of Technical Efficiency Determinants .51 Table 4.5: Statistical Summary of Technical Efficiency Level .55 Table 4.6: Distribution of Technical Efficiency 55 LIST OF ABBREVIATION COLS Corrected Ordinary Least Squares DEA Data Envelopment Analysis FAOSTAT Food and Agriculture Organization of the United Nations - Statistics Division GDP Gross Domestic Production GOV government of Vietnam GSO General Statistics Office of Vietnam IPCC International Panel of Climate Change MLE Maximum Likelihood Estimation MOLS Modified Ordinary Least Squares OLS Ordinary Least Squares SBV State Bank of Vietnam TE Technical Efficiency USDA US Department of Agriculture VHLSS Vietnam Household Living Standard Survey Unit Currency of Vietnam — Vietnam Dong CHAPTER I INTRODUCTION • 1.1 Problem Statements , Agriculture is an important sector in Vietnam economy Agriculture accounts for 18.2% of the country's gross domestic product in 2009 In 2008, agricultural export accounts for 12.3% of total export value of the country In 2009, the proportion of labor force in agriculture, forestry and fishery sector is 62.9% Rural population proportion was around 71% (FAOSTAT, 2010) and rural labor force made up 58.5 % of the total labor force (GSO, 2010) Rice is one of the most important crops in agricultural production with the highest cultivating area of food production Rice production is ranked at the fifth in the world Rice yield contributes 90% food production, and is related to 80% labor force of Vietnam In 2010, domestic rice production of whole country was about 40 million tons from 7,500 thousands hectares of cultivated area with average yield of over tons/ha (GSO, 2010) Vietnam annual per capita of rice consumption is very high, 169 kg/person/year (Laillou et aI, 2010), producing about 1,591 calorie intake - 60% in 2007 (Timmer, 2010) Rice has been a Vietnam’s principal agricultural export and a great source of foreign exchange Value of exported rice accounts about 20% of agricultural and forestry products Vietnam has exported rice to 120 countries and its share in global market is about 20%, ranked at the second in the world (USDA, 201 1) In 2010, Vietnam has exported 6.88 million tons of rice worth US$3.23 billion In comparison with the year 2009, the quantity was increased 15.4 percent and the value was increased 21.2 percent (GSO, 2010) REFERENCE Afriat S.N (1972), “EtTi’ciency estimation of production func’tioits ”, I nteniational Economic Review Vo 13, No.3, 568—598 in Porcelli F (2009), “Measurement of Technical Efficiency A Brief Survey on Parametric and Non-Parametric Techniques Aigner D.J., C.A K Lovell, and P Schmidt (I977), “F‹it’miilcition mid F.stiinnti‹›n c›f Sl‹›vhn.sti‹’ Ftnnlier Prodtictic›n Function tI‹›‹Iels ”, Journal of Econometrics 6, 21-37 A igner D.J and S.F Chu ( 1968), “6ui v,stimating the indilsty' ftrocluction func’tioti”, Anier‘ican Econom ic Review 58,826-839 in A igner D.J., Lovell, C.A K and Schm idt, P ( 1977), “Formulation and F.stimcitinn of Stochastic Frontier Procluction Function k locIel.s” Journal of Econoinetrics 6, 21 -37 A I-Hassan S (2008), “Technical