1. Trang chủ
  2. » Khoa Học Tự Nhiên

348 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 348
Dung lượng 2,1 MB

Nội dung

Ngày đăng: 27/05/2022, 15:23

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] N.I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.Translated from the Russian edition of 1961 Sách, tạp chí
Tiêu đề: The classical moment problem
[2] N.I. Akhiezer and I.M. Glazman, Theory of linear operators in Hilbert space: I & II, Pitman, London and Scottish Academic Press, Edinburgh, 1981 Sách, tạp chí
Tiêu đề: Theory of linear operators in Hilbert space
[4] F.V. Atkinson, Discrete and continuous boundary problems, Academic Press, New York, 1964 Sách, tạp chí
Tiêu đề: Discrete and continuous boundary problems
[5] F.V. Atkinson, On bounds for the Titchmarsh-Weyl m-coefficients and for spectral functions for second-order differential equations, Proc. Royal Soc. Edinburgh A 97 (1984), 1–7 Sách, tạp chí
Tiêu đề: m
Tác giả: F.V. Atkinson, On bounds for the Titchmarsh-Weyl m-coefficients and for spectral functions for second-order differential equations, Proc. Royal Soc. Edinburgh A 97
Năm: 1984
[6] C. Bennewitz, The Titchmarsh eigenfunction expansion theory and the m-coefficient, unpublished manuscript, University of Birmingham, 1983 Sách, tạp chí
Tiêu đề: m
[7] C. Bennewitz and W.N. Everitt, Some remarks on the Titchmarsh-Weyl m- coefficient, in Proceedings of the Pleijel Conference, University of Uppsala, 1979, 49–108, published by the Department of Mathematics, University of Uppsala, Swe- den Sách, tạp chí
Tiêu đề: m"-coefficient, in "Proceedings of the Pleijel Conference, University of Uppsala, 1979
[8] E.A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955 Sách, tạp chí
Tiêu đề: Theory of ordinary differential equations
[15] W.N. Everitt, C. Shubin, G. Stolz and A. Zettl, Sturm-Liouville problems with an infinite number of interior singularities, in Spectral theory and computational methods of Sturm-Liouville problems, 211–249, Lecture Notes in Pure and Applied Mathe- matics 191, Marcel Dekker, New York, 1997 Sách, tạp chí
Tiêu đề: Spectral theory and computational methodsof Sturm-Liouville problems
[16] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Heidelberg, 1980 Sách, tạp chí
Tiêu đề: Perturbation theory for linear operators
[17] B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac operators, Nauka, Moscow, 1988. Translated from the Russian Mathematics and its Applications, Soviet Series 59, Kluwer Academic Publishers Group, Dordrecht, 1991 Sách, tạp chí
Tiêu đề: Sturm-Liouville and Dirac operators", Nauka,Moscow, 1988. Translated from the Russian"Mathematics and its Applications
[18] H.L. Royden, Real analysis, Prentice Hall, Englewood Cliffs, New Jersey, Third edi- tion, 1987 Sách, tạp chí
Tiêu đề: Real analysis
[19] M.H. Stone, Linear transformations in Hilbert space, American Mathematical Society Colloquium Publications 15, American Mathematical Society, Providence, Rhode Island, 1932 Sách, tạp chí
Tiêu đề: Linear transformations in Hilbert space
[20] M.A. Naimark, Linear differential operators II, translated from the second Russian edition, Ungar, New York, 1968 Sách, tạp chí
Tiêu đề: Linear differential operators II
[21] E.C. Titchmarsh, The theory of functions, Oxford University Press, second edition, 1952 Sách, tạp chí
Tiêu đề: The theory of functions
[22] E.C. Titchmarsh, Eigenfunction expansions I, Oxford University Press, second edi- tion, 1962 Sách, tạp chí
Tiêu đề: Eigenfunction expansions I
[3] R.R. Ashurov and W.N. Everitt, Linear quasi-differential operators in locally inte- grable spaces on the real line, Proc. Roy. Soc. Edinburgh A 130 (2000), 671–698 Khác
[9] W.N. Everitt, On the transformation theory of ordinary second-order linear sym- metric differential equations, Czechoslovak Mathematical Journal 32 (107) (1982), 275–306 Khác
[11] W.N. Everitt, Charles Sturm and the Development of Sturm-Liouville Theory in the Years 1900 to 1950, in this volume Khác
[12] W.N. Everitt, W.K. Hayman and G. Nasri-Roudsari, On the representation of holo- morphic functions by integrals, Applicable Analysis 65 (1997), 95–102 Khác
[13] W.N. Everitt and L. Markus, The Glazman-Krein-Naimark theorem for ordinary differential operators, Operator Theory: Advances and Applications 98 (1997), 118–130 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...