1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu tối ưu thay đảo nhiên liệu lò phản ứng hạt nhân VVER 1000

165 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 165
Dung lượng 3,35 MB

Nội dung

MINISTRY OF EDUCATION AND TRAINING MINISTRY OF SCIENCE AND TECHNOLOGY VIETNAM ATOMIC ENERGY INSTITUTE STUDY ON FUEL LOADING PATTERN OPTIMIZATION FOR VVER-1000 NUCLEAR REACTOR DISSERTATION FOR THE DOCTOR DEGREE OF PHYSICS Hanoi - 2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ KHOA HỌC VÀ CÔNG NGHỆ VIỆN NĂNG LƯỢNG NGUYÊN TỬ VIỆT NAM T N V P NGHIÊN CỨU TỐI ƯU THAY ĐẢO NHIÊN LIỆU LÒ PHẢN ỨNG HẠT NHÂN VVER-1000 L U Ậ N Á N T I Ế N S Ĩ V Ậ T L Ý Chuyên ngành: Vật lý Nguyên tử Hạt nhân Mã số: 44 01 06 G o i o v i ê n h n g d ẫ n : PGS TS TRẦN Hoài Nam GS TS YAMAMOTO Akio Hà Nội - 2022 MINISTRY OF EDUCATION AND TRAINING MINISTRY OF SCIENCE AND TECHNOLOGY VIETNAM ATOMIC ENERGY INSTITUTE STUDY ON FUEL LOADING PATTERN OPTIMIZATION FOR VVER-1000 NUCLEAR REACTOR DISSERTATION FOR THE DOCTOR DEGREE OF PHYSICS Major: Nuclear and Atomic Physics C d 0 Supervisors: o Assoc Prof Dr TRAN Hoai Nam Prof Dr YAMAMOTO Akio Hanoi - 2022 Contents Declaration of Authorship iii Acknowledgements iv Dedication v Tóm tắt vi Abstract viii List of Abbreviations x List of Figures xii List of Tables xiv Introduction 1 General introduction Description of fuel LP optimization problem Overview of methods applied to fuel LP optimization Overview of VVER reactor Purposes of this dissertation Dissertation outline 1 12 18 19 Methods and development Introduction 2 VVER-1000 MOX core benchmark Data preparation for core calculations Development of LPO-V code for core physics calculations Steady-state multi-group diffusion equations Finite difference method for spatial discretization Boundary conditions 4 Successive over-relaxation method Core modeling by LPO-V code Verification of core calculations 21 21 22 25 28 28 30 34 36 41 43 i Contents ii 2De vel op m en t of ES A m et ho d 41 meth 24 E 2Dev h cn elo irs pm se ent tM of a o e a 2disc rn rete n yS 2SHA H DE b A W met a D h hod sE i et d m n Clas e sics a ty Diff d h ere a o U ntia p d l tT Evol a Fe utio tis n it 26 o n n e C SHA so DE sn ope c rato fl rs u 26 n s ci Suc D to ces in s- so s 5 5 62 67 2 65 Loading pattern optimization of VVER-1000 reactor Introduction LP optimization of VVER-1000 core using ESA method Selection of ESA method 2 Comparison among SA, ASA and ESA 3 LP optimization of the VVER-1000 MOX core using ESA method 3 LP optimization of VVER-1000 reactor using SHADE method 3 Determination of control parameters 3 LP optimization of the VVER-1000 MOX core using SHADE method Optimal core loading pattern of SHADE and ESA Conclusions of Chapter 68 68 69 69 71 76 77 77 Conclusions and future work Conclusions Future works 91 91 94 Papers published during the dissertation 96 REFERENCES 98 APPENDICES 118 A VVER-1000 MOX core Benchmark specification 118 B Cross sections of materials 118 79 87 88 Declaration of