1. Trang chủ
  2. » Khoa Học Tự Nhiên

Physical layer security and quantum key distribution

477 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • Preface

  • Contents

  • 1 Introduction

    • 1.1 Physical-Layer Security Basics

    • 1.2 Quantum-Key Distribution (QKD) Basics

    • 1.3 Organization of the Book

    • References

  • 2 Information Theory and Coding Fundamentals

    • 2.1 Entropy, Conditional Entropy, Relative Entropy, Mutual Information

    • 2.2 Mutual Information, Channel Capacity, Information Capacity Theorem

      • 2.2.1 Mutual Information and Information Capacity

      • 2.2.2 Capacity of Continuous Channels

    • 2.3 Capacity of Flat Fading and Frequency-Selective Wireless Fading Channels

      • 2.3.1 Flat Fading Channel Capacity

      • 2.3.2 Frequency-Selective Fading Channel Capacity

    • 2.4 Capacity of Channels with Memory

      • 2.4.1 Markov Sources and Their Entropy

      • 2.4.2 McMillan Sources and Their Entropy

      • 2.4.3 McMillan–Khinchin Model for Channel Capacity Evaluation

    • 2.5 Linear Block Codes Fundamentals

      • 2.5.1 Generator and Parity-Check Matrices

      • 2.5.2 Minimum Distance and Error Correction Capability of Linear Block Code

      • 2.5.3 Coding Gain

      • 2.5.4 Coding Bounds

    • 2.6 Binary LDPC Coding Fundamentals

      • 2.6.1 Bipartite (Tanner) Graph

      • 2.6.2 LDPC Codes Design

      • 2.6.3 Decoding of Binary LDPC Codes

      • 2.6.4 Min-Sum-Plus-Correction-Term Algorithm

    • 2.7 Concluding Remarks

    • References

  • 3 Conventional Cryptography Fundamentals

    • 3.1 Basic Terminology and Cryptographic Schemes

      • 3.1.1 Basics Cryptographic Schemes

      • 3.1.2 Basic Ciphers

      • 3.1.3 Secrecy, Authentication, Integrity, and Non-repudiation

      • 3.1.4 Cryptoanalysis

    • 3.2 Information-Theoretic Approach to Cryptography

      • 3.2.1 Perfect Security Versus Computational Security

      • 3.2.2 One-Way Functions and One-Way Hash Functions

    • 3.3 Some Practical Cryptography Systems

      • 3.3.1 Digital Encryption Standard (DES)

      • 3.3.2 RSA Algorithm

      • 3.3.3 Diffie–Hellman Public-Key Distribution

    • 3.4 Concluding Remarks

    • References

  • 4 Physical-Layer Security

    • 4.1 Security Issues

    • 4.2 Information-Theoretic Versus Computational Security

      • 4.2.1 Information-Theoretic (Perfect) Security

      • 4.2.2 Computational Security

      • 4.2.3 Information-Theoretic Secrecy Metrics

    • 4.3 Wyner’s Wiretap Channel

    • 4.4 Broadcast Channel with Confidential Messages and Wireless Channel Secrecy Capacity