Efficienc)’ of Rice Farmers in S*ot-therti C›hann ”, A ERC Research Paper 178, African Economic Research Consortium, Nairobi Amor T.B C Muller (2010), “×1py/ic‹i/ion c›f Slochci.stic Productiott Ft-oniier in the Estinicition c›J“ Technical Efficiency of lrrigateJ Agriculliit’c in Tunisia ”, Agricultural Journal Vol.5, No.2, 50-56 Battese G.E (1991), “Frontier Prc›cluction Functions ancl Techniccil Efficiencv Surve\’ oJ Empirical Applicalions in griculturcil Economics ”, ISSN 157-0188 ISBN 85834 936 I Battese G.E., and T.J Coelli ( 19951, “A 5lodel for Techniccil Inefficiency Effects in a Slochostic Frontiet- Production ]’or Panel Data ”, Empirical Economics 20, 325-332 in Khan A., F.A Huda, and A Alam (2010), “Farm Household Tecliniccil Efficienvj ' Z Sf iJv on Ric’e Prc›dticer.s in Selectecl 4recis of Jamcilpur District in Banglaclesh ”, European Journal of Social Sciences — Vol.14, No.2 Battese G.E and G.S Corra ( 1977) “£iiim‹iiioii of ci production frostier model.’ ii’ ith application In the pa.stot-cil -cine of Eastern ustralia ”, Australian Journal of Agricultural Economics I , I 69179 in Kompas T (2002), “Market Refot-in, Productivity and Effic iencv in i ietncimese Rice Production “ IDEC Working Paper, Crawford School of Economics and Government, Australian National University Brazdik F (2006), “.S’on-parcimetric aitalysis of technical efficienc j' Factors ‹affecting ejficienc j ' o[’ iI’est Java rice farms ” Working paper series (ISSN 1211-3298), Electronic Version , Chames A., W.W Cooper, E Rhodes (1978), “Measuring the efficiency of decision making units ”, European Journal of Operational Research, 2(4), 429-444 in F Brazdik (2005), “ 8’on- Parametric nalysis of Tec'hnicnl F.f[iciency Fcictors f[ecting F.f[icienc)³ of il"e,st Iava Rice Farms ” ISSN 2|)-3298 Coelli T.J (I fi93), “b/ii/fe samf›le pi’ operties of sto‹-licistic frontier estimator.s ancl a,s.socintecl test statistics ”, ISSN 157-0188, ISBN 86389 0947 Coell i T.J., and G.E Battese ( 1996), " /‹/citf(;iºic‹iIion of [actors w' liich infiuen‹’e the technical inef[iciencj' of Indian farmers ",Australian Journal of Agricultural Economics, Vol 40, No l 03128 in Khan A., F.A Huda and A Alam (2010) “Farin household Techniccil E[ficienc v.‘.4 Stuclj' 64 on Rice Producers in Selectecl Areas of Jamalfiur District in Bcinglcidesli ”, European Journal of Social Sciences — Vol 14, No Coelli T.J., P.D.S., and G.E Battese ( 1998) ’ lii lntroduc-tioit to Effic-ienc)' cin‹l /°i’o‹/iicfii’if)’ niici/J'xis ”, Kluwer Academic Publishers, Boston in Khan A., F.A Huda, and A Alam (20 10), , “Farm Household Technical Efficiency' .4 Study' on Rice Prodticer,s in Selecte‹l 4reas of Janicilpui’ District in Banglaclesh ’' European Journal of Social Sciences — Vol l4, No Msuya E.E, S Hisano T Nariu (20081, “Explnitiing Productivitv I ’cii-iation cimong Stticiller iYtain-e Fat’ mers in Tcina-cinia”, XI I World Congress of Rural Sociology of the International Rural sociology Association, Goyang Korea 2008 Ellis ( 1993), “Peasant Economics z°nd edition ”, Cambridge University Press in S Al-Hassan (2008), “Technical