Authorship I certify that this dissertation entitled "STUDY ON FUEL LOADING PATTERN OPTIMIZATION FOR VVER-1000 NUCLEAR REACTOR" is my own original work except where otherwise clearly indicated I confirm that the dissertation submitted to the Nuclear Training Center, Vietnam Atomic Energy Institute was mainly done during my candidature for a PhD degree under the supervision of Assoc Prof Dr Tran Hoai Nam and Prof Dr Yamamoto Akio iii Acknowledgements This dissertation presents a long-term work in an interesting field of nuclear and atomic physics The dissertation was performed with great supports from my colleagues and the encouragements of my relatives together with my individual endeavor iv [94] A Glebov, A Klushin, Y Baranaev, Prospects of vver-skd reactor in a closed fuel cycle, Nuclear Energy and Technology (1) (2015) 60–67 doi:https://doi org/10 1016/j nucet 2015 11 013 [95] J Bajgl, M Lehmann, New code for vver-440 loading pattern design, in: Proceedings of the ninth Symposium of Atomic Energy Research, Hungary: Kiadja and KFKI Atomenergia Kutato Intezet, 1999, p 780 [96] J Prehradny, K Katovsky, R Cada, Wwer 440 fuel cycles optimization by the athena code, in: Proceedings of the twenty-first symposium of atomic energy research on WWER physics and reactor safety, 2011 [97] Y Rahmani, A Pazirandeh, M Ghofrani, M Sedighi, Using a combination of weighting factors, genetic algorithm and ant colony methods to speed up the reloading pattern optimization of vver-1000 reactors, 2013 [98] A Fadaei, S Setayeshi, Lonsa as a tool for loading pattern optimization for vver-1000 using synergy of a neural network and simulated annealing, Annals of Nuclear Energy 35 doi:10 1016/j anucene 2008 05 001 [99] C Guler, S Levine, K Ivanov, J Svarny, V Krysl, P Mikolas, J Sustek, Development of the vver core loading optimization system, Annals of Nuclear Energy 31 (2004) 747–772 doi:10 1016/j anucene 2003 09 005 [100] M R Karahroudi, S A M Shirazi, K Sepanloo, Optimization of designing the core fuel loading pattern in a vver-1000 nuclear power 114 reactor using the genetic algorithm, Annals of Nuclear Energy 57 (2013) 142–150 doi:10 1016/j anucene 2013 01 051 [101] M A Moghanloo, S Mahmoudi, A novel multi objective loading pattern optimization by gravitational search algorithm (gsa) for wwer1000 core, Progress in Nuclear Energy 93 (2016) 1–11 doi:10 1016/j pnucene 2016 07 014 [102] T V Phu, et al , Calculation of neutronic characteristics of the VVER-1000 reactor core, Ministerial project 2014-2015, 2014 [103] T D Long, et al , Research and build interface software combining MCNP5 and COBRA-EN for fuel channel of VVER-1000 reactor, Elementary project, 2015 [104] N H Tiep, et al , Research on the effect of neutron current on the VVER reactor vessel, Elementary project, 2017 [105] T V Phu, et al , Research on loading pattern optimization of VVER reactor, Ministerial project 2015-2016, 2015 [106] J R Lamarsh, A J Baratta, Introduction to Nuclear Engineering, third