Tài liệu tham khảo |
Loại |
Chi tiết |
[1] N.I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.Translated from the Russian edition of 1961 |
Sách, tạp chí |
Tiêu đề: |
The classical moment problem |
|
[2] N.I. Akhiezer and I.M. Glazman, Theory of linear operators in Hilbert space: I & II, Pitman, London and Scottish Academic Press, Edinburgh, 1981 |
Sách, tạp chí |
Tiêu đề: |
Theory of linear operators in Hilbert space |
|
[4] F.V. Atkinson, Discrete and continuous boundary problems, Academic Press, New York, 1964 |
Sách, tạp chí |
Tiêu đề: |
Discrete and continuous boundary problems |
|
[5] F.V. Atkinson, On bounds for the Titchmarsh-Weyl m-coefficients and for spectral functions for second-order differential equations, Proc. Royal Soc. Edinburgh A 97 (1984), 1–7 |
Sách, tạp chí |
Tiêu đề: |
m |
Tác giả: |
F.V. Atkinson, On bounds for the Titchmarsh-Weyl m-coefficients and for spectral functions for second-order differential equations, Proc. Royal Soc. Edinburgh A 97 |
Năm: |
1984 |
|
[6] C. Bennewitz, The Titchmarsh eigenfunction expansion theory and the m-coefficient, unpublished manuscript, University of Birmingham, 1983 |
Sách, tạp chí |
|
[7] C. Bennewitz and W.N. Everitt, Some remarks on the Titchmarsh-Weyl m- coefficient, in Proceedings of the Pleijel Conference, University of Uppsala, 1979, 49–108, published by the Department of Mathematics, University of Uppsala, Swe- den |
Sách, tạp chí |
Tiêu đề: |
m"-coefficient, in "Proceedings of the Pleijel Conference, University of Uppsala, 1979 |
|
[8] E.A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955 |
Sách, tạp chí |
Tiêu đề: |
Theory of ordinary differential equations |
|
[15] W.N. Everitt, C. Shubin, G. Stolz and A. Zettl, Sturm-Liouville problems with an infinite number of interior singularities, in Spectral theory and computational methods of Sturm-Liouville problems, 211–249, Lecture Notes in Pure and Applied Mathe- matics 191, Marcel Dekker, New York, 1997 |
Sách, tạp chí |
Tiêu đề: |
Spectral theory and computational methodsof Sturm-Liouville problems |
|
[16] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Heidelberg, 1980 |
Sách, tạp chí |
Tiêu đề: |
Perturbation theory for linear operators |
|
[17] B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac operators, Nauka, Moscow, 1988. Translated from the Russian Mathematics and its Applications, Soviet Series 59, Kluwer Academic Publishers Group, Dordrecht, 1991 |
Sách, tạp chí |
Tiêu đề: |
Sturm-Liouville and Dirac operators", Nauka,Moscow, 1988. Translated from the Russian"Mathematics and its Applications |
|
[18] H.L. Royden, Real analysis, Prentice Hall, Englewood Cliffs, New Jersey, Third edi- tion, 1987 |
Sách, tạp chí |
|
[19] M.H. Stone, Linear transformations in Hilbert space, American Mathematical Society Colloquium Publications 15, American Mathematical Society, Providence, Rhode Island, 1932 |
Sách, tạp chí |
Tiêu đề: |
Linear transformations in Hilbert space |
|
[20] M.A. Naimark, Linear differential operators II, translated from the second Russian edition, Ungar, New York, 1968 |
Sách, tạp chí |
Tiêu đề: |
Linear differential operators II |
|
[21] E.C. Titchmarsh, The theory of functions, Oxford University Press, second edition, 1952 |
Sách, tạp chí |
Tiêu đề: |
The theory of functions |
|
[22] E.C. Titchmarsh, Eigenfunction expansions I, Oxford University Press, second edi- tion, 1962 |
Sách, tạp chí |
Tiêu đề: |
Eigenfunction expansions I |
|
[3] R.R. Ashurov and W.N. Everitt, Linear quasi-differential operators in locally inte- grable spaces on the real line, Proc. Roy. Soc. Edinburgh A 130 (2000), 671–698 |
Khác |
|
[9] W.N. Everitt, On the transformation theory of ordinary second-order linear sym- metric differential equations, Czechoslovak Mathematical Journal 32 (107) (1982), 275–306 |
Khác |
|
[11] W.N. Everitt, Charles Sturm and the Development of Sturm-Liouville Theory in the Years 1900 to 1950, in this volume |
Khác |
|
[12] W.N. Everitt, W.K. Hayman and G. Nasri-Roudsari, On the representation of holo- morphic functions by integrals, Applicable Analysis 65 (1997), 95–102 |
Khác |
|
[13] W.N. Everitt and L. Markus, The Glazman-Krein-Naimark theorem for ordinary differential operators, Operator Theory: Advances and Applications 98 (1997), 118–130 |
Khác |
|