      • 4.4.1 Broadcast Channel with Confidential Messages

      • 4.4.2 Wireless Channel Secrecy Capacity

    • 4.5 Secret-Key Generation (Agreement) Protocols

      • 4.5.1 Source-Type Secret-Key Generation

      • 4.5.2 Channel-Type Secret-Key Generation

    • 4.6 Coding for Physical-Layer Security Systems

      • 4.6.1 Coding for Weak Secrecy Systems

      • 4.6.2 Coding for Strong Secrecy Systems

      • 4.6.3 Information Reconciliation

    • 4.7 Privacy Amplification

    • 4.8 Wireless Channels’ Physical-Layer Security

      • 4.8.1 Wireless MIMO Channels Fundamentals

      • 4.8.2 PLS for Wireless MIMO Channels

      • 4.8.3 Secret-Key Generation in Wireless Networks

    • 4.9 Optical Channels’ Physical-Layer Security

      • 4.9.1 SDM-Fiber-Based Physical-Layer Security

      • 4.9.2 FSO Physical-Layer Security

    • 4.10 Concluding Remarks

    • References

  • 5 Quantum Information Theory and Quantum Information Processing Fundamentals

    • 5.1 State Vectors, Operators, Projection Operators, and Density Operators

      • 5.1.1 Sate Vectors and Operators

      • 5.1.2 Projection Operators

      • 5.1.3 Photon, Spin ½ Systems, and Hadamard Gate

      • 5.1.4 Density Operators

    • 5.2 Measurements, Uncertainty Relations, and Dynamics of a Quantum System

      • 5.2.1 Measurements

      • 5.2.2 Uncertainty Principle

      • 5.2.3 Time Evolution—Schrödinger Equation

    • 5.3 Quantum Information Processing (QIP) Fundamentals

      • 5.3.1 Superposition Principle, Quantum Parallelism, Quantum Gates, and QIP Basics

      • 5.3.2 No-Cloning Theorem and Distinguishing the Quantum States

      • 5.3.3 Quantum Entanglement

      • 5.3.4 Operator-Sum Representation

      • 5.3.5 Decoherence Effects, Depolarization, and Amplitude Damping Channel Models

    • 5.4 Classical (Shannon) and Quantum (von Neumann) Entropies

    • 5.5 Holevo Information, Accessible Information, and Holevo Bound

    • 5.6 Schumacher’s Noiseless Quantum Coding Theorem and Holevo–Schumacher–Westmoreland (HSW) Theorem

      • 5.6.1 Schumacher’s Noiseless Quantum Source Coding Theorem and Quantum Compression

      • 5.6.2 Holevo–Schumacher–Westmoreland (HSW) Theorem and Channel Coding

    • 5.7 Quantum Error Correction Concepts

    • 5.8 Concluding Remarks

    • References

  • 6 Quantum-Key Distribution (QKD) Fundamentals

    • 6.1 From Conventional Cryptography to QKD

    • 6.2 QKD Basics

      • 6.2.1 QKD System Types

      • 6.2.2 Information Reconciliation and Privacy Amplification Steps

      • 6.2.3 No-Cloning Theorem and Distinguishing the Quantum States

    • 6.3 Discrete Variable (DV)-QKD Protocols

      • 6.3.1 BB84 Protocol

      • 6.3.2 B92 Protocol

      • 6.3.3 Ekert (E91) and EPR Protocols

      • 6.3.4 Time-Phase Encoding

    • 6.4 Security Issues of QKD Systems

      • 6.4.1 The Eavesdropping Strategies and Corresponding Secret Fractions

      • 6.4.2 Security Definitions

      • 6.4.3 Secure-Key Rates for 2-D DV-QKD Systems

    • 6.5 Quantum Optics Fundamentals

      • 6.5.1 Quadrature Operators, Creation and Annihilation Operators, Uncertainty Principle

      • 6.5.2 Coherent States, Gaussian State, and Squeezed States

      • 6.5.3 EPR State and Manipulation of Photon States

    • 6.6 Continuous Variable (CV)-QKD Protocols

      • 6.6.1 Squeezed State-Based Protocol

      • 6.6.2 Coherent State-Based Protocols

      • 6.6.3 GG02 Protocol Implementation

      • 6.6.4 Collective Attacks

    • 6.7 Measurement-Device-Independent (MDI) Protocols

    • 6.8 Concluding Remarks

    • References

  • 7 Discrete Variable (DV) QKD

    • 7.1 BB84 and Decoy-State Protocols

      • 7.1.1 The BB84 Protocol Revisited

      • 7.1.2 The Decoy-State Protocols

    • 7.2 Security of QKD Systems with Finite Resources

      • 7.2.1 Finite-Length Secret-Key Fraction Rate

      • 7.2.2 Tight Finite-Key Analysis

    • 7.3 Finite-Key Analysis for BB84 and Decoy-State QKD Protocols Over Atmospheric Turbulence Channels

      • 7.3.1 BB84 Protocol Over Time-Varying FSO Channels

      • 7.3.2 Decoy-State Protocol Over Time-Varying FSO Channels

    • 7.4 High-Dimensional DV-QKD Protocols

      • 7.4.1 Mutually Unbiased Bases (MUBs)

      • 7.4.2 Generalized Bell States and High-Dimensional QKD

      • 7.4.3 Security Analysis of Entanglement-Based High-Dimensional (HD) QKD Systems