edition, Prentice-Hall, 2001 [107] Y Oka, Nuclear Reactor Design, Springer, Tokyo, 2014 doi:https: //doi org/10 1007/978-4-431-54898-0 [108] J David M Young, Iterative methods for solving partial difference equations of elliptic type, Ph D thesis, Havard University (1950) [109] R J Stamm’ler, M J Abbate, Methods of steady-state reactor physics in nuclear design, Academic Press INC (London, 1983 115 [110] K Okumura, T Kugo, K Kaneko, K Tsuchihashi, SRAC2006: A comprehensive neutronics calculation code system, Tech rep , JAEAData/Code 2007-004 Japan Atomic Energy Agency, Tokai, Japan (2007) [111] M B Chadwick, P Oblozinsky, M Herman, N M Greene, R D McKnight, D L Smith, et al , Endf/b-vii 0: Next generation evaluated nuclear data library for nuclear science and technology, Nuclear Data Sheets 107 (12) (2006) 2931–3060 doi:https://doi org/10 1016/j nds 2006 11 001 [112] J Zhang, A C Sanderson, Jade: Adaptive differential evolution with optional external archive, IEEE Transactions on Evolutionary Computation 13 (5) (2009) 945–958 [113] G C Onwubolu, D Davendra, Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization, Vol 175, Springer, Berlin, Heidelberg, 2009 doi:10 1007/ 978-3-540-92151-6 [114] N Poursalehi, A Zolfaghari, A Minuchehr, Differential harmony search algorithm to optimize pwrs loading pattern, Nuclear Engineering and Design 257 (2013) 161–174 doi:10 1016/j nucengdes 2013 01 020 [115] N Poursalehi, A Zolfaghari, A Minuchehr, Pwr loading pattern optimization using harmony search algorithm, Annals of Nuclear Energy 53 (2013) 288–298 doi:10 1016/j anucene 2012 06 037 [116] R Gharari, N Poursalehi, M Abbasi, M Aghaie, Implementation of strength pareto evolutionary algorithm ii in the multiobjective 116 burnable poison placement optimization of kwu pressurized water reactor, Nuclear Engineering and Technology 48 (5) (2016) 1126– 1139 doi:10 1016/j net 2016 04 004 [117] G W Corder, D I Foreman, Nonparametric Statistics for NonStatisticians, John Wiley and Sons, Inc , 2009 [118] R R Swain, T Dash, P M Khilar, A complete diagnosis of faulty sensor modules in a wireless sensor network, Ad Hoc Networks 93 (2019) 101924 doi:https://doi org/10 1016/j adhoc 2019 101924 [119] M E H Pedersen, Good Parameters for Differential Evolution, Technical Report no HL1002, Hvass Laboratories, 2010 117 Appendix A VVER-1000 MOX core Benchmark specification Table A 1: Dimension of the cell zones [5] Cell name Fuel cell Central tube cell/ guide tube cell Guide tube with absorber rod cell Zone in the cell Radius (cm) Fuel pellet radius 386 Cladding outer radius 455 Tube inner radius 55 Tube outer radius 63 Absorber pellet radius 35 Absorber cladding outer radius 41 Tube inner radius 55 Tube outer radius 63 Appendix B Cross sections of materials 118 Table A 2: Material names used in the fuel assemblies [5] Assembly type Material name Material description U_4 Uranium fuel with 235U enrichment 2% wt U O2 assemblies type Uranium-gadolinium fuel with TVEG_5 