Tài liệu tham khảo |
Loại |
Chi tiết |
[1] M.C.V. Amarra, F.R. Nemenzo, On (1 − u)-cyclic codes over F pk + uF pk , Appl. Math. Lett. 21 (2008) 1129–1133 |
Sách, tạp chí |
Tiêu đề: |
u)"-cyclic codes over "F pk + uF pk |
|
[6] H.Q. Dinh, Negacyclic codes of length 2 s over Galois rings, IEEE Trans. Inform. Theory 51 (2005) 4252–4262 |
Sách, tạp chí |
|
[9] H.Q. Dinh, Constacyclic codes of length 2 s over Galois extension rings of F2 + u F2 , IEEE Trans. Inform. Theory 55 (2009)1730–1740 |
Sách, tạp chí |
Tiêu đề: |
s "over Galois extension rings of F2 + "u |
|
[11] H.Q. Dinh, Constacyclic codes of length ps over F pm + uF pm , J. Algebra 324 (2010) 940–950 |
Sách, tạp chí |
Tiêu đề: |
ps "over F"pm + u"F"pm |
|
[17] X. Kai, S. Zhu, P. Li, (1 + λu)-constacyclic codes over F p [u]/ um , J. Franklin Inst. 347 (2010) 751–762 |
Sách, tạp chí |
Tiêu đề: |
λu)"-constacyclic codes over "F p [u]/ um |
|
[19] P. Kanwar, S.R. López-Permouth, Cyclic codes over the integers modulo pm , Finite Fields Appl. 3 (1997) 334–352 |
Sách, tạp chí |
|
[24] V. Pless and W. C. Huffman (1998), "Handbook of coding theory", Elsevier, Amsterdam |
Sách, tạp chí |
Tiêu đề: |
Handbook of coding theory |
Tác giả: |
V. Pless and W. C. Huffman |
Năm: |
1998 |
|
[25] J.F. Qian, L.N. Zhang, S.-X. Zhu, (1 + u)-constacyclic and cyclic codes over F 2 + uF 2 , Appl. Math. Lett. 19 (2006) 820–823 |
Sách, tạp chí |
Tiêu đề: |
u)"-constacyclic and cyclic codes over "F "2 + "uF |
|
[2] S. D. Berman (1967), Semisimple cyclic and Abelian codes. II, Kibernetika (Kiev) 3, 21-30 (Russian). English translation: Cybernetics 3, 17-23 |
Khác |
|
[3] T. Blackford, Negacyclic codes over Z4 of even length, IEEE Trans. Inform. Theory 49 (2003) 1417–1424 |
Khác |
|
[4] T. Blackford, Cyclic codes over Z4 of oddly even length, in: International Workshop on Coding and Cryptography, WCC 2001, Discrete Appl. Math. 128 (2003) 27–46 |
Khác |
|
[5] A.R. Calderbank, N.J.A. Sloane, Modular and p-adic codes, Des. Codes Cryptogr. 6 (1995) 21–35 |
Khác |
|
[7] H. Q. Dinh (2007), Complete distances of all negacyclic codes of length over , IEEE Trans. Inform. Theory 53, 147-161 |
Khác |
|
[8] H.Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Fields Appl. 14 (2008) 22–40 |
Khác |
|
[10] H. Q. Dinh (2009), On linear codes over finite rings and modules, East West J. of Mathematics, Vol.11, No 1, 1 - 149 |
Khác |
|
[12] H.Q. Dinh, S.R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004) 1728–1744 |
Khác |
|
[13] H.Q. Dinh, Repeate-root constacyclic codes of length , Finite Fields and Their Applications 18 (2012) 133-143 |
Khác |
|
[14] G. Falkner, B. Kowol, W. Heise, E. Zehendner (1979), On the existence of cyclic optimal codes, Atti Sem. Mat. Fis. Univ. Modena 28, 326-341 |
Khác |
|
[15] W.C. Huffman, V. Pless, Fundamentals of Error - Correcting Codes, Cambridge University Press, Cambridge, 2003 |
Khác |
|
[16] S. Jiman, P. Udomkavanich, The Gray image of codes over finite chain rings, Int. J. Contemp. Math. Sci. 5 (2010) 449–458 |
Khác |
|