1. Trang chủ
  2. » Luận Văn - Báo Cáo

Small molecule kinase inhibitors for the treatment of brain cancer

37 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 37
Dung lượng 4,33 MB

Nội dung

In addition to each of the factors that govern the identification of a successful oncology drug candidate, drug discovery aimed at treating neurological cancer must also consider the presence of the blood−brain barrier (BBB). The high level of expression of efflux transporters (e.g., Pglycoprotein (Pgp) and breast cancer resistance protein (Bcrp)) at the BBB limits many small molecules from freely reaching the brain, where neurooncologic malignancies reside. Furthermore, many of the targets identified for the potential treatment of central nervous system (CNS) malignancies suggest that kinase inhibitors, capable of penetrating the BBB to reach their target, would be desirable. This Perspective discusses the unmet need for neurooncology treatments, the appeal of kinase targets in this space, and a summary of what is known about free brain penetration of clinical inhibitors of kinases that are of interest for the treatment of brain cancer.

Perspective pubs.acs.org/jmc Small Molecule Kinase Inhibitors for the Treatment of Brain Cancer Timothy P Heffron* Genentech, Inc., DNA Way, South San Francisco, California 94080, United States S Supporting Information * ABSTRACT: In addition to each of the factors that govern the identification of a successful oncology drug candidate, drug discovery aimed at treating neurological cancer must also consider the presence of the blood−brain barrier (BBB) The high level of expression of efflux transporters (e.g., P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp)) at the BBB limits many small molecules from freely reaching the brain, where neurooncologic malignancies reside Furthermore, many of the targets identified for the potential treatment of central nervous system (CNS) malignancies suggest that kinase inhibitors, capable of penetrating the BBB to reach their target, would be desirable This Perspective discusses the unmet need for neurooncology treatments, the appeal of kinase targets in this space, and a summary of what is known about free brain penetration of clinical inhibitors of kinases that are of interest for the treatment of brain cancer ■ BACKGROUND Neurooncology encompasses the study of tumors that originate in the brain (e.g., glioblastoma multiforme (GBM)) as well as brain metastases In 2015, it was anticipated that more than 21 000 new cases of malignant brain and central nervous system (CNS) cancers would be diagnosed in the United States that year.1 Among malignant brain tumors, the most common is GBM which has an associated poor prognosis (3-year survival rate 3−5%).2 Despite the apparent unmet medical need, there has been little progress in developing new treatments for GBM Most evaluations of chemotherapeutics in GBM have failed Currently, the alkylating agents temozolomide (approved 2005) and the carmustine-based Gliadel wafer (approved 1996) are the only chemotherapeutics that are FDA approved for the treatment of newly diagnosed GBM Other neurological cancers have similarly limited drug treatment options In addition to the need for more treatment options for primary brain tumors, metastasis of tumors to the CNS occurs from as many as 40% of peripheral tumors, with well over 100 000 cases per year.3 When a kinase inhibitor is used for the treatment of peripheral disease, such CNS metastasis is a risk as a mechanism of emergent resistance if that inhibitor is not freely CNS penetrant In this scenario, treatment of a tumor with drug is effective until disease progression occurs in the CNS, where drug concentrations are limited As an example of the significance of the challenge presented by resistance due to CNS metastases, 14% of patients with HER2-positive breast cancer treated with pertuzumab had first evidence of disease progression due to CNS metastasis, evidently as a result of the inability of pertuzumab to cross the blood−brain barrier (BBB).4 Unfortunately, as discussed below, this scenario is not limited to HER2-positive disease treated with a therapeutic antibody but also happens with numerous FDA approved small molecule kinase inhibitors that not penetrate the CNS © 2016 American Chemical Society For CNS metastases, prognosis is generally poor and chemotherapy is useful only in limited settings,5 furthering the unmet need for new chemotherapeutics for malignancy in the CNS While primary brain tumors and brain metastases are distinct disease manifestations and may require targeting different drivers of disease, for the medicinal chemist, the approach to treating each of these indications requires the same considerations of the BBB, which typically limits small molecule penetration to the CNS where brain tumors reside Furthermore, for both primary and secondary brain tumors there is biological rationale to develop BBB penetrating kinase inhibitors While there have been 32 kinase inhibitors approved for the treatment of cancers that reside outside the CNS, no kinase inhibitor has been approved for the treatment of primary CNS tumors, while alectinib (61) has recently received accelerated approval to treat patients including those with brain metastases One reason for the lack of approved kinase inhibitors for treating brain tumors is that in order to effectively treat brain tumors, the kinase inhibitor must be capable of reaching its target Therefore, the kinase inhibitor must effectively cross the BBB As will be discussed below (and included as Supporting Information), the majority of approved kinase inhibitors and kinase inhibitors that have advanced to clinical study have no report of CNS penetration, reportedly limited CNS penetration, or CNS penetration that is expected to be limited due to the action of the efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) When considering potential therapeutics for the treatment of brain cancer, it is frequently asserted that because of disruption of the BBB by primary tumors or metastases in the brain, Received: April 21, 2016 Published: July 14, 2016 10030 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective molecules are not strong substrates of P-gp or Bcrp, efflux transporters highly expressed at the BBB.8,10 Small molecules that are significant substrates of P-gp are anticipated to have limited free CNS penetration, and in the discussion of clinical kinase inhibitors below, molecules that are reported to be P-gp substrates are suggested to likely have limited CNS penetration For medicinal chemists interested in kinase inhibitors to treat brain cancer, avoidance of P-gp transport must be a focus so as to maximize Kp,uu Considerations in the design of kinase inhibitors (or any small molecule) to limit transporter mediated efflux include a number of physicochemical properties that can be prospectively calculated Among the most critical properties to consider are the reported correlations between topological polar surface area (TPSA) and/or the number of hydrogen bond donors (HBD) and the likelihood of P-gp mediated efflux.8 ATP-competitive small molecule kinase inhibitors generally employ hydrogen bonding interactions with the hinge of the kinase, and oftentimes multiple hydrogen bond donors are utilized.11 As a result of the common use of frequent hydrogen bond donors within kinase inhibitors, overcoming the physicochemical property restraints that predict efflux while maintaining other desirable attributes of kinase inhibitors, including potency, is a challenge Indeed, a comparison of the median values of physicochemical properties of 119 CNS approved drugs12 with those for the 34 kinase inhibitors approved for clinical use (all indications) reveals significant disparities (Table 1) Whereas CNS drugs have a median value of HBD, consideration of the BBB is not relevant However, while it may be true that a tumor can disrupt the BBB, it generally does so just partially and significant literature reports indicate the importance of the BBB in limiting drug penetration to its intended target even when a tumor causes such partial disruption.6 Additionally, GBM in particular is noted to grow in a diffuse manner in which a significant portion of the tumor grows behind an