Efficiency o[ Rice Farmers in é'orthern Ghcina ”, A ERC Research Paper 78 African Economic Research Consortium, Nairobi April 2008 Chirwa E.C (2003), “Sources of Technical F.fficiency among Smallholder Mair-e Faritiers in Southet-n lvlalmvi”, Wadonda Consult Working Paper WC/0 l /03 FAOSTAT (2009), Statistical Yearbook 2009 FAOSTAT (2010), Statistical Yearbook 2010 Farrell M.J ( 1957), “ The kIeasurenient of Froducti›'e E[ticieticv ”, Journal of the Royal Statistical Society Vol 120 No 3, 253-290 iii Hien N T.M., T Kawaguchi and N Suzuki (2003 ), “.4 StiiJ)' on Technical E[[icieticy o[’ Rice Ft-oduction in Y1ekong Delta I"iettiniti by Stochastic Frontier dii‹i/ysis ” J Fac Agr Kyushu Univ., Vol 48, No 1-2, 325-357 Gabrielsen A ( 1975J “thu ex/ /iitii fiiig efficient pro‹/ticf/on func tions ”, Chr M ichelsen Institute, Department of Humanities and Social Science, Working Paper No.A-35 in Porcelli F (2009), “Measurement of Technical Efficiency A Brief Survey on Parametric and Non- Parametric Techniques ”, General Statistical Office (2009), "5’i‹iiistic‹i/ 1’earbook o[ i"ietnani ” Statistical Publishing House General Statistical Office (2009), ““The zºttt19 i "L’ I’optilniinn cmd Hc›u.sing Census - £“oitipletecl Re.sults ” General Statistical Office (20 101, “5i‹iti.s/iczi/ Yearbook of i remnant ”, Statistical Publ ishing House • Government Information Gateway (2009), “Resolution on S’ational P’ood Securit)’- •N"o 63 S’O- « Greene W.H (1980), “.il'‹ixiiutini likelihood estimation nJ‘econonteti ie Jrontiet- [unction.s ”, Journal of Econometrics 13, 27-56 Gujarati D.N (2003), ”Basic Econometrics ”.ISBN 0-07-112342-3 H ten N.T.M T Kawaguchi and N Suzuki (2003), “.4 Smdy' rim Techniccil E[f’iciencv n[’ Rice Procluctinti iii ?1ekotig Delh i ’ietncim h)² Stcichastic Frc›nlier ticil)•sis ”, Journal of the Faculty of Agriculture, Kyushu University Vol.48, No l -2, 325-357 65 Horrace W.C., P Schm idt (1996), “Confidence Statements [ct Efficieticv Estimate.s ]rom Stochastic Frontier Model.s ” Journal of Productivity Analysis, Vol.7, 257-?-82 in Brazdik, F (2006), " N onPat-ameiric i nal)²sis of I“echnical Effic iency'.‘ Faclnr.s zl ffeclitig F.[ficiency of II‘est 1civci Rice fzirmx ”, ISSN 12 I I -3298 , Huy H.T (2009), “Technical Ef[icienc)² of Rice Producing Householcls in klekcng Delta c›f l"ielnam ”, MPRA Paper No 306 10, posted 03 May 201 / I 2:48, online at http:/'inpra.ub.uiiimuenchen.de/306 l 0/ idiong l.C (2007), “Estimation of Farm I.evel Technical Efficienc)' in Small-scale Sn’anip Rice Ft-odiiction in C.ross River Stcile of Nigeria.‘ Z Stochcistic Ft-cutter Z fipt’‹›ach ”, World Journal of Agricultural Sciences Vol.3 No.5, 653-658 Raphael 1.0 (2008) ” Technical E]ficiencv of C.cisscr'u Farmers in Scmth d.a.stet-n N’iget’ia.