enrichment 3% wt on 235U and 5% wt on Gd2O3 U_3 U O2 fuel with 235U enrichment 7% wt MOX fuel with fissile plutonium PU_3 isotopes enrichment 62% wt MOX assemblies type Uranium-gadolinium fuel with TVEG_4 enrichment 6% wt on 235U and 4% wt on Gd2O3 MOX fuel with fissile plutonium PU_2 isotopes enrichment 69% wt MOX fuel with fissile plutonium PU_2 isotopes enrichment 42% wt Table A 3: Isotopic composition of fuel U_4 2, atoms/barn ∗ cm2 [5] Burnup, MWd/kg U_4 U235 U236 U238 NP37 PU38 PU39 PU40 PU41 PU42 AM41 O SM49 SM51 TC99 RH03 CS33 ND43 ND45 PM47 SM52 0411E-04 5 0362E-02 9 2532E-02 1 1 15 8139E-04 7700E-05 0161E-02 7658E-06 5135E-07 6584E-05 7820E-05 8291E-06 5918E-07 6169E-08 2532E-02 1807E-08 8524E-07 9865E-05 1241E-05 1660E-05 7145E-05 2231E-05 1135E-06 0001E-06 119 1 4 32 2990E-04 7452E-05 9905E-02 0351E-05 7546E-06 2788E-04 4214E-05 4361E-05 9401E-06 7445E-07 2532E-02 9565E-08 9458E-07 0006E-05 2541E-05 3134E-05 0721E-05 3856E-05 0579E-06 0165E-06 1 8 5 40 4314E-04 0890E-04 9773E-02 3577E-05 6336E-06 3134E-04 4717E-05 0501E-05 1811E-05 2251E-07 2532E-02 5421E-08 3181E-07 8545E-05 6925E-05 2008E-05 5092E-05 8579E-05 2585E-06 7868E-06 Table A 4: Isotopic composition of fuel TVEG_5, atoms/barn ∗ cm2 [5] Burnup, MWd/kg TVEG_5 U235 U236 U238 NP37 PU38 PU39 PU40 PU41 PU42 AM41 O GD52 GD54 GD55 GD56 GD57 GD58 GD60 SM49 SM51 TC99 RH03 CS33 ND43 ND45 PM47 SM52 6163E-04 9143E-02 2 6 1938E-02 2142E-06 4579E-05 3321E-04 3 2053E-04 4346E-04 8403E-04 3373E-04 1 15 8382E-04 5164E-05 8968E-02 5863E-06 9960E-07 8781E-05 5353E-05 2524E-06 0179E-07 9561E-08 1938E-02 2242E-06 1600E-05 2385E-07 4422E-04 8330E-07 3019E-04 3229E-04 0821E-08 1290E-07 2031E-05 4977E-06 3175E-05 0380E-05 3069E-06 3064E-06 2690E-06 120 7 4 3 32 6776E-04 0094E-05 8728E-02 7190E-06 0282E-06 1559E-04 1294E-05 2283E-05 3481E-06 9976E-07 1938E-02 1130E-06 7446E-05 5769E-07 3058E-04 6774E-07 3494E-04 3037E-04 0584E-08 0538E-07 0625E-05 8625E-05 3172E-05 3428E-05 8017E-05 7735E-06 2490E-06 1 7 4 2 40 9449E-04 0032E-05 8603E-02 0347E-05 5111E-06 1801E-04 1119E-05 8043E-05 1103E-05 2654E-07 1938E-02 6549E-07 5465E-05 4181E-07 2333E-04 5847E-07 3726E-04 2938E-04 7330E-08 4104E-07 8586E-05 2940E-05 1526E-05 7732E-05 2419E-05 1251E-06 9837E-06 Table A 5: Isotopic composition of fuel U_3 7, atoms/barn ∗ cm2 [5] Burnup, MWd/kg U_3 U235 U236 U238 NP37 PU38 PU39 PU40 PU41 PU42 AM41 O SM49 SM51 TC99 RH03 CS33 ND43 ND45 PM47 SM52 9649E-04 0469E-02 1 2530E-02 1 1 15 8884E-04 4042E-05 0262E-02 7015E-06 6522E-07 5675E-05 9149E-05 3590E-06 0147E-06 0325E-07 2530E-02 3005E-08 4935E-07 9485E-05 1189E-05 1245E-05 6565E-05 1935E-05 9515E-06 0058E-06 121 4 2 32 6496E-04 8494E-05 0000E-02 9287E-06 7516E-06 2378E-04 5926E-05 4695E-05 7274E-06 7739E-07 2530E-02 2706E-08 5427E-07 8798E-05 2235E-05 1820E-05 9007E-05 2961E-05 7031E-06 9584E-06 1 4 40 9092E-04 7726E-05 9864E-02 2901E-05 5708E-06 2659E-04 6139E-05 0494E-05 2925E-05 0933E-07 2530E-02 9571E-08 9115E-07 6961E-05 6478E-05 0289E-05 2889E-05 