intact BBB, and so without effective drugs that are capable of freely crossing that barrier the tumor progresses.7 That GBM grows in such a manner so as to remain behind an intact BBB punctuates the need for small molecules to be able to penetrate that barrier if they are to have potential to effectively treat that disease With an understanding of the importance of free BBB penetration for drugs targeting brain cancer, neurooncology medicinal chemistry programs have much in common with programs for other CNS diseases Fortunately, in recent years there has been a much improved appreciation for the requirement to achieve sufficient free drug concentration in the brain, if that is where the target resides A recent Perspective provides an excellent review of the concepts of free brain penetration that are essential to CNS and neurooncology programs alike and pertinent to the remainder of the discussion within.8 Succinctly, it is important to note that it is critical that kinase inhibitors that are intended to treat brain tumors achieve therapeutically beneficial f ree drug concentrations in the brain Indeed, a recent conference on CNS cancer drug discovery and development emphasized the need for neurooncology programs to focus on achieving free brain penetration.9 To assess in preclinical studies whether effective therapeutic concentrations of a molecule cross the BBB, and therefore whether it has a realistic chance of achieving efficacy by the intended mechanism, some assessment of free brain or, as a surrogate, cerebral spinal fluid (CSF) concentrations is needed.8 To assess the extent to which a small molecule freely penetrates the BBB (as opposed to just achieving a target free concentration in the brain), a comparison of free brain or CSF concentrations to free plasma concentrations is needed (Kp,uu) It is worth noting here that in the discussion of free brain penetration of clinical kinase inhibitors found below, the target therapeutic concentration is not often available, and so an assessment of free CNS penetration (Kp,uu or free brain-to-free plasma concentration ratios), where available, is utilized for an assessment Where such values were available, we considered values of 0.3 demonstrate a significant degree of free CNS penetration In principle, therapeutic free concentration of drug might be able to penetrate the BBB even with very low Kp,uu values In order for this to occur, however, there would need to be a corresponding increase in systemic exposure that might increase risk of unintended side effects To illustrate, a kinase inhibitor with a Kp,uu of 0.1 would require 10 times the sytemic exposure to achieve a therapeutic benefit in the brain compared to a kinase inhibitor equivalent in all aspects except for a Kp,uu of 1.0 When targeting CNS disease, then, the importance of maximizing Kp,uu is a significant consideration and likely to impact the safety/tolerability of a molecule at doses required to achieve therapeutically beneficial free concentrations in the CNS With an understanding of the importance of achieving free CNS penetration with molecules intended for the treatment of brain cancers, a paramount requirement for achieving significant free drug concentrations behind the BBB is that the small Table Comparison of Median Values of Physicochemical Properties for Kinase Inhibitors Approved for Clinical Use and 119 Drugs Approved for CNS Indications a b median property value approved kinase inhibitors (n = 34)a CNS drugs (n = 119)b cLogP cLogD7.4 TPSA (Å2) HBD MW pKa 4.2 3.6 91 483 7.0 2.8 1.7 45 305 8.4 Kinase inhibitors approved for any indication through 2015.13 Marketed CNS drugs Values obtained from ref 12 approved kinase inhibitors have Additionally, approved kinase inhibitors have a median TPSA value double that of approved CNS drugs Kinase inhibitors also tend to have significantly higher MW and lipophilicity than CNS drugs For more than 30 years, kinase inhibitors have been the focus of significant pharmaceutical pursuit and the appeal of kinase inhibitors as potential therapeutics extends to the treatment of brain tumors and metastases.14 While the nature of kinase inhibitors, particularly ATP competitive versions, may have some constraints on physical properties to achieve potency that are contrary to what is typical for CNS drugs, realizing potent kinase inhibitors that are capable of significant free brain penetration is possible However, free brain penetration has not been a design consideration for many kinase inhibitor programs and in some cases may have been intentionally avoided.15 Even when intentionally seeking potent and freely BBB penetrant kinase inhibitors, there are, of course, limitations to available in vivo brain cancer disease models in which such molecules can be studied and none “fully reflects human 10031 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective Table Structures and Key Properties for VEGFR and PDGFR Inhibitors Advanced to Clinical Study for Brain Cancera 10032 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective Table continued a Properties for 119 marketed CNS drugs are included for comparison *Median value of 119 marketed CNS drugs.12 gliomas.”16 As an example, the U87 model of glioblastoma is a frequently studied GBM model used in orthotopic mouse xenograft studies The use of the U87 model to assess whether or not a molecule has potential in the treatment of brain cancer is limited, however, as it is known to maintain a highly disrupted BBB, not relevant to clinical disease, and not to grow in the diffuse manner observed in human patients in which the tumor invades healthy brain with an intact BBB.17 For this reason, the U87 and potentially other models may overestimate the likelihood that an agent may provide therapeutic benefit in human GBM patients To understand whether the drug is capable of reaching its target in brain tissue, an evaluation of free brain-to-plasma ratios, free brain concentrations, change in brain concentration between wild-type mice and transporter knockout mice, or at least assessment of whether it is a substrate of P-gp or Bcrp is desirable The basis for the interest in kinase inhibitors to treat brain tumors begins with the underlying biology of CNS malignancy In the following sections, individual kinase targets with relevance in CNS malignancy are introduced In many cases kinase inhibitors have been studied in clinical trials of patients with brain tumors or metastases without success However, in many of those cases limited CNS penetration of the kinase inhibitor may have contributed to a lack of efficacy We identify clinical kinase inhibitors for the kinase targets, and within each section on a given kinase target, available data related to brain penetration of any clinical inhibitors of that target are summarized In the few cases where BBB penetrating inhibitors of a kinase target for brain cancer are reported, the medicinal chemistry efforts leading to this profile are discussed Ultimately, we summarize whether or not clinical brain penetrant inhibitors of kinase targets of interest for neurooncology are available Finally, a comparison of the physical properties of clinical CNS penetrant kinase inhibitors for brain cancer with those that have limited CNS penetration reveals remarkable similarity, and disparity from properties of CNS drugs its high expression in this context.20 Indeed, at least 14 inhibitors of VEGFR and/or PDGFR have been evaluated for their potential in the treatment of CNS tumors (Table 2), yet an unfortunate few would be expected to freely penetrate the BBB to reach such tumors Cediranib (1, Table 2)21 and pazopanib (2, Table 2)22 have been studied in phase II and phase III trials in GBM patients but did not show a survival benefit.23,24 The diffuse nature of GBM vasculature growth would require effective penetration of brain tissue by the inhibitors to maximize efficacy However, both cediranib and pazopanib have been reported to be substrates of both P-gp and Bcrp in vitro and these transporters were found to limit brain exposure in mice.25,26 Like cediranib and pazopanib, sunitinib (3),27 sorafenib (4),28 nintedanib (5),29 tivozanib (6),30 and dovitinib (7)31 were each ineffective in clinical GBM studies.32−36 Sunitinib, sorafenib, and nintedanib each are