‘ Stochastic Frontier 4pproacli ’’ Agricultural Journal Vol.3, No.2, l 52-156, 2008 ISSN: 1816-91 55 IPCC f2007), “The Fourth •l ssessntent Report ”.Intergovernmental Panel on Cl innate Change Johansson H (2005), “ Technic‹il, •i llocatix'e cmd Economic Ef[ icienc)' in St vedisli Dart-y Fat tns The Dcitci Envelopment z1 nalysis s'er.sus 1"he 5/oc/i‹isfic Frontier z1pproach ’’, Poster bac1:ground paper prepared for presentation at the XI International Congress of the European Association of Agricultural Economists (EA A E), Copenhagen, Denmark, August 24-27, 2005 Jondrow J C.A.K Lovell, I.S Materov, and P Schmidt ( 1982), “iii the Estimation of Technical Inefficienc j ' in ltte Stoclta,stic h i-ontier Production Function k Ioi1el ", Journal of Econometrics Vol 19, 2.33-238 Kal irajan K.P., and R.T Shand ( fi85 l, ”Tyfies of F.duration cirid 4gricultiti-at Froductivin ‘ Z Qucintitati 'e 4tialys is o[ Tciniil iS’cidu Rice Fanning ”, Journal of Developiiient Studies, Vol.21 , No.2, 232-43 KBR (2009), “TA49tt3- I IF lk’aier Sect‹»- Reviev' Project P‘incil Ref›ort ”, prepared by Kellogg Brown & Root Pty Ltd South Australia Khai H.V., M Yabe (2009), ”4 griciiltural Policy Impacts in $’oj'henn Productive Ef[iciencj' in the 3feloiig Delta c[ I “ref ?’ani ”, Annual Conference of The Agricultural Econom ics Society of Japan, Tsukuba University, Tsul:uba, Japan, March 28-30 - Khan A., F.A Huda, and A Alam (2010), “Farm Housvholcl Technicol Ffficicnc j ' A $tucIy en Rice Proclucers in SelevteJ reas o[ Jatnalput’ I9istrict iti Bcinglci lesh ”, European Journal of Social Sciences Vol 14, No.2 Kompas T (2002) “ if‹ii’Ic/ Refot-in, Procliictivit)² ancl Efficiencj' in I"ietnaniese Rice I³roi1uction ” IDEC Working Paper Crawford School of Economics and Government, Australian National University Kompas T., C.T Nhu, N.Q Ha, and N.T.M Hoa (2009) “Ptoductivitv .N’et Return.s ‹uid Efficieiic y.‘ Land aticl k larket Re[orm in I “ietnamese Rice Frocluction ”, International and 66 Development Economics Working Papers, I DEC 09-02, Crawford School of Economics and Government Koc M.G., and Parla1:ay (20 I I ), “Deierniiticints of I eclinic at Ef[icicnc)' iti Seconcl I "²’*³F •*’-³ Groiving Fcirms in Tiirke)³ A tia.sc Study'for the Ecist k1editerranean in Tiii’kev ”, Asian Journal of Animal and \'eterinary Advances Vol.6, No.5, 488-498 Kumbhaker S.C, and C.A K Lovell (2000) “Stochastic Frontier zl nal5³sis ” in Hien N.T.M., T Kawaguchi and N Suzuki ( ?-003) “d Sttidy on Technical I.“[ficieticv c]’ Rive Pr‹›duction in The klekong Delta — t"ietnani fry iioc/ia.slit' Fi’nntier A iicily.sis ” Journal of the Faculty of Agriculture Kyushu University Vol.48, No 1-2 325-357 Laillou A., S Muthayya, S Prigge, and L Scott (2010), “Country •1ssessinent fcit- Rice Fortification iti I ietnani ”, Rice Fortification Resource Group, July 8-15, 2010 Meeusen W., and J.V.D Broeck ( 1977), “Ef[icieticv Estimation [’rom Cobb-Douglcis Pt ocluction Function ivith Composed Frroi’” International Economic Review 8, 435-444 in Jondrow J., Lovell C.A.K., I.S Materov, and P Schmidt ( 1982) “t9ii the Estimation o[ I"echnical ltiefJiciencj ’ in The Stochastic Frontier Production Function Y1odel ”, Journal of Econometrics, Vol 19, 2332.38 Ohajianya D.O, P.C Obasi, and J.S Orebiyi (2006), “Technical Inefficiency and Its Determinants in Food Crops Production in lino State, Nigeria", Journal of Agriculture and Social Research (JASR) Vol 6, No.2, 2006 Onoja A.O., M.K Imbrahim and A.l Achike (2008), “Evoncimetric Ancil)²sis o[ C"redit and Farm Resource Technical EJ’Jlciencies ’ Detci’ntitianls in t“assava P at-me in Kogi S’tate .N'iget’ici.’ Diagnostic and Stcichaslic Frontier 4pproach ” Edited Conference Proceedings of the 10th Annual National Conference of Nigerian Association of Agricultural Economists (NAAE), October 7th to 10th, University of Abuja Porcelli F (2009), “Measurement of Technical Efficiency A Brief Survey on Parametric and NonParametric Techniques ”, available at this website address: http:/,'docs.iiooele.coin'viewer?a=v&q=cache: pSO9oB lzf X1"J:xvwvx'2.warwick.ac.uk/fac,'soc/ecoiio mics/staff/nhd students/norcelli rorcelli dea sfm ndf*norcel1i=2009*efficiencv &hl — vi&i:l=vn8:ni d=bl&srcid=A DG E ESii\ IRkA F vgKzBs4Xba3bl4vsl Ndsv H VGBk9627n \'cVI2u k1GLeaLciiqxS0A n3v8ob.xdPiiziuB RkEol3ZlG IxvY N0JJt:pitel t'Oq4taHh W()niAtG0LHBdQN LaplFsvDCFi -2 t n- N 4V4-d&sin=.A Hl Etboii A l —Ah81\I DufBJ DWbbOtuy d XcPQ, retrieved on May 24 , 20 1 Richmond J ( 1974) “Estiniciting the el iciency of pt cicluctinn ”, International Economic Review Survey " • Vo 13 No.2, I 5—52 in Porcelli F (2009), “Measurement of Technical Efficiency A Brief on Parametric and Non- Parametric Techniques” Rios A.R., and G.E Shively (20041, “Farm Sir-e cruel S"nn- Parametric Efficienty'.1 Measurement [or’ €“offee in k"ivtnarn ”, Selected Paper prepared for presentations at the American Agricultural Econom ics Association Annual Meeting, Province, Rhode Island, July 24-27, 2005 State Bank of Vietnam 12009), “.State Parik of i’ief nnnt - Annual Report 21109 ” Sharma K.R., and Leung P.S 11998) “Technical E[fiviency' of C.arp Pro‹luction in N’eficil .4 n •lppliccition of Stochastic P rotiiiet- Pt-oductitin Fimcti‹›n Approach ”, Aquaculture Economics and Management l29—140 in Khan A., F.A Huda, A Alam (20 10), “harm Householcl Technical 67 Efficiency .4 Stitcl)² on Ric’e Produced's in he lectecl Z reas o[ Jcitnalpur District in Panglaclexh ”, European Journal of Social Sciences — Vol 14, No.2 Sigh S 2007), “» si« dz «» r ‹h»i« l Efficiency o.[ ii’heat I.“ultivcitioii in Harycina ” Agricultural Economics Research Review Vol 20 January-June 2007, 127- 136 g Stevenson R.E ( 1980), “Life/i/too‹:/ functions [or generali -ed stochastic [rontier estititations ", Journal of Econometrics Vo.13, Rio 58—66 in Porcelli F (2009), “Measurement of Technical Efficiency A Brief Survey on Parametric and Non-Parametric Techniques” Tijani A.A (2006), “Znalv',sis of the technical efficiencv of rive fnrm.s in Ijesha Lcin‹l of Osun Stcite, Nigeria”, Agrel:on, Vol.45, No Timmer C.P (2010), ” The Changing Role nf Ri‹-e in 4.sia ’.s ! oo‹l ?e‹-ut-i5• ”, ADB Sustainable Development Working Paper, No 15, September 20 10 USDA (20 11), “Grimm Il’orld kIarket.s end Trade ", Foreign Agricultural Service Circular Series FG 10-1 I, October 201 I Winsten, C.B ( 1957), “/9isciis.vioii oti lfr h arrell ’s Paper ”, Journal of the Royal Statistical Society Series A ( 120), 282 — 284 in Porcelli F (2009), “Measurement of Technical Efficiency A Brief Survey on Parametric