1. Trang chủ
  2. » Thể loại khác

Integral-Equation-Electromagnetics--John-Volakis

408 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • Integral Equation Methods for Electromagnetics

  • Contents

  • Preface

    • Approach and Organization

    • Distinctive Features

    • The Book’s Development

  • Acknowledgements

  • Publisher Acknowledgements

  • 1 Fundamental Concepts and Theorems

    • 1.1 Maxwell’s Equation in Differential Time Domain Form

    • 1.2 Maxwell’s Equations in Integral Form

    • 1.3 Maxwell’s Equations in Phasor Form

    • 1.4 Natural Boundary Conditions

    • 1.5 Poynting’s Theorem

    • 1.6 Uniqueness Theorem

    • 1.7 Superposition Theorem

    • 1.8 Duality Theorem

    • 1.9 Volume Equivalence Theorem

    • 1.10 Surface Equivalence Theorem

    • 1.11 Reciprocity and Reaction Theorems

    • 1.12 Approximate Boundary Conditions

      • 1.12.1 Impedance Boundary Conditions

      • 1.12.2 Resistive and Conductive Sheet Transition Conditions

    • Problems

    • Bibliography

  • 2 Field Solutions and Representations

    • 2.1 Field Solutions in Terms of Vector and Hertz Potentials

    • 2.2 Solution for the Vector and Scalar Potentials

    • 2.3 Near- and Far-Zone Field Expressions

      • 2.3.1 Near-Zone Fields

      • 2.3.2 Field Evaluation in the Source Region

      • 2.3.3 Fresnel and Far-Zone Fields

    • 2.4 Direct Solution of the Vector Wave Equation

      • 2.4.1 Vector Wave Equations

      • 2.4.2 Dyadic Representation

    • 2.5 Two-Dimensional Fields

      • 2.5.1 Two-Dimensional Sources

      • 2.5.2 Exact Integral Expressions

      • 2.5.3 Far-Zone Fields

      • 2.5.4 Field Evaluation in the Source Region

    • 2.6 Spectral Field Representations

      • 2.6.1 Two-Dimensions

      • 2.6.2 Three Dimensions

    • 2.7 Radiation over a Dielectric Half Space

    • Problems

    • Bibliography

  • 3 Integral Equations and Other Field Representations

    • 3.1 Three-Dimensional Integral Equations

      • 3.1.1 Kirchhoff’s Integral Equation

      • 3.1.2 Stratton-Chu Integral Equations

      • 3.1.3 Integral Equations for Homogeneous Dielectrics

      • 3.1.4 Integral Equations for Metallic Bodies

      • 3.1.5 Combined Field Integral Equations

      • 3.1.6 Integral Equations for Piecewise Homogeneous Dielectrics

      • 3.1.7 Integral Equations for Inhomogeneous Dielectrics

    • 3.2 Two-Dimensional Representations

      • 3.2.1 Boundary Integral Equations

      • 3.2.2 Homogeneous Dielectrics

      • 3.2.3 Metallic Cylinders

      • 3.2.4 Piecewise Homogeneous Dielectrics

      • 3.2.5 Domain Integral Equations

    • Problems.

    • Bibliography

  • 4 Solution of Integral Equations for Wire Radiators and Scatterers

    • 4.1 Formulation

    • 4.2 Basis Functions

    • 4.3 Pulse-Basis–Point-Matching Solution

    • 4.4 Source Modeling

      • 4.4.1 Delta Gap Excitation

      • 4.4.2 Magnetic Frill Generator

      • 4.4.3 Plane Wave Incidence

    • 4.5 Calculation of the Far-Zone Field and Antenna Characteristics

    • 4.6 Piecewise Sinusoidal-Basis–Point-Matching Solution

    • 4.7 Method of Weighted Residuals/Method of Moments

    • 4.8 Method of Moments for Nonlinear Wires

    • 4.9 Wires of Finite Conductivity

    • 4.10 Construction of Integral Equations via the Reaction/Reciprocity Theorem

    • 4.11 Iterative Solution Methods: The Conjugate Gradient Method

    • Problems.