likely to have limited CNS penetration, as they are substrates of P-gp and/or Bcrp, whereas data are not available for tivozanib or dovitinib.37−39 Furthermore, for sorafenib, another study suggests that patients treated with renal cell carcinoma treated with sorafenib progress due to metastases only observed in the CNS, suggesting a sanctuary from drug due to lack of BBB penetration.40 Regorafenib (8, Table 2) demonstrated an effect in a rat model of glioblastoma41 and, accordingly, advanced to clinical studies for the treatment of GBM.42 While results are not available, efflux transport may limit free concentrations of regorafenib behind the BBB as the molecule is a substrate of P-gp and Bcrp and in P-gp/Bcrp knockout mice a 5.5-fold increase in brain concentration was achieved when compared to wild type mice at the same time point.43 The PDGFR-β, c-KIT, and Flt3 inhibitor tandutinib (9, Table 2) was found to be a substrate of both P-gp and Bcrp, which limits brain exposure in mice.44 Still, tandutinib was advanced to a phase I clinical trial in patients with GBM In that study, brain concentrations in patients were determined, and a mean brain-to-plasma ratio (total) in these patients was determined to be 0.33 However, no free brain-to-free plasma ratios or free brain concentration data from subsequent studies have been reported, and so no conclusion can be made about whether or not sufficient target engagment was achieved.45 After demonstrating in vivo efficacy in three different orthotopic GBM models in mice,46 axitinib (10, Table 2)47 encouragingly demonstrated activity in a phase II study of patients with GBM.48 However, it remains possible that the extent of benefit derived from axitinib treatment of GBM, where some tumor typically resides behind an intact BBB, may be limited due to the fact that axitinib is a significant substrate of P-gp and Bcrp This was demonstrated in mouse pharmacokinetic studies in which P-gp/Bcrp knockout mice had ■ VEGFR AND PDGFR Inhibition of angiogenesis has been established as a beneficial approach to treating cancer, and the potential of this approach to cancer treatment extends to cancers in the CNS.18 Targeting vascular endothelial growth factor receptors (VEGFRs) has been suggested to be of particular interest for the potential treatment of neurological tumors, as it is a known driver of angiogenesis in CNS tumors and found to be overexpressed in this setting, particularly the highly vascularized GBM.19 Additionally, platelet derived growth factor receptor (PDGFR), a kinase frequently inhibited by VEGFR inhibitors, has been identified as a potential target for the treatment of GBM due to 10033 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective of our knowledge, there are no reports of preclinical in vivo studies describing free brain exposure or clinical study results evaluating brivanib for the treatment of CNS tumors However, consistent with its lack of P-gp transport, cabozantinib has undergone a phase II study for the treatment of GBM and demonstrated some clinical and pharmacodynamic activity.62 Among the 15 VEGFR/PDGFR inhibitors discussed here and included in Table 2, just two have been reported to have minimal P-gp mediated efflux, of importance when targeting CNS malignancy That two, cabozantinib and brivanib, are able to minimize P-gp transport demonstrates that it is possible to achieve with still potent kinase inhibitors and enables assessment of the validity of the hypothesis that inhibiting their targets might be an effective treatment approach for GBM 14- and 21-fold increases in brain concentration at and h postdose when compared to wild type mice.49 Vandetanib (11, Table 2)50 and lenvatinib (12, Table 2)51 are additional VEGFR inhibitors that have advanced to clinical studies to treat GBM52,53 despite being reported substrates of P-gp.54,55 The ability to achieve efficacious free concentrations in the brain is a concern as P-gp efflux is anticipated to limit drug penetration to portions of tumor where the BBB remains intact Whether or not vatalanib (13, Table 2)56 is a substrate of P-gp or Bcrp in vitro has not been reported, and there are not reports of brain penetration of this molecule either preclinically or clinically Vatalanib was studied in phase I clinical trials in patients with glioma or GBM, but development of the molecule was halted prior to complete assessment in this patient population.57 Cabozantinib (14, Table 2)58 and brivanib (15, Table 2)59 stand out among the VEGFR inhibitors discussed here, as they are reported to not be substrates of P-gp transport, suggestive of their potential in the neurooncology setting.60,61 To the best ■ EGFR The initial success of the epidermal growth factor receptor (EGFR) inhibitors erlotinib (16, Table 3)63 and gefitinib (17, Table 3)64 in the treatment of EGFR mutant non-small-cell Table Structures and Key Properties for EGFR Inhibitors Advanced to Clinical Studya a Properties for 119 marketed CNS drugs are included for comparison *Median value of 119 marketed CNS drugs.12 10034 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective lung cancer (NSCLC) was followed by the approval of afatinib (18, Table 3)65 and more recently osimertinib (19, Table 3).66 In addition to their use in the treatment of NSCLC, erlotinib and gefitinib have been evaluated for the treatment of NSCLC brain metastases that harbor activating mutations of EGFR Despite some reported benefit of EGFR inhibitor treatment of EGFR mutant NSCLC brain metastases,67 it is also reported that such molecules are not as effective in the treatment of brain metastases as peripheral metastases, suggesting limited CNS penetration.68 In this scenario, the inhibitor may be able to effectively treat some, or a portion of, individual metastases where the BBB is compromised, yet lesions behind the BBB continue to grow Consistent with this theory, PET imaging of 11 C-erlotinib showed accumulation of drug in a brain metastasis but not in normal brain tissue These data suggest that where the BBB is intact, a “sanctuary” for tumor remains.69 That erlotinib was not capable of freely crossing the BBB was also established in a preclinical model of glioma.70 Gefitinib, afatinib, and osimertinib have each also been reported to be substrates of both P-gp and Bcrp, and so brain penetration of those EGFR inhibitors is expected to be limited.71−73 Nevertheless, what free concentration of afatinib that is capable of reaching CNS metastases in EGFR mutant-positive NSCLC has demonstrated benefit clinically.74 The interest in EGFR inhibitors for treating CNS cancer extends beyond brain metastases in NSCLC to GBM treatment In the most common and aggressive form of brain cancer, GBM, overexpression of EGFR is encountered in approximately 40% of patients and half of these have an associated extracellular mutation of EGFR (variant III).75 These factors suggest the potential utility of a brain penetrant EGFR inhibitor Several small molecule EGFR inhibitors, including gefitinib and erlotinib, have been approved for use in EGFR mutant NSCLC but, despite clinical study, have not resulted in approval for the treatment of gliomas.76 Investigation of brain penetrant inhibitors of EGFR would therefore be of interest For rociletinib (20, Table 3)77 no associated P-gp efflux or brain penetration data have been reported However, recently there have been two reports of EGFR inhibitors that, while maintaining the quinazoline core of earlier EGFR inhibitors, were reportedly designed to effectively penetrate the BBB to allow for effective treatment of CNS disease The first, NT113 (21, Table 3), a pan-ERBB inhibitor, demonstrated efficacy in intracranial GBM xeongrafts, including those with high EGFR vIII expression.78 A limitation in the characterization of 21 is that, while brain-to-plasma ratios are reported, no free brain concentrations or free brain-to-free plasma ratios are reported, limiting the interpretation of just how effectively this molecule penetrates the BBB Nevertheless, in intracranial GBM xenograft studies, 21 was more efficacious than either erlotinib or lapatinib, potentially indicating some improved degree of effective CNS penetration A second recently disclosed quinazoline-based clinical EGFR inhibitor intended to cross the