7419E-05 8639E-06 6994E-06 Table A 6: Isotopic composition of fuel PU_3 6, atoms/barn ∗ cm2 [5] PU_3 U235 U236 U238 NP37 PU38 PU39 PU40 PU41 PU42 AM41 O SM49 SM51 TC99 RH03 CS33 ND43 ND45 PM47 SM52 Burnup, MWd/kg 3057E-05 2 0386E-02 2 0841E-06 5661E-04 3794E-05 5720E-06 5119E-06 2506E-02 2 1 17 0534E-05 5385E-06 0144E-02 4045E-06 3292E-06 7406E-04 4795E-04 7132E-05 8236E-06 3594E-06 2506E-02 4783E-07 7056E-07 2348E-05 2129E-05 4904E-05 5770E-05 1215E-05 0355E-06 2199E-06 122 4 2 2 4 2 33 0186E-05 2696E-06 9894E-02 2797E-06 7311E-06 9852E-04 7846E-04 3282E-05 5860E-05 9942E-06 2506E-02 2062E-07 6447E-07 0862E-05 6232E-05 4872E-05 7603E-05 0679E-05 6403E-06 2658E-06 Table A 7: Isotopic composition of fuel TVEG_4, atoms/barn ∗ cm2 [5] TVEG_4 U235 U236 U238 NP37 PU38 PU39 PU40 PU41 PU42 AM41 O GD52 GD54 GD55 GD56 GD57 GD58 GD60 SM49 SM51 TC99 RH03 CS33 ND43 ND45 PM47 SM52 Burnup, MWd/kg 3225E-04 9360E-02 1 2056E-02 5815E-06 7772E-05 8730E-04 5743E-04 9553E-04 0843E-04 6804E-04 1 123 17 4783E-04 9989E-05 9139E-02 7973E-06 9031E-07 2109E-04 7377E-05 0208E-06 4476E-07 8029E-08 2055E-02 8321E-06 5080E-05 0215E-06 3334E-04 5976E-07 0718E-04 6656E-04 0735E-07 0519E-07 2602E-05 9971E-06 3779E-05 0973E-05 6416E-06 2794E-06 2631E-06 5 4 5 33 4998E-04 3537E-05 8901E-02 6340E-06 5298E-06 5184E-04 4993E-05 4072E-05 0595E-06 5623E-07 2055E-02 0821E-06 2136E-05 6393E-07 2171E-04 0690E-07 1162E-04 6501E-04 0224E-07 0972E-07 9713E-05 8557E-05 2177E-05 3818E-05 7521E-05 5753E-06 0576E-06 Table A 8: Isotopic composition of fuel PU_2 7, atoms/barn ∗ cm2 [5] PU_2 U235 U236 U238 NP37 PU38 PU39 PU40 PU41 PU42 AM41 O SM49 SM51 TC99 RH03 CS33 ND43 ND45 PM47 SM52 Burnup, MWd/kg 3057E-05 2 0598E-02 2 0774E-07 6222E-04 3 9987E-05 1160E-06 6131E-06 2508E-02 2 1 17 8612E-05 7944E-06 0347E-02 4008E-06 0993E-06 3450E-04 2215E-04 9442E-05 5258E-06 1240E-06 2508E-02 1354E-07 8719E-07 0699E-05 0188E-05 3035E-05 4448E-05 0429E-05 6128E-06 0318E-06 124 4 2 2 3 33 7606E-05 5372E-06 0087E-02 2361E-06 5148E-06 1853E-04 4136E-04 9024E-05 5765E-05 3584E-06 2508E-02 8177E-08 0027E-07 7403E-05 2327E-05 0983E-05 4621E-05 9007E-05 9544E-06 7872E-06 Table A 9: Isotopic composition of fuel PU_2 4, atoms/barn ∗ cm2 [5] PU_2 U235 U236 U238 NP37 PU38 PU39 PU40 PU41 PU42 AM41 O SM49 SM51 TC99 RH03 CS33 ND43 ND45 PM47 SM52 Burnup, MWd/kg 3057E-05 2 0660E-02 2 2271E-07 0579E-04 5961E-05 4023E-06 3413E-06 2508E-02 2 1 17 7777E-05 9076E-06 0405E-02 3897E-06 0335E-06 9332E-04 1497E-04 6985E-05 6174E-06 0464E-06 2508E-02 0281E-07 3010E-07 0326E-05 9698E-05 2608E-05 4108E-05 0254E-05 5137E-06 9973E-06 4 1 2 3 33 6391E-05 6650E-06 0140E-02 1976E-06 4576E-06 9329E-04 3072E-04 4083E-05 6319E-05 1281E-06 2508E-02 0532E-08 4672E-07 6699E-05 1334E-05 0174E-05 3798E-05 8670E-05 7880E-06 6882E-06 Table A 10: Isotopic composition of the structural material, atoms/barn ∗ cm2 [5] Material name Material zone Material isotopic composition Fuel cladding Zr 26E-02 Central tube Nb 22E-04 Zirconium alloy Guide tube Hf 