and Non- Parametric Techniques ” 68 APPENDIX APPENDIX A: MATRIX OF CORRELATION BETWEEN VARIABLES IN STOCHASTIC FRONTIER PRODUCTION FUNCTION lnFLA lnHLA lnAREA lnFS EED lnBSEED lnFERT 1×HERB 1»INSECT 1»CAPITAL lnHlRED MACHINE lnHIRED_CATTLE lnFUEL In In lnHIRED lnHIRED lnFLA lnHLA lnAREA lnFSEED lnBSEED lnFERT lnHERB INSECT CAPITAL MACHINE CATTLE lnFUEL 1.00 -0 15 0.07 0.05 0.06 -0.03 -0.09 -0.10 0.27 -0 19 -0.04 -0.01 1.00 0.46 0.20 0.43 0.31 0.43 0.38 -0.07 0.34 0.07 0.24 1.00 0.45 0.77 0.56 0.55 0.54 0.18 0.36 -0.02 0.42 1.00 0.32 12 0.24 15 12 0.07 -0.01 0.23 1.00 0.50 0.51 0.49 0.17 0.34 0.01 0.35 69 1.00 0.46 0.67 0.06 0.47 -0.01 0.30 1.00 0.54 0.00 0.42 0.07 0.30 1.00 -0.07 0.50 0.02 0.31 1.00 -0.28 -0 14 0.22 1.00 -0.07 12 1.00 -0.02 1.00 APPENDIX B: STOCHASTIC FRONTIER PRODUCTION FUNCTION Stoc Frontier normal/half-nominal model Log likelihood lnY lnFLA lnHLA lnAREA lnFSEED lnBSEED laFERT lnINSECT lnHERB ILL lnHIRED_MACHINE lnHIRED_CATTLE lnCAPITAL cons s u s Likelihood-ratio test ofs 363 Coef 0.003 0.005 0.837 -0.004 0.014 0.091 0.028 0.010 StcLErr 0.004 0.001 0.006 0.001 0.004 0.004 0.002 0.002 0009 0002 0.015 0.007 -0.002 0.001 0.001 0.001 Number ofobs Wald chi2(l 2) Prob > chi2 98,534 4,691 0.9 4.0 132.8 -2.7 3.1 25.0 11.9 5.0 5.6 10.9 4.4 -2.0 2.5 0.39 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.01 0.00 0.113 0.046 0.319 0.006 0.118 0.004 _u=0: clu1›ar2(01) = 4.4e+02Prob>=clul›ar2 = 0.000 70 APPENDIX C: WALD TESTS FOR THE SIGNIFICANCE INDIVIDUAL VARIABLES IN STOCHASTIC FRONTIER MODEL LA c • )- Prob > c [lnY]1nINSECT = chi2(I ) = 141.71 39 Prob > chi2 = 0.0000 [lnY]lnHLA = chi2(1) = 16.25 Prob > chi2 =0.0001 [kiY]lnHERB = chi2(I ) = 25.23 Prob » chi2 =0.0000 [ktY]1nAREA = chi2(I) =I 7626.81 Prob > chi2 =0.0000 [lnY]lnFUEL = chi2(1) = I I Prob > chi2 =0.0000 [lnY)lnFSEED - chi2(I ) =7.34 Prob > chi2 =0.0067 Ilp: Q = [1nY]lnBSEED = chi2(I) - 9.58 [lnY]lnFERT = chi2(1) = 626.28 Prob > chi2 —0.0000 [lnYJlnCAPITAL = chi2(1) = 3.83 Prob > chi2 =0.0504 [lnY]lnHIRED_MAC HINE = chi2(I ) = I 18.76 Prob > chi2 =0.0000 • fi i i ' [lnY]1nHIRED_CATTLE = chi2( I ) = 19.57 Prob » chi2 = 0.0000 OF 71 APPENDIX D: WALD TEST FOR CONSTANT RETURN TO SCALE He: sum of all coefficients = chi2(1) 6.31 Prob > chi2 0.0120 72 APPENDIX E: MATRIX OF CORRELATION BETWEEN VARIABLES IN EFF lC I ENC Y MODEL CER timeLUR RATIO AVE NA 1.00 time LUR CER_RATIO 0.53 1.00 AVE -0.01 0.01 1.00 NA_IR 0.06 0.09 -0 11 MC_IR 0.00 0.04 0.06 MN_IR 0.03 0.02 -0.08 PPRO -0.08 -0.08 -0.02 CRE 0.00 0.01 13 SCH 0.04 0.05 -0 12 SEX -0.01 -0.04 0.05 AGE 14 13 0.02 EXPERIENCE 0.07 0.06 -0.02 RRD -0.07 -0.06 -0.20 0.06 14 0.37 MRD IR MC IR MN IR PPRO 1.00 -0.68 -0 16 -0.01 -0.04 0.05 -0.01 -0.02 0.02 -0.06 -0 15 1.00 -0 13 -0 12 0.00 0.07 -0.04 11 -0.05 0.22 0.28 73 1.00 -0.02 -0.01 0.09 -0.02 -0.01 -0.03 15 -0 10 1.00 0.05 -0 16 -0.02 -0.07 0.07 -0 11 -0.09 EXPE RIEN CRE SCH SEX AGE CE 1.00 -0.06 0.05 -0.07 0.02 -0 16 14 1.00 18 -0 18 -0 15 0.26 -0 19 1.00 -0.21 1.00 -0 12 0.29 -0.04 0.05 -0.02 11 1.00 -0.08 1.00 -0.06 -0.25 1.00 APPENDIX F: VARIANCE INFLATION FACTOR AND TOLERANCE OF VARIABLES