BBB is AZD3759 (22, Table 3).79 The disclosure of 22 describes the directed effort toward specifically identifying a brain penetrating inhibitor of EGFR for the treatment of CNS tumors, particularly CNS metastases that arise in the course of treatment of EGFR mutant NSCLC In order to achieve the excellent brain penetration that 22 realizes compared to gefitinib (Figure 1), improving physical properties to reduce transporter mediated efflux was emphasized in the optimization effort In this case, the number of rotatable bonds had an apparent correlation with Figure Structural modifications upon gefitinib (17), focused on reducing rotatable bonds and effective hydrogen bond donors, led to the freely BBB penetrating inhibitor of EGFR, 22 efflux, and reduction of rotatable bonds, when compared to gefitinib, resulted in reduced transporter mediated efflux Furthermore, the fluorine atom of gefitinib was moved to be positioned next to the NH of the aniline in 22 (Figure 1) This positioning allows for intramolecular interaction of the F atom with the NH, thereby “masking” the HBD, commonly associated with increased transporter mediated efflux The structural modifications relative to gefitinib did not have an apparent detrimental impact on potency, as 22 and gefitinib are reported to have the same potency in a cellular assay employing an L858R EGFR mutant cell line, suggesting its potential in the treatment of NSCLC with EGFR mutant positive brain metastases The team at AstraZeneca demonstrated the effective penetration of 22 across the BBB in preclinical species by reporting both Kpuu,brain and Kpuu,CSF values that show that the molecule achieves equivalent free concentrations on each side of the barrier in rats The scientists at AstraZeneca went on to show extensive penetration of 22 into monkey brain in PET imaging studies 22 also demonstrated remarkable efficacy in an in vivo model of brain metastasis In this model, 22 clearly differentiates itself from erlotinib, which was not efficacious when administered at the same dose level as 22 While EGFR has been a long-standing target in GBM, previous molecules have not allowed for clinical conclusion on the validity of the target as transporter mediated efflux does not allow them to freely penetrate the BBB to where tumors reside The recent emergence of 21 and, particularly, 22 highlights an exciting opportunity to study inhibition of a known driver of a significant percentage of GBM cases and NSCLC brain metastases 21 and 22 are also part of a very limited set of kinase inhibitors reportedly specifically designed for the treatment of brain cancer ■ PI3K/AKT/mTOR In addition to targeting EGFR directly, another approach to treat GBM would be to target downstream kinases The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) kinases comprise one such pathway and are implicated in a significant percentage of GBM and neuroblastoma cases.80−83 Targeting the PI3K/AKT/mTOR pathway is also suggested as a mechanism to treat human epidermal growth factor receptor (HER2)-positive brain metastases.84 As a result of this biological implication and the pursuit of inhibitors of this pathway for other tumors, a number of agents have advanced to clinical trials in GBM patients.85 As the inhibitors of the PI3K/AKT/mTOR pathway have been reviewed in this context previously,85 we provide here a brief summary organized according to primary target of the inhibitor Of the many PI3K/mTOR inhibitors that have entered clinical study, GDC-0084 (25),86 buparlisib (26),87 PX-866 (28),88 10035 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective Table Structures and Key Properties for PI3K Inhibitors Advanced to Clinical Study for Brain Cancer or FDA Approveda a Properties for 119 marketed CNS drugs are included for comparison *Median value of 119 marketed CNS drugs.12 Figure Modifications of PI3K/mTOR inhibitors that resulted in the discovery of 25, a brain penetrating inhibitor with desirable metabolic stability pilaralisib (29),89 and XL765 (30)90 have been part of trials specifically for GBM (Table 4).83 Buparlisib has also advanced to clinical studies for the treatment of breast cancer patients with brain metastases.91 However, among these, only 25 was apparently designed to ensure significant free brain penetration In order to realize 25, a program was initiated to purposefully identify a PI3K/mTOR inhibitor capable of crossing the BBB so that it would be amenable to treating GBM These studies began with GNE-493 (23)92 as a starting point which was a potent inhibitor of PI3K and mTOR but was a substrate of P-gp and Bcrp (Figure 2).86 In order to realize brain penetrant analogs, the importance of reducing the number of hydrogen bond donors in 23 was identified as critical To further predict the likelihood of P-gp and Bcrp mediated efflux, as well as metabolic stability, in silico evaluations were used to prospectively evaluate designs From these efforts GNE-317 (24, Figure 2) was first identified which demonstrated that a brain penentrant PI3K inhibitor differentiated from a PI3K inhibitor that does not penetrate the BBB (2-(1H-indazol-4-yl)-6-(4-methanesulfonylpiperazin-1-ylmethyl)-4-morpholin-4-ylthieno[3,2-d]pyrimidine (GDC-0941),93 not shown) in that it had a PD effect in normal brain tissue and had improved efficacy in in vivo brain tumor models.94 24 was found to have unacceptable projected human clearance and so was further optimized to 25 (Figure 2), a molecule 10036 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective The inhibitors 28, pilaralisib (29), and 30 have each progressed to clinical trials for the treatment of GBM, but there has not been a report of whether brain penetration was a design consideration or if these molecules penetrate the BBB The PI3K and PI3K/mTOR inhibitors discussed above inhibit each of the class I PI3K isoforms (α, β, δ, and γ) However, the only as yet approved PI3K inhibitor is idelalisib (31), a selective inhibitor of the δ isoform of PI3K.99 Idelalisib is approved for the treatment of chronic lymphocytic leukemia We were unable to identify any indications that CNS tumor progression is a mechanism of resistance to idelalisib This is a potential risk, as idelalisib is reported to not penetrate the BBB,100 consistent with the disclosure that it is a substrate of both P-gp and Bcrp.101 Among mTOR inhibitors, the mTORC1 inhibitors everolimus (32), temsirolimus (33), and sirolimus (34) are FDA approved agents (Table 5).102 Each of these molecules has been studied in patients with GBM but has not provided benefit.83 Perhaps insufficient brain penetration is a contributing factor to that is of comparable potency and has similar ability to cross the BBB to 24 but was projected to have more desirable human pharmacokinetic properties The ability of 25 to potently inhibit PI3K/mTOR signaling in the brain, along with its desirable projected human pharmacokinetic profile, led to its advancement to clinical trials for the treatment of GBM The report of the discovery of buparlisib (26) does not indicate that achieving brain penetration was a design consideration.87 However, in subsequent reports buparlisib has been reported to effectively cross the BBB and inhibit PI3K pathway signaling in preclinical95 and early clinical studies in patients with recurrent GBM.96 Unfortunately and despite inhibition of PI3K signaling in patient tumors, there was not substantial efficacy Additionally, buparlisib has been reported to cause mood changes, a side effect not observed with other PI3K inhibitors in the clinical setting.84 The structurally related dual PI3K/mTOR inhibitor PQR309 (27) is reported to not be a substrate of P-gp97 and achieves equivalent brain and plasma concentrations,98 although free concentrations were not reported Table Structures and Key Properties for mTOR Inhibitors Advanced to Clinical Study for Brain Cancera a Properties for 119 marketed CNS drugs are included for comparison *Median value of 119 marketed CNS drugs.12 10037 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective free brain concentrations, suggesting opportunity remains for AKT inhibitors that might be used to treat brain cancers the lack of efficacy, as everolimus and sirolimus are reported to be substrates of P-gp (and temsirolimus is a prodrug