    • Bibliography

  • 5 Two-Dimensional Scattering

    • 5.1 Flat Resistive Strip

      • 5.1.1 E-Polarization

        • 5.1.1.1 Pulse-Basis–Point-Matching Solution

        • 5.1.1.2 Narrow Strips

      • 5.1.2 H-Polarization

        • 5.1.2.1 Pulse-Basis–Point-Matching Solution

        • 5.1.2.2 Linear Basis-Galerkin’s Solution

        • 5.1.2.3 Narrow Strips

    • 5.2 Metallic Cylinders

      • 5.2.1 E-Polarization

      • 5.2.2 H-Polarization

    • 5.3 H-Polarized (TE) Scattering by Curved Resistive Strips

      • 5.3.1 Pulse-Basis–Point-Matching Solution

      • 5.3.2 Linear Basis-Galerkin’s Solution

    • 5.4 Piecewise Homogeneous Dielectric Cylinders

    • 5.5 Elimination of Interior Resonances

    • 5.6 Simulation of Inhomogeneous Dielectric Cylinders

      • 5.6.1 Volume Integral Equation

      • 5.6.2 Volume-Surface Integral Equation

    • Bibliography

  • 6 Three-Dimensional Scattering

    • 6.1 Scattering by Metallic Bodies

      • 6.1.1 Electric, Magnetic, and Combined Field Integral Equations

      • 6.1.2 Triangular Element Mesh Representations

      • 6.1.3 Rao–Wilton–Glisson Basis Functions

      • 6.1.4 Method of Moments Matrix Assembly

    • 6.2 Curved Triangular and Quadrilateral Elements

      • 6.2.1 Parametric Representations

      • 6.2.2 Polynomial Interpolations

      • 6.2.3 Free-Form Representations

        • 6.2.3.1 Bézier and B-Spline Curves and Surfaces

        • 6.2.3.2 Bézier Patches

        • 6.2.3.3 B-Spline Surfaces

        • 6.2.3.4 NURBS Surfaces

      • 6.2.4 Curvilinear Coordinates

        • 6.2.4.1 Parametric Representation of Volume Elements

      • 6.2.5 Parametric Representations of Surface and Volume Elements

        • 6.2.5.1 Parametric Representation of Volume Elements

      • 6.2.6 Example Representations of Surface and Volume Basis Functions

        • 6.2.6.1 Rooftop Basis Functions: Flat and Conformal Representations

        • 6.2.6.2 RWG Basis Functions: Flat and Conformal Representations

    • 6.3 Evaluation of MoM Matrix Entries

      • 6.3.1 Element Matrices and Assembly Process

      • 6.3.2 Evaluation of Integrals with Singular Kernels

      • 6.3.3 Singularity Annihilation Techniques

      • 6.3.4 Regularization for Triangular Subdomains

        • 6.3.4.1 Annihilation Method I for Triangular Subdomains

        • 6.3.4.2 Annihilation Method II for Triangular Subdomains

      • 6.3.5 Annihilation Transforms for Square Subdomains

        • 6.3.5.1 Annihilation Method I for Quadrilateral Subdomains

        • 6.3.5.2 Annihilation Method II for Quadrilateral Subdomains

        • 6.3.5.3 Annihilation Method III for Quadrilateral Subdomains

        • 6.3.5.4 Annihilation Method IV for Quadrilateral Subdomains

      • 6.3.6 Numerical Integration

      • 6.3.7 Source Modeling and Antenna Applications

        • 6.3.7.1 Plane Wave Incidence for RCS Calculations (Monostatic and Bistatic RCS)

        • 6.3.7.2 Delta Gap and Current Excitation

        • 6.3.7.3 Aperture Excitations

      • 6.3.8 Matrix Solution Methods

        • 6.3.8.1 Preconditioning Approaches

        • 6.3.8.2 Multiplicative Calderon Preconditioner

      • 6.3.9 Performance of Preconditioned Conjugate Gradient Squared Solver

    • 6.4 Volumetric Modeling

      • 6.4.1 Volume Integral Equation Formulation

      • 6.4.2 VIE Formulation for Dielectrics

      • 6.4.3 Zeroth-Order Volumetric Basis Functions

      • 6.4.4 First-Order Volumetric Basis Functions

      • 6.4.5 Second-Order Volumetric Basis Functions

      • 6.4.6 Scattering by Dielectric Bodies

      • 6.4.7 VIE Solution for Magnetically Permeable Structures

        • 6.4.7.1 Volume-Surface Integral Equations

    • 6.5 Scattering Examples

    • 6.6 Step by Step Moment Method Example

    • Bibliography

  • 7 Fast Multipole Method and Its Multilevel Implementation

    • 7.1 Fast Multipole Method

    • 7.2 Multilevel Fast Multipole Method

    • 7.3 MLFMM Formulation

    • 7.4 Radiation and Scattering Examples

    • 7.5 MLFMM for Volume Integral Equations

    • Bibliography

  • Appendix: Integral Equations for Microstrip Antennas

    • A.1 Dyadic Green’s Function for a Grounded Substrate

    • A.2 Moment Method Formulation

    • A.3 Far-Zone Field Evaluation

    • Bibliography

  • Index

Nội dung

Ngày đăng: 26/05/2022, 14:29