59E-06 Absorber cladding Fe 93E-02 Steel buffer Cr 69E-02 Steel barrel Ni 48E-03 Steel Steel vessel Ti 90E-04 C 74E-04 B10 57E-02 Absorber rod B4C 80% enrichment B11 64E-02 of B10 C 05E-02 125 Table A 11: Moderator and water in reflector materials, atoms/barn ∗ cm2 [5] Material name Material description M575B1 Moderator with boron content 1300 ppm, Tm = 575K , ρ = 7241g/cm3 M575B0 Moderator without boron, Tm = 575K , ρ = 7241g/cm3 M560B1 Moderator with boron content 1300 ppm, Tm = 560K , ρ = 7533g/cm3 M560B0 Moderator with boron content 600 ppm, Tm = 560K , ρ = 7533g/cm3 M560B0 Moderator without boron, Tm = 560K , ρ = 7533g/cm3 M553B0 Moderator without boron, Tm = 553K , ρ = 7657g/cm3 M300B2 Moderator with boron content 2800 ppm, Tm = 300K , ρ = 0033g/cm3 Material isotopic composition H 8410E-02 O16 4205E-02 B10 0381E-05 B11 2049E-05 H 8410E-02 O16 4205E-02 B10 00 B11 00 H 0362E-02 O16 5181E-02 B10 0800E-05 B11 3744E-05 H 0362E-02 O16 5181E-02 B10 9845E-06 B11 0190E-05 H 0362E-02 O16 5181E-02 B10 00 B11 00 H 1192E-02 O16 5596E-02 B10 00 B11 00 H 7076E-02 O16 3538E-02 B10 0981E-05 B11 2549E-04 Table B 1: Four groups structure with three fast groups and one thermal group Energy (eV) Group 2 Upper 0000E+07 4788E+04 0347E+03 8554E+00 126 Lower 4788E+04 0347E+03 8554E+00 0000E-05 Table B 2: Four groups cross sections of fuel assemblies 127 Group * * * * * * * PRODUCTION * 14E-03 31E-03 53E-02 36E-01 * 05E-03 70E-03 27E-02 40E-01 * 90E-03 19E-03 01E-02 27E-01 * 84E-03 01E-03 00E-03 19E-01 * 61E-03 61E-03 64E-02 36E-01 * 30E-03 24E-03 34E-02 96E-01 * 07E-03 84E-04 11E-02 60E-01 FISSION A1B1A010 52E-03 48E-04 29E-03 59E-02 A1B2A010 46E-03 85E-04 06E-03 43E-02 A1B3A010 40E-03 66E-04 86E-03 72E-02 A1B4A010 37E-03 87E-04 39E-03 36E-02 A2B1A010 61E-03 69E-04 81E-03 26E-02 A2B2A010 51E-03 37E-04 72E-03 86E-02 A2B3A010 43E-03 45E-04 88E-03 57E-02 CAPTURE * 01E-03 42E-03 31E-02 68E-02 * 00E-03 36E-03 40E-02 69E-02 * 90E-04 30E-03 48E-02 42E-02 * 84E-04 27E-03 51E-02 60E-02 * 99E-04 49E-03 41E-02 04E-02 * 93E-04 38E-03 45E-02 28E-02 * 87E-04 31E-03 52E-02 82E-02 ABSORPTION * 53E-03 37E-03 93E-02 27E-02 * 46E-03 05E-03 90E-02 11E-02 * 39E-03 76E-03 86E-02 13E-02 * 36E-03 66E-03 84E-02 96E-02 * 61E-03 05E-03 99E-02 63E-01 * 50E-03 82E-03 92E-02 41E-01 * 42E-03 65E-03 91E-02 24E-01 FISS SPCTR * 98E-01 48E-03 32E-05 00E+00 * 98E-01 51E-03 37E-05 00E+00 * 98E-01 53E-03 43E-05 00E+00 * 98E-01 54E-03 45E-05 00E+00 * 98E-01 52E-03 39E-05 00E+00 * 98E-01 54E-03 45E-05 00E+00 * 98E-01 57E-03 51E-05 00E+00 DIFFUSION1 * 81E+00 42E-01 99E-01 29E-01 * 82E+00 44E-01 99E-01 19E-01 * 84E+00 46E-01 00E-01 11E-01 * 84E+00 47E-01 00E-01 09E-01 * 83E+00 42E-01 97E-01 27E-01 * 84E+00 44E-01 98E-01 10E-01 * 84E+00 46E-01 99E-01 05E-01 g->1 * 43E-01 00E+00 00E+00 00E+00 * 42E-01 00E+00 00E+00 00E+00 * 41E-01 00E+00 00E+00 00E+00 * 41E-01 00E+00 00E+00 00E+00 * 41E-01 00E+00 00E+00 00E+00 * 41E-01 00E+00 00E+00 00E+00 * 40E-01 00E+00 00E+00 00E+00 g->2 * 56E-02 91E-01 00E+00 00E+00 * 54E-02 90E-01 00E+00 00E+00 * 53E-02 89E-01 00E+00 00E+00 * 52E-02 88E-01 00E+00 00E+00 * 51E-02 91E-01 00E+00 00E+00 * 51E-02 90E-01 00E+00 00E+00 * 52E-02 89E-01 00E+00 00E+00 g->3 * 07E-03 99E-01 17E-01 62E-04 * 05E-03 99E-01 17E-01 88E-04 * 04E-03 99E-01 17E-01 87E-04 * 04E-03 99E-01 17E-01 80E-04 * 02E-03 99E-01 17E-01 13E-04 * 03E-03 99E-01 18E-01 43E-04 * 03E-03 99E-01 18E-01 86E-04 g->4 * 00E+00 00E+00 12E-02 93E-01 * 00E+00 00E+00 10E-02 05E-01 * 00E+00 00E+00 08E-02 19E-01 * 00E+00 00E+00 08E-02 25E-01 * 00E+00 00E+00 08E-02 17E-01 * 00E+00 00E+00 07E-02 71E-01 * 00E+00 00E+00 05E-02 99E-01 Table B 3: Four groups cross sections of non fuel materials 128 Group * * * * * PRODUCTION * 00E+00 00E+00 00E+00 00E+00 * 00E+00 00E+00 00E+00 00E+00 * 00E+00 00E+00 00E+00 00E+00 * 00E+00 00E+00 00E+00 00E+00 * 00E+00 00E+00 00E+00 00E+00 FISSION STB1A080 00E+00 00E+00 00E+00 00E+00 STB2A090 00E+00 00E+00 00E+00 00E+00 STB3A0A0 00E+00 00E+00 00E+00 00E+00 H2ORA0H0 00E+00 00E+00 00E+00 00E+00 STEAA0L0 00E+00 00E+00 00E+00 00E+00 CAPTURE * 48E-04 24E-04 28E-03 14E-01 * 15E-04 83E-05 13E-04 72E-02 * 43E-04 18E-04 71E-03 67E-02 * 71E-04 26E-05 41E-04 08E-02 * 13E-03 30E-03 66E-03 60E-01 ABSORPTION * 48E-04 24E-04 28E-03 14E-01 * 15E-04 83E-05 13E-04 72E-02 * 43E-04 18E-04 71E-03 67E-02 * 71E-04 26E-05 41E-04 08E-02 * 13E-03 30E-03 66E-03 60E-01 FISS SPCTR * 00E+00 00E+00 00E+00 00E+00 * 00E+00 00E+00 00E+00 00E+00 * 00E+00 00E+00 00E+00 00E+00 * 00E+00 00E+00 00E+00 00E+00 * 00E+00 00E+00 00E+00 00E+00 DIFFUSION1 * 40E+00 14E-01 71E-01 02E-01 * 91E+00 77E-01 50E-01 03E-01 * 58E+00 36E-01 74E-01 95E-01 * 97E+00 24E-01 82E-01 04E-01 * 32E+00 40E-01 99E-01 10E-01 g->1 * 97E-01 00E+00 00E+00 00E+00 * 35E-02 00E+00 00E+00 00E+00 * 31E-01 00E+00 00E+00 00E+00 * 27E-02 00E+00 00E+00 00E+00 * 48E-01 00E+00 00E+00 00E+00 g->2 * 69E-02 28E-01 00E+00 00E+00 * 11E-01 60E-02 00E+00 00E+00 * 33E-02 89E-01 00E+00 00E+00 * 16E-01 -8 83E-03 00E+00 00E+00 * 29E-03 47E-01 00E+00 00E+00 g->3 * 10E-03 20E-01 53E-01 15E-04 * 74E-03 54E-01 00E-01 65E-04 * 37E-03 35E-01 82E-01 92E-04 * 02E-02 69E-01 76E-01 49E-04 * 06E-06 00E-02 22E-01 32E-04 g->4 * 00E+00 00E+00 87E-02 89E-01 * 00E+00 00E+00 43E-01 08E+00 * 00E+00 00E+00 51E-02 06E+00 * 00E+00 00E+00 49E-01 08E+00 * 00E+00 00E+00 53E-03 15E-01 ... Luận văn trình bày nghiên cứu tối ưu thay đảo nhiên liệu cho lò phản ứng VVER Một chương trình mơ vùng hoạt (LPO-V) phát triển cho lò phản ứng VVER, với phương pháp tìm kiếm tối ưu hóa Chương trình... NGUYÊN TỬ VIỆT NAM T N V P NGHIÊN CỨU TỐI ƯU THAY ĐẢO NHIÊN LIỆU LÒ PHẢN ỨNG HẠT NHÂN VVER- 1000 L U Ậ N Á N T I Ế N S Ĩ V Ậ T L Ý Chuyên ngành: Vật lý Nguyên tử Hạt nhân Mã số: 44 01 06 G o i... VVER- 1000 nạp tải nhiên liệu MOX Kết cho thấy chương trình có độ xác đảm bảo hiệu suất tốt mơ-đun CITATION Hai phương pháp tối ưu hóa tiên tiến phát triển cho toán tối ưu nạp tải nhiên liệu lò

Ngày đăng: 04/04/2022, 15:33

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w