of sirolimus).103 AZD2014 (35)104 and CC-223 (36)105 are mTORC1/2 inhibitors that have advanced to GBM clinical trials.106,107 For 35, there is no indication of whether the molecule penetrates the BBB.108 In a clinical study of 36, GBM tumor-to-plasma ratios ranged from 16% to 77%.107 However, it is not possible to ascertain if sufficient concentrations to expect efficacy are achieved as free concentrations were not reported, including where the BBB is intact Most encouraging of the clinical mTOR inhibitors from the perspective of trying to treat brain cancer, palomid 529 (37) has been reported to effectively cross the BBB as brain concentrations were similar in pharmacokinetic experiments comparing wild type mice and P-gp knockout mice.109 This makes 37 one of a small set of clinical kinase inhibitors (the only apparent mTOR inhibitor) where limited brain penetration would not be a principal factor in limiting conclusion on the value of a target In addition to the inhibition of PI3K and mTOR, inhibition of AKT has received significant attention in this pathway.110 Among the clinical AKT inhibitors perifosine (38),111 8-(4-(1aminocyclobutyl)phenyl)-9-phenyl[1,2,4]triazolo[3,4-f ][1,6]naphthyridin-3(2H)-one (MK-2206, 125),112 PBI-05204 (39),113 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl3-butyn-2-ol (GSK690693),114 uprosertib,115 XL-418 (structure not disclosed), (S)-2-(4-chlorophenyl)-1-(4-((5R,7R)-7-hydroxy5-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)piperazin1-yl)-3-(isopropylamino)propan-1-one (GDC-0068),116 and 3-(3-(4-(1-aminocyclobutyl)phenyl)-5-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine (ARQ-092),117 we were only able to identify some indication of the likelihood of brain penetration, or advancement to a clinical study for use in brain cancer, for perifosine and 39 (Table 6) Ultimately, the allosteric AKT inhibitor perifosine was part of a trial in GBM patients but did not demonstrate efficacy,83 consistent with limited (total) brain penetration preclinically.118 In a preclinical study of 39, significant total brain concentrations were achieved in rats but no assessment of free concentration was determined.119 Additionally, for 125, a trial of GBM patients was deemed not suitable due to “questions regarding the ability of the drug to pass through the blood−brain barrier”.83 Achieving brain penetration was not an apparent design consideration for any clinical AKT inhibitor, and no clinical AKT inhibitor is conclusively capable of achieving signficant ■ FGFR Fibroblast growth factor receptor (FGFR) kinase has been suggested as a potential target for the treatment of brain cancer,120,121 and numerous FGFR inhibitors have entered clinical development.122 As many of the FGFR inhibitors are nonselective, with many inhibiting VEGFR and PDGFR (discussed above), the focus of this section is limited to selective FGFR inhibitors that have entered clinical development (Table 7).123 Those inhibitors include AZD4547 (40),124 infigratinib (41),125 erdafitinib (42),126 CH5183284 (43),127 and ARQ 087 (structure not available) Of these, infigratinib has advanced to clinical studies in patients with GBM.128 However, we were unable to identify any data that suggest infigratinib is capable of penetrating the BBB Similarly, we were unable to identify data informing the potential of erdafitinib, 40, or 43 to freely cross the BBB On the other hand and of interest for its potential for the treatment of brain cancer, ARQ 087 was reported to achieve free brain-to-free plasma concentration ratios of about 0.1 in rats.129 ■ IGF-1R Type I insulin growth factor receptor (IGF-1R) has been identified as a potential target for the treatment of brain cancers,120,130 and numerous IGF-1R inhibitors have advanced to clinical trials.131 Among the clinical IGF-1R inhibitors (Table 8) linsitinib (44),132 BMS-754807 (45),133 BVP-51004 (46),134 XL-228 (47),135 and INSM-18 (48),136 there is no indication that achieving CNS penetration was a design consideration 45 was demonstrated to have limited total brain penetration in mouse studies,137 and 48 is believed to be a substrate of P-gp.138 We were unable to identify data related to efflux transport or brain penetration of the other IGF-1R inhibitors Unfortunately, the available data suggest that no clinical IGF-1R inhibitors are suitable to evaluate whether inhibition of this target would be beneficial for brain cancer treatment ■ CDKs In addition to aberrant EGFR and PI3K signaling pathways, activation of cyclin-dependent kinases (CDK) and is observed in a majority of GBM cases.82,139 Furthermore, CDK4/6 amplification is frequently observed in diffuse intrinsic pontine gliomas, a cancer of the brainstem.140 Among CDK4/6 inhibitors, Table Structures and Key Properties for Select AKT Inhibitors Advanced to Clinical Studya a Properties for 119 marketed CNS drugs are included for comparison *Median value of 119 marketed CNS drugs.12 10038 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective Table Structures and Key Properties for FGFR Inhibitors Advanced to Clinical Studya a compd primary kinase target HBD TPSA (A2) cLogP MW 40 41 42 43 CNS drugs* FGFR FGFR FGFR FGFR N/A 91 95 77 105 45 4.4 4.7 4.3 3.4 2.8 464 560 447 356 305 preclinical assessment of brain penetration no no no no data data data data reported reported reported reported Properties for 119 marketed CNS drugs are included for comparison *Median value of 119 marketed CNS drugs.12 Table Structures and Key Properties for IGF-1R Inhibitors Advanced to Clinical Studya a Properties for 119 marketed CNS drugs are included for comparison *Median value of 119 marketed CNS drugs.12 palbociclib (49, Table 9)141 is approved for the treatment of hormone-receptor positive breast cancer Regarding its potential for the treatment of brain cancer, palbociclib was demonstrated to provide a survival benefit in a genetic mouse model of brainstem glioma.142 Preclinical studies in three intracranial mouse models of GBM showed that palbociclib was efficacious either as a single agent or in combination with radiation.143 However, palbociclib was found at 25-fold higher concentration in tumor than in normal brain tissue, suggesting that the molecule has limited penetration into the brain and the BBB is compromised at the core of the tumor but not in normal brain tissue Therefore, despite the reports of efficacy in brain cancer models, palbociclib may have free brain concentrations below what is needed for efficacy in tumors where the BBB is intact This would be consistent with being a substrate of P-gp,144 and ultimately an assessment of free brain concentrations or Kpuu,brain is necessary to draw a conclusion about the merits of palbociclib for use in brain cancer Like palbociclib, abemaciclib (50)145 is reported to be a substrate of both P-gp and Bcrp.146 However, in mice and rats, Kpuu,brain is measurable at at least 0.2 and, while perhaps a model of modest utility, abemaciclib demonstrated efficacy in an orthotopic U87 GBM model in rats.146,147 While there is potential to further increase free brain penetration, given that some free brain exposure is attained with abemaciclib, it is encouraging that a trial studying abemaciciblib in breast cancer, 10039 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective protein kinase B; mTOR, mammalian target of rapamycin; HER2, human epidermal growth factor receptor 2; FGFR, fibroblast growth factor receptor; IGF-1R, type I insulin growth factor receptor; CDK, cyclin-dependent kinase; ALK, anaplastic lymphoma kinase; MEK, mitogen activated protein kinase; PLK, Polo-like kinase; PKC, protein kinase C; Ph+, Philadelphia chromosome positive; CML, chronic myeloid leukemia; ALL, acute lymphoblastic leukemia; FAK, focaladhesion kinase; Pyk2, proline rich tyrosine kinase 2; TGFβ-R, transforming growth factor receptor β; BTK, Bruton’s tyrosine kinase; MCL, mantle cell lymphoma; ATM, ataxia telangiectasia mutated of brain metastases is expected when the treatments are not BBB penetrant (e.g., ALK, HER2, EGFR, etc.) Whereas in discovery programs brain penetration might be considered a liability for potential CNS safety reasons, limiting brain penetration might ultimately result in a resistance mechanism clinically via brain metastasis In this