IN EFFICIENCY MODEL Variable MC_IR NA_IR MRD €ER_AA9UO MN_IR sCH AGE AYE EXPERIENCE SEX PPRO CRE Mean VIF VIF 2.80 2.42 1.50 1.47 1.43 1.37 1.28 1.25 1.24 1.21 36 67 68 73 0.78 87 93 1.15 1.09 1.08 1.06 1.45 74 APPENDIX G: OLS MODEL OF TECHNICAL EF FICIENCY DETERMINANTS Linear regression Number ofobs F(14, 4674) Prob > F R-squared Adj R-squared Root MSE TE100 Coef Std Err timeLUR CER_RATIO AVE NA_IR MC_IR MN_IR CRE PPRO SEX AGE SCH EXPERIENCE RRD MRD cons 0.07 0.57 0.00 7.04 8.30 5.49 0.49 -1.83 0.94 0.00 0.25 0.00 3.20 -0.65 69.14 0.03 0.49 0.00 0.57 0.60 1.06 0.42 0.69 0.45 0.01 0.05 0.01 0.42 0.56 0.98 APPENDIX H: TEST FOR t 2.24 1.17 -1.24 12.38 13.73 5.20 1.15 -2.66 2.11 0.19 4.79 -0.12 7.65 -1.16 70.64 P>]t 0.03 0.24 0.21 0.00 0.00 0.00 0.25 0.01 0.04 0.85 0.00 0.91 0.00 0.24 0.00 HETEROSKEDASTIC ITY OF EFFICIENCY MODEL q 4,689.00 41.80 0.00 0.11 11 10.93 Breusch-Pagan / Cook- Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of TEl 00 chi2(I ) = 668 15 Prob > chi2 = 0.0000 75 APPENDIX I: OLS — ROBUST MODEL OF TECHNICAL DETERM INATS Linear regression Number ofobs F( 14, 4674) Prob > F R-squared Root MSE 4689 35.26 0.00 I I 0.93 TE100 Coe f Std Err I P>|t tiineOLD CER_RATIO 0.07 0.57 0.00 7.04 8.30 5.49 0.49 -1.83 0.94 0.00 0.2:5 0.00 3.20 -0.65 69.14 0.03 0.52 0.00 0.69 0.69 1.02 0.46 0.86 0.45 0.01 0.06 0.01 0.35 0.65 1.19 16 1.09 -0.66 10.20 11 96 5.41 1.05 -2.11 2.08 0.18 4.39 -0.12 9.17 -1.00 58.31 0.03 0.28 0.5 I 0.00 0.00 0.00 0.29 0.04 0.04 0.85 0.00 0.91 0.00 0.32 0.00 AYE NA_ER MC_IR MN_IR CRE PPRO SEX AGE sCH EXPERIENCE RRD “cR‘ 76 EFFIC I ENCY APPENDIX J: WALD-TEST FOR THE SIGNIFICANCE OF INDIVIDUAL VARIABLES IN TECHNICAL EFFICIENCY MODEL Ho• i '0 [TE100]tirrieOLD = F(1, 4674) = 4.66 Prob > F — 0.031 o² ' [TEI00]PPRO = F( I , 4674) = 4.47 Prob > F = 0.0346 [TEI00]CER RATIO = F(I , 4674) - 1.19 Prob > F = 0.2753 W: 63 - [TE100]AVE = F(1, 4674) 0.44 Prob > F 0.5083 [TE100]SEX = F(I , 4674) = 4.31 Prob > F 0.0379 H :6 = [TEI 00]AGE = F(I , 4674) =0.03 Prob > F — 0.8538 [TEI 0OJNA_IR - F(1, 4674) = 104.01 Prob > F = 0.000 [TEIOO]SCH = F(1, 4674) = 19.26 Prob > F = 0.000 :6 = [TEI00]MC_IR = F(1, 4674) = 143 Prob > F = 0.000 rci ooJ m- o F(1, 4674) = 29.24 Prob > F = 0.000 lip: ; = [TEI00]EXPERIENCE — F(I, 4674) = 0.01 Prob > F = 0.9058 RRD = F(1, 4674) = 84.05 Prob > F — 0.000 ’ [TEI00]CRE = F(I , 4674) = 1 I Prob > F = 0.2919 F(1, 4674) = 1.01 Prob > k’—— 0.3159 77 ... variable has the value of Lack of capital would cause difficulties in farm management and reduce technical efficiency Accessibility of credit funds may encourage technical efficiency of rice production. .. applies stochastic frontier approach to analysis technical efficiency of rice farming 2.3 Stochastic Frontier Analysis Framework 2.3.1 Stochastic Frontier Model Aigner et al (l 977), Meeusen and... determinants of rice production in Vietnam The analysis employs the Vietnam Household Living Standard Survey 2008 data set and stochastic production frontier approach The mean technical efficiency

Ngày đăng: 17/09/2022, 11:13

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w