    • 7.5 Time-Phase and Time-Energy Encoding-Based High-Dimensional (HD) QKD

      • 7.5.1 Time-Phase Encoding-Based HD QKD

      • 7.5.2 Time-Energy Encoding-Based HD QKD

    • 7.6 FBG/WBG-Based High-Dimensional QKD

    • 7.7 Concluding Remarks

    • References

  • 8 Continuous Variable (CV)-QKD

    • 8.1 Gaussian Quantum Information Theory Fundamentals

      • 8.1.1 The Field Coherent States and P-Representation

      • 8.1.2 The Noise Representation

      • 8.1.3 Quadrature Operators and Phase-Space Representation, Gaussian States, Squeezed States

      • 8.1.4 Gaussian Transformations and Gaussian Channels

      • 8.1.5 Thermal Decomposition of Gaussian States and von Neumann Entropy

      • 8.1.6 Nonlinear Quantum Optics Fundamentals and Generation of Quantum States

      • 8.1.7 Correlation Matrices of Two-Mode Gaussian States

      • 8.1.8 Gaussian State Measurement and Detection

    • 8.2 CV-QKD Protocols with Gaussian Modulation

      • 8.2.1 Coherent State-Based CV-QKD Protocols

      • 8.2.2 Secret-Key Rate of CV-QKD with Gaussian Modulation Under Collective Attacks

      • 8.2.3 Illustrative Reverse Reconciliation SKR Results for CV-QKD with Gaussian Modulation (GM)

    • 8.3 CV-QKD with Discrete Modulation

      • 8.3.1 Four-State and Eight-State CV-QKD Protocols

      • 8.3.2 Secret-Key Rates for Four-State and Eight-State Protocols

      • 8.3.3 Illustrative Secret-Key Rates Results for Four-State and Eight-State Protocols

    • 8.4 RF-Subcarrier-Assisted CV-QKD Schemes

      • 8.4.1 Description of Generic RF-Assisted CV-QKD Scheme

      • 8.4.2 4-D Multiplexed Eight-State CV-QKD Scheme

    • 8.5 Concluding Remarks

    • References

  • 9 Recent Quantum-Key Distribution Schemes

    • 9.1 Hong–Ou–Mandel Effect and Photonic Bell State Measurements

      • 9.1.1 Hong–Ou–Mandel (HOM) Effect

      • 9.1.2 Photonic Bell State Measurements (BSMs)

    • 9.2 BB84 and Decoy-State Protocols Revisited

      • 9.2.1 The BB84 Protocol Revisited

      • 9.2.2 The Decoy-State Protocols Revisited

    • 9.3 Measurement-Device-Independent (MDI)-QKD Protocols

      • 9.3.1 Description of MDI-QKD Protocol

      • 9.3.2 The Secrecy Fraction of MDI-QKD Protocols

      • 9.3.3 Time-Phase-Encoding-Based MDI-QKD Protocol

    • 9.4 Twin-Field (TF) QKD Protocols

    • 9.5 Floodlight (FL)-QKD

    • 9.6 CV-QKD Based on Kramers–Kronig (KK) Receiver

      • 9.6.1 KK Coherent Optical Receiver

      • 9.6.2 KK-Receiver-Based CV-QKD

    • 9.7 Concluding Remarks

    • References

  • 10 Covert/Stealth/Low Probability of Detection Communications and QKD

    • 10.1 Introduction

    • 10.2 Steganography Basics

    • 10.3 Spread Spectrum Systems Fundamentals

    • 10.4 Covert Communication Fundamentals

      • 10.4.1 Hypothesis Testing and Covert Communication

      • 10.4.2 Covert Communication Over Discrete Memoryless Channels

    • 10.5 Positive-Rate Covert Communications

    • 10.6 Effective Secrecy

    • 10.7 Covert/Stealth Optical Communications

    • 10.8 Covert Communication-Based Information Reconciliation for QKD Protocols

    • 10.9 Concluding Remarks

    • References

  • Appendix

  • A.1 Groups

  • A.2 Fields

  • A.3 Vector Spaces

  • A.4 Algebra of Finite Fields

  • A.5 Group Acting on the Set

  • A.6 Metric Spaces

  • A.7 Hilbert Spaces

  • References

  • Index

Nội dung

Ngày đăng: 30/05/2022, 12:28