scenario, best-in-class opportunities may emerge where brain penetrating kinase inhibitors can be realized Whether for primary brain cancers or brain metastases, that so few kinase inhibitors have been reportedly designed to achieve CNS penetration suggests that the lack of advancement in the treatment of brain cancers has been at least in part due to lack of directed effort with an appreciation of free drug principles At the same time, that CNS penetrant inhibitors of various kinases have been identified, and specifically designed and realized, demonstrates that success in this area can be achieved, even if the physicochemical properties of kinase inhibitors and those of CNS drugs at first appear at odds The clear medical need, biological rationale, and improved appreciation for free drug principles provide an impetus and framework to properly approach the challenge of discovering and developing kinase inhibitors for brain cancer ■ ■ ASSOCIATED CONTENT S Supporting Information * The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.6b00618 Calculated physicochemical properties of FDA approved kinase inhibitors and of discussed inhibitors that are capable of penetrating the BBB or have limited CNS penetration (PDF) ■ REFERENCES (1) Ostrom, Q T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N E.; Kruchko, C.; Barnholtz-Sloan, J S CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006−2010 Neuro-Oncology 2013, 15 (Suppl 2), 1−56 (2) Krex, D.; Klink, B.; Hartmann, C.; von Deimling, A.; Pietsch, T.; Simon, M.; Sabel, M.; Steinbach, J P.; Heese, O.; Reifenberger, G.; Weller, M.; Schackert, G Long-term survival with glioblastoma multiforme Brain 2007, 130, 2596−2606 (3) Patchell, R A The management of brain metastases Cancer Treat Rev 2003, 29, 533−540 (4) Swain, S M.; Baselga, J.; Miles, D.; Im, Y.-H.; Quah, C.; Lee, L F.; Cortes, J Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: results from the randomized phase III study CLEOPATRA Ann Oncol 2014, 25, 1116−1121 (5) (a) Mehta, M P.; Paleologos, N A.; Mikkelsen, T.; Robinson, P D.; Ammirati, M.; Andrews, D W.; Asher, A L.; Burri, S H.; Cobbs, C S.; Gaspar, L E.; Kondziolka, D.; Linskey, M E.; Loeffler, J S.; McDermott, M.; Olson, J J.; Patchell, R A.; Ryken, T C.; Kalkanis, S N The role of chemotherapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline J Neuro-Oncol 2010, 96, 71−83 (b) Owonikoko, T K.; Arbiser, J.; Zelnak, A.; Shu, H.-K G.; Shim, H.; Robin, A M.; Kalkanis, S N.; Whitsett, T G.; Salhia, B.; Tran, N L.; Ryken, T.; Moore, M K.; Egan, K.; Olson, J J Current approaches to the treatment of metastatic brain tumors Nat Rev Clin Oncol 2014, 11, 203−222 (6) (a) Steeg, P S.; Camphausen, K A.; Smith, Q R Brain metastases as preventive and therapeutic targets Nat Rev Cancer 2011, 11, 352−363 (b) Sledge, G W Heading in a new direction: drug permeability in breast cancer brain metastasis Clin Cancer Res 2010, 16, 5605−5607 (c) Lockman, P R.; Mittapalli, R K.; Taskar, K S.; Rudraraju, V.; Gril, B.; Bohn, K A.; Adkins, C E.; Roberts, A.; Thorsheim, H R.; Gaasch, J A.; Huang, S.; Palmien, D.; Steeg, P S.; Smith, Q R Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer Clin Cancer Res 2010, 16, 5664−5678 (d) Henson, J W.; Cordon-Cardo, C.; Posner, J B P-glycoprotein expression in brain tumors J Neuro-Oncol 1992, 14, 37−43 (e) Demeule, M.; Shedid, D.; Beaulieu, E.; Del Maestro, R F.; Moghrabi, A.; Ghosn, P B.; Moumdijian, R.; Berthelet, F.; Beliveau, R Expression of multidrugresistance P-glycoprotein (MDR1) in human brain tumors Int J Cancer 2001, 93, 62−66 (7) (a) Claes, A.; Idema, A J.; Wesseling, P Diffuse glioma growth: a guerrila war Acta Neuropathol 2007, 114, 443−448 (b) Agarwal, S.; Sane, R.; Oberoi, R.; Ohlfest, J R.; Elmquist, W F Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain Expert Rev Mol Med 2011, 13, e17 (c) Kuratsu, J.; Itoyama, Y.; Uemura, S.; Ushio, Y Regrowth patterns of glioma cases of glioma regrew away from the original tumor Gan No Rinsho 1989, 35, 1255−1260 (d) Silbergeld, D L.; Chicoine, M R Isolation and characterization of human malignant glioma cells from histologically normal brain J Neurosurg 1997, 86, 525−531 AUTHOR INFORMATION Corresponding Author *Phone: (650) 467-3214 E-mail: theffron@gene.com Notes The author declares no competing financial interest Biography Timothy P Heffron is a Senior Scientist at Genentech As a medicinal chemist and chemistry and research team leader, Timothy has contributed to the advancement of programs directed toward treatments for neurooncology, oncology (including cancer immunotherapy), neurology, and ophthalmology indications Timothy has contributed to seven molecules that have advanced to clinical development, four of which came under his leadership as a chemistry team leader, including taselisib (phase III) Timothy completed his undergraduate studies in chemistry at Yale University and his doctoral studies at The Massachusetts Institute of Technology ■ ACKNOWLEDGMENTS Cyrus Khojasteh, Xingrong Liu, and Alan Olivero are acknowledged for their helpful comments in the preparation of this Perspective ■ ABBREVIATIONS USED GBM, glioblastoma multiforme; CNS, central nervous system; BBB, blood−brain barrier; CSF, cerebral spinal fluid; P-gp, P-glycoprotein; Bcrp, breast cancer resistance protein; HBD, hydrogen bond donor; TPSA, topological polar surface area; VEGFR, vascular endothelial growth factor receptor; PDGFR, platelet derived growth factor receptor; EGFR, epidermal growth factor receptor; PI3K, phosphoinositide 3-kinase; AKT, 10052 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective receptors (PDGFR) in astrocytic tumors J Clin Oncol 2006, 24 (Suppl.), 11518 (21) Wedge, S R.; Kendrew, J.; Hennequin, L F.; Valentine, P J.; Barry, S J.; Brave, S R.; Smith, N R.; James, N H.; Dukes, M.; Curwen, J O.; Chester, R.; Jackson, J A.; Boffey, S J.; Kilburn, L L.; Barnett, S.; Richmond, G H P.; Wadsworth, P F.; Walker, M.; Bigley, A L.; Taylor, S T.; Cooper, L.; Beck, S.; Jurgensmeier, J M.; Ogilvie, D J AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer Cancer Res 2005, 65, 4389−4400 (22) Harris, P A.; Boloor, A.; Cheung, M.; Kumar, R.; Crosby, R M.; Davis-Ward, R G.; Epperly, A H.; Hinkle, K W.; Hunter, R N.; Johnson, J H.; Knick, V B.; Laudeman, C P.; Luttrell, D K.; Mook, R A.; Nolte, R T.; Rudolph, S K.; Szewczyk, J R.; Truesdale, A T.; Veal, J M.; Wang, L.; Stafford, J A Discovery of 5-[[4-[(2,3-dimethyl-2Hindazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor J Med Chem 2008, 51, 4632−4640 (23) Mulholland, P.; Batchelor, T T.; Neyns, B A phase III randomized study comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, with lomustine alone in recurrent glioblastoma patients Proc ESMO Ann Oncol 2010, 21, LBA7 (24) Iwamoto, F M.; Lamborn, K R.; Robins, H I.; Mehta, M P.; Chang, S M.; Butowski, N A.; DeAngelis, L M.; Abrey, L E.; Zhang, W.-T.; Prados, M D.; Fine, H A Phase II trial of pazopanib (GW786034), and oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06−02) Neuro Oncol 2010, 12, 855−861 (25) Wang, T.; Agarwal, S.; Elmquist, W F Brain distribution of cediranib is limited by active efflux at the blood-brain barrier J Pharmacol Exp Ther 2012, 341, 386−395 (26) Minocha, M.; Khurana, V.; Qin, B.; Pal, D.; Mitra, A K Enhanced brain accumulation of pazopanib by modulating P-gp and Bcrp1 mediated efflux with canertinib or erlotinib Int J Pharm 2012, 436, 127−134 (27) Atkins, M.; Jones, C A.; Kirkpatrick, P Sunitinib maleate Nat Rev Drug Discovery 2006, 5, 279−280 (28) Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R A.; Schwartz, B.; Simantov, R.; Kelley, S Discovery and development of sorafenib: a multikinase inhibitor for treating cancer Nat Rev Drug Discovery 2006, 5, 835−844 (29) Roth, G J.; Binder, R.; Colbatzky, F.; Dallinger, C.; SchlenkerHerceq, R.; Hilberg, F.; Wollin, S L.; Kaiser, R Nintedanib: from discovery to the clinic J Med Chem 2015, 58, 1053−1063 (30) Nakamura, K.; Taguchi, E.; Miura, T.; Yamamoto, A.; Takahashi, K.; Bichat, F.; Guilbaud, N.; Hasegawa, K.; Kubo, K.; Fujiwara, Y.; Suzuki, R.; Kubo, K.; Shibuya, M.; Isae, T KRN951, a highly potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, has antitumor activities and affects functional vascular properties Cancer Res 2006, 66, 9134−9142 (31) Renhowe, P A.; Pecchi, S.; Shafer, C M.; Machajewski, T D.; Jazan, E M.; Taylor, C.; Antonios-McCrea, W.; McBride, C M.; Frazier, K.; Wiesmann, M.; Lapointe, G R.; Feucht, P H.; Warne, R L.; Heise, C C.; Menezes, D.; Aardalen, K.; Ye, H.; He, M.; Le, V.; Vora, J.; Jansen, J M.; Wernette-Hammond, M E.; Harris, A L Design, structure-activity relationships and in vivo characterization of 4-amino-3-benzimidazol-2-ylhydroquinolin-2-ones: a novel class of receptor tyrosine kinase inhibitors J Med Chem 2009, 52, 278−292 (32) (a) Balana, C.; Gil, M J.; Reynes, G.; Capellades, J.; Ribalta, T.; Gallego, O.; Segura, P P.; Verger, E A phase II multicentric study of sunitinib administered as upfront therapy in glioblastoma: a study by the GEINO group J Clin Oncol 2012, 30, 2045 (b) Kreisl, T N.; Smith, P.; Sul, J.; Salgado, C.; Iwamoto, F M.; Shih, J H.; Fine, H A Continuous daily sunitinib for recurrent glioblastoma J Neuro-Oncol 2013, 111, 41−48 (c) Reardon, D A.; Vredenburgh, J J.; Coan, A.; Desjardins, A.; Peters, K B.; Gururangan, S.; Sathornsumetee, S.; Rich, J N.; Herndon, J E.; Friedman, H S Phase I study of sunitinib and irinotecan for patients with recurrent malignant glioma J Neuro-Oncol 2011, 105, 621−627 (e) Lucio-Eterovic, A K.; Piao, Y.; de Groot, J F Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy Clin Cancer Res 2009, 15, 4589−4599 (8) Rankovic, Z CNS Drug Design: Balancing physicochemical properties for optimal brain exposure J Med Chem 2015, 58, 2584− 2608 (9) Levin, V A.; Tonge, P T.; Gallo, J M.; Birtwistle, M R.; Dar, A C.; Iavarone, A.; Paddison, P J.; Heffron, T P.; Elmquist, W F.; Lachowicz, J E.; Johnson, T W.; White, F M.; Sul, J.; Smith, Q R.; Shen, W.; Sarkaria, J N.; Samala, R.; Wen, P Y.; Berry, D A.; Petter, R C CNS anticancer drug discovery and development conference white paper Neuro-Oncology 2015, 17, vi1−vi26 (10) (a) Sun, H.; Dai, H.; Shaik, N.; Elmquist, W F Drug efflux transporters in the CNS Adv Drug Delivery Rev 2003, 55, 83−105 (b) He, H.; Lyons, K A.; Shen, X.; Yao, Z.; Bleasby, K.; Chan, G.; Hafey, M.; Li, X.; Xu, S.; Salituro, G M.; Cohen, L H.; Tang, W Utility of unbound plasma drug levels and P-glycoprotein transport data in prediction of central nervous system exposure Xenobiotica 2009, 39, 687−693 (c) Kodaira, H.; Kusuhara, H.; Fujita, T.; Ushiki, J.; Fuse, E.; Sugiyama, Y Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate J Pharmacol Exp Ther 2011, 339, 935−944 (11) Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M Through the “gatekeeper door”: exploiting the active kinase conformation J Med Chem 2010, 53, 2681−2694 (12) (a) Wager, T T.; Chandrasekaran, R Y.; Hou, X.; Troutman, M D.; Verhoest, P R.; Villalobos, A.; Will, Y Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes ACS Chem Neurosci 2010, 1, 420−434 (b) Wager, T T.; Hou, X.; Verhoest, P R.; Villalobos, A Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties ACS Chem Neurosci 2010, 1, 435−449 (13) (a) For inhibitors approved through 2014: Wu, P.; Nielsen, T E.; Clausen, M H FDA-approved small-molecule kinase inhibitors Trends Pharmacol Sci 2015, 36, 422−439 (b) For inhibitors approved in 2015: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/ DrugInnovation/ucm430302.htm (accessed June 12, 2016) (14) Bridges, A J Chemical inhibitors of protein kinases Chem Rev 2001, 101, 2541−2572 (15) Cole, S.; Bagal, S.; El-Kattan, A.; Fenner, K.; Hay, T.; Kempshall, S.; Lunn, G.; Varma, M.; Stupple, P.; Speed, W Full efficacy with no CNS side-effects: unachievable panacea or reality? DMPK considerations in design of drugs with limited brain penetration Xenobiotica 2012, 42, 11−27 (16) Huszthy, P C.; Daphu, I.; Niclou, S P.; Stieber, D.; Nigro, J M.; Sakariassen, P.; Miletic, H.; Thorsen, F.; Bjerkvig, R In vivo models of primary brain tumors: pitfalls and perspectives Neuro-Oncology 2012, 14, 979−993 (17) Lee, J.; Kotilarova, S.; Kotliarov, Y.; Li, A.; Su, Q.; Donin, N M.; Pastorino, S.; Purow, B W.; Christopher, N.; Zhang, W.; Park, J K.; Fine, H A Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than serum-cultured cell lines Cancer Cell 2006, 9, 391−403 (18) Jain, R K.; di Tomaso, E.; Duda, D G.; Loeffler, J S.; Sorensen, A G.; Batchelor, T T Angiogenesis in brain tumors Nat Rev Neurosci 2007, 8, 610−622 (19) (a) Huang, H.; Held-Feindt, J.; Buhl, R.; Mehdorn, H M.; Mentlein, R Expression of VEGF and its receptors in different brain tumors Neurol Res 2005, 27, 371−377 (b) Tuettenberg, J.; Friedel, C.; Vajkoczy, P Angiogenesis in malignant glioma-a target for antitumor therapy? Crit Rev Oncol Hematol 2006, 59, 181−193 (20) Barrios, C H.; Viola, F S.; Coutinho, L M.; Paglioli, E Determination of expression of platelet derived growth factor 10053 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective (33) (a) Lee, E Q.; Kuhn, J.; Lamborn, K R.; Abrey, L.; DeAngelis, L M.; Lieberman, F.; Robins, H I.; Chang, S M.; Yung, W K A.; Drappatz, J.; Mehta, M P.; Levin, V A.; Aldape, K.; Dancey, J E.; Wright, J J.; Prados, M D.; Cloughesy, T F.; Gilbert, M R.; Wen, P Y Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02 Neuro-Oncology 2012, 14, 1511−1518 (b) Hainsworth, J D.; Ervin, T.; Friedman, E.; Priego, V.; Murphy, P B.; Clark, B L.; Lamar, R E Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the firstline treatment of patients with glioblastoma multiforme Cancer 2010, 116, 3663−3669 (34) Muhic, A.; Poulsen, H S.; Sorensen, M.; Grunnet, K.; Lassen, U Phase II open-label study of nintedanib in patients with recurrent glioblastoma multiforme J Neuro-Oncol 2013, 111, 205−212 (35) Cai, X.; Chandra, V.; Ou, Y.; Emblem, K E.; Muzikansky, A.; Evans, J.; Kalpathy-Cramer, J.; Dietrich, J.; Chi, A S.; Wen, P Y.; Rosen, B R.; Batchelor, T.; Gerstner, E R.; Martinos, A A Phase II study of tivozanib, an oral VEGFR inhibitor, in patients with recurrent glioblastoma J Clin Oncol 2015, 33 (Suppl.), 2025 (36) Ahluwalia, M S.; Papadantonakis, N.; Venur, V A.; Schilero, C.; Peereboom, D M.; Stevens, G.; Rosenfeld, S.; Vogelbaum, M A.; Elson, P.; Nixon, A B.; McCrae, K Phase II trial of dovitinib in recurrent glioblastoma J Clin Oncol 2015, 33 (Suppl.), 2050 (37) (a) Oberoi, R K.; Mittapalli, R K.; Fisher, J.; Elmquist, W F Sunitinib LC-MS/MS assay in mouse plasma and brain tissue: application in CNS distribution studies Chromatographia 2013, 76, 1657−1665 (b) Tang, S C.; Lagas, J S.; Lankheet, N A G.; Poller, B.; Hillebrand, M J.; Rosing, H.; Bejinen, J H.; Schinkel, A H Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration Int J Cancer 2012, 130, 223−233 (38) (a) Lagas, J S.; van Waterschoot, R A B.; Sparidans, R W.; Wagenaar, E.; Beijnen, J H.; Schinkel, A H Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation Mol Cancer Ther 2010, 9, 319−326 (b) Agarwal, S.; Sane, R.; Ohlfest, J R.; Elmquist, W F The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain J Pharmacol Exp Ther 2011, 336, 223−233 (c) Asakawa, C.; Ogawa, M.; Kumata, K.; Fujinaga, M.; Kato, K.; Yamasaki, T.; Yui, J.; Kawamura, K.; Hatori, A.; Fukumura, T.; Zhang, M.-R [11C]Sorafenib: radiosynthesis and preliminary PET study of brain uptake in P-gp/Bcrp knockout mice Bioorg Med Chem Lett 2011, 21, 2220−2223 (39) Hussar, D A.; Jeon, M M Naloxegol oxalate, pirfenidone, and nintedanib J Am Pharm Assoc 2015, 55, 461−463 (40) Helgason, H H.; Mallo, H A.; Droogendijk, H.; Haanen, J G.; van der Veldt, A A M.; van den Eertwegh, A J.; Boven, E Brain metastases in patients with renal cell cancer receiving new targeted treatment J Clin Oncol 2008, 26, 152−154 (41) Wilhelm, S M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C A.; Schutz, G.; Thierauch, K H.; Zopf, D Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity Int J Cancer 2011, 129, 245−255 (42) EU Clinical Trials Register https://www.clinicaltrialsregister eu/ctr-search/search?query=2014-003722-41 (accessed June 9, 2016) (43) Kort, A.; Durmus, S.; Sparidans, R W.; Wagenaar, E.; Beijnen, J H.; Schinkel, A H Brain and testis accumulation of regorafenib is restricted by breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) Pharm Res 2015, 32, 2205−2216 (44) Yang, J J.; Milton, M N.; Liao, M.; Liu, N.; Wu, J T.; Gan, L.; Balani, S K.; Lee, F W.; Prakash, S.; Xia, C Q P-glycloprotein and breast cancer resistance protein affect disposition of tandutinib, a tyrosine kinase inhibitor Drug Metab Lett 2010, 4, 202−212 (45) Supko, J G.; Grossman, S A.; Peereboom, D M.; Chowdhary, S.; Lesser, G J.; Nabors, L B.; Mikkelsen, T.; Desideri, S.; Batchelor, T T Feasibility and phase I trial of tandutinib in patients with recurrent glioblastoma J Clin Oncol 2009, 27 (15s), 2039 (46) Lu, L.; Saha, D.; Martuza, R L.; Rabkin, S D.; Wakimoto, H Single agent efficacy of the VEGFR kinase inhibitor axitinib in preclinical models of glioblastoma J Neuro-Oncol 2015, 121, 91−100 (47) Zakharia, Y.; Zakharia, K.; Rixe, O Axitinib: from preclinical development to future clinical perspectives in renal cell carcinoma Expert Opin Drug Discovery 2015, 10, 925−935 (48) Neyns, B.; Duerinck, J.; Du Four, S.; Bouttens, F.; Verschaeve, V.; Everaert, H.; Van Binst, A Randomized phase II study of axitinib versus standard of care in patients with recurrent glioblastoma J Clin Oncol 2014, 32 (Suppl.), 2018 (49) Poller, B.; Iusuf, D.; Sparidans, R W.; Wagenaar, E.; Beijnen, J H.; Schinkel, A H Differential impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on axitinib brain accumulation and oral plasma pharmacokinetics Drug Metab Dispos 2011, 39, 729−735 (50) Sim, M W.; Cohen, M S The discovery and development of vandetanib for the treatment of thyroid cancer Expert Opin Drug Discovery 2014, 9, 105−114 (51) Matsui, J.; Yamamoto, Y.; Funahashi, Y.; Tsuruoka, A.; Watanabe, T.; Wakabayashi, T.; Uenaka, T.; Asada, M E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition Int J Cancer 2008, 122, 664−671 (52) (a) Drappatz, J.; Norden, A D.; Wong, E T.; Doherty, L M.; LaFrankie, D C.; Ciampa, A.; Kesari, S.; Sceppa, C.; Gerard, M.; Phan, P.; Schiff, D.; Batchelor, T T.; Ligon, K L.; Young, G.; Muzikansky, A.; Weiss, S E.; Wen, P Y Phase I study of vandetanib with radiotherapy and temozolomide for newly diagnosed glioblastoma Int J Radiat Oncol., Biol., Phys 2010, 78, 85−90 (b) Chheda, M G.; Wen, P Y.; Hochberg, F H.; Chi, A S.; Drappatz, J.; Eichler, A F.; Yang, D.; Beroukhim, R.; Norden, A D.; Gerstner, E R.; Betensky, R A.; Batchelor, T T Vandetanib plus sirolimus in adults with recurrent glioblastoma: results of a phase I and dose expansion cohort study J Neuro-Oncol 2015, 121, 627−634 (c) Kreisl, T N.; McNeill, K A.; Sul, J.; Iwamoto, F M.; Shih, J.; Fine, H A A phase I/II trial of vandetanib for patients with recurrent malignant glioma NeuroOncology 2012, 14, 1519−1526 (d) Subbiah, V.; Berry, J.; Roxas, M.; Guha-Thakurta, N.; Subbiah, I M.; Ali, S M.; McMahon, C.; Miller, V.; Cascone, T.; Pai, S.; Tang, Z.; Heymach, J V Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B-RET re-arranged non-small cell lung cancer with brain metastases Lung Cancer 2015, 89, 76−79 (53) Reardon, D A.; Pan, E.; Fan, J.; Mink, J.; Barboriak, D P.; Vrendenburgh, J J.; Desjardins, A.; Peters, K.; O’Brien, J P.; Wen, P Y A phase trial of the multitargeted kinase inhibitor lenvatinib (E7080) in patients with recurrent glioblastoma (GBM) and disease progression following prior bevacizumab treatment Ann Oncol 2012, 23 (Suppl 9), 417PD (54) Minocha, M.; Khurana, V.; Qin, B.; Pal, D.; Mitra, A K Coadministration strategy to enhance brain accumulation of vandetanib by modulating P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with m-TOR inhibitors Int J Pharm 2012, 434, 306−314 (55) Shumaker, R C.; Aluri, J.; Fan, J.; Martinez, G.; Thompson, G A.; Ren, M Effect of fifampicin on the pharmacokinetics of lenvatinib in healthy adults Clin Drug Invest 2014, 34, 651−659 (56) Banerjee, S.; Zvelebil, M.; Furet, P.; Mueller-Vieira, U.; Evans, D B.; Dowsett, M.; Martin, L A The vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 inhibits aromatase Cancer Res 2009, 69, 4716−4723 (57) (a) Gerstner, E R.; Eichler, A F.; Plotkin, S R.; Drappatz; Doyle, C L.; Xu, L.; Duda, D G.; Wen, P Y.; Jain, R K.; Batchelor, T T Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide J Neuro-Oncol 2011, 103, 325−332 (b) Brandes, A A.; Stupp, R.; Hau, P.; Lacombe, D.; Gorlia, T.; Tosoni, A.; Mirimanoff, R O.; Kros, J M.; van den Bent, M J EORTC study 26041-22041: phase I/ 10054 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective II study on concomitant and adjuvant temozolomide (TMZ) and radiotherapy (RT) with PTK787/ZK222584 (PTK/ZK) in newly diagnosed glioblastoma Eur J Cancer 2010, 46, 348−354 (c) Reardon, D A.; Egorin, M J.; Desjardins, A.; Vredenburgh, J J.; Beumer, J H.; Lagattuta, T F.; Gururangan, S.; Herndon, J E.; Salvado, A J.; Friedman, H S Phase I pharmacokinetic study of the VEGFR tyrosine kinase inhibitor vatalanib (PTK787) plus imatinib and hydroxyurea for malignant glioma Cancer 2009, 115, 2188−2198 (58) Yakes, F M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y C.; Joly, A H Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth Mol Cancer Ther 2011, 10, 2298−2308 (59) Bhide, R S.; Cai, Z W.; Zhang, Y Z.; Qian, L.; Wei, D.; Barbosa, S.; Lombardo, L J.; Borzilleri, R M.; Zheng, X.; Wu, L I.; Barrish, J C.; Kim, S H.; Leavitt, K.; Mathur, A.; Leith, L.; Chao, S.; Wautlet, B.; Mortillo, S.; Jeyaseelan, R.; Kukral, D.; Hunt, J T.; Kamath, A.; Fura, A.; Vyas, V.; Marathe, P.; D’Arienzo, C.; Derbin, G.; Fargnoli, J Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2methyl-1H-indol-5-yloxy)-5- methylpyrrolo[2,1-f][1,2,4]triazin-6yloxy)propan-2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor J Med Chem 2006, 49, 2143−2146 (60) Highlights of Prescribing Information COMETRIQ http:// www.accessdata.fda.gov/drugsatfda_docs/label/2012/203756lbl.pdf (accessed June 12, 2016) (61) Marathe, P H.; Kamath, A V.; Zhang, Y.; D’Arienzo, C.; Bhide, R.; Fargnoli, J Preclinical pharmacokinetics and in vitro metabolism of brivanib (BMS-540215), a potent VEGFR2 inhibitor and its alanine ester prodrug brivanib alaninate Cancer Chemother Pharmacol 2009, 65, 55−66 (62) (a) De Groot, J F.; Prados, M.; Urquhart, T.; Robertson, S.; Yaron, Y.; Sorensen, A G.; Norton, A.; Batchelor, T.; Drappatz, J.; Wen, P A phase II study of XL184 in patients (pts) with progressive glioblastoma multiforme (GBM) in first or second relapse J Clin Oncol 2009, 27 (15s), 2047 (b) Wen, P Y.; Prados, M.; Schiff, D.; Reardon, D A.; Cloughesy, T.; Mikkelsen, T.; Batchelor, T.; Drappatz, J.; Chamberlain, M C.; De Groot, J F Phase II study of XL184 (BMS 907351), an inhibitor of MET, VEGFR2, and RET, in patients (pts) with progressive glioblastoma (GB) J Clin Oncol 2010, 28, 2006 (63) Dowell, J.; Minna, J D.; Kirkpatrick, P Erlotinib hydrochloride Nat Rev Drug Discovery 2005, 4, 13−14 (64) Muhsin, M.; Graham, J.; Kirkpatrick, P Gefitinib Nat Rev Drug Discovery 2003, 2, 515−516 (65) Eskens, F A L M.; Mom, C H.; Planting, A S T.; Gieterma, J A.; Amelsberg, A.; Huisman, H.; van Doorn, L.; Burger, H.; Stopfer, P.; Verweij, J.; de Vries, E G E A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor I (EGFR) and (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumors Br J Cancer 2008, 98, 80−85 (66) Finlay, M R V.; Anderton, M.; Ashton, S.; Ballard, P.; Bethel, P A.; Box, M R.; Bradbury, R H.; Brown, S J.; Butterworth, S.; Campbell, A.; Chorley, C.; Colclough, N.; Cross, D A E.; Currie, G S.; Grist, M.; Hassall, L.; Hill, G B.; James, D.; James, M.; Kemmitt, P.; Klinowska, T.; Lamont, G.; Lamont, S G.; Martin, N.; McFarland, H L.; Mellor, M J.; Orme, J P.; Perkins, D.; Perkins, P.; Richmond, G.; Smith, P.; Ward, R A.; Waring, M J.; Whittaker, D.; Wells, S.; Wrigley, G L Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor J Med Chem 2014, 57, 8249−8267 (67) (a) Bartolotti, M.; Franceschi, E.; Brandes, A A EGF receptor tyrosine kinase inhibitors in the treatment of brain metastases from non-small-cell lung cancer Expert Rev Anticancer Ther 2012, 12, 1429−1435 (b) Shimato, S.; Mitsudomi, T.; Kosaka, T.; Yatabe, Y.; Wakabayashi, T.; Mizuno, M.; Nakahara, N.; Hatano, H.; Natsume, A.; Ishii, D.; Yoshida, J EGFR mutations in patients with brain metastases from lung cancer: association with the efficacy of gefitinib NeuroOncology 2006, 8, 137−144 (c) Porta, R.; Sanchez-Torres, J M.; Paz- Ares, L.; Massuti, B.; Reguart, N.; Mayo, C.; Lianes, P.; Queralt, C.; Guillem, V.; Salinas, P.; Catot, S.; Isla, D.; Pradas, A.; Gurpide, A.; de Castro, J.; Polo, E.; Puig, T.; Taron, M.; Colomer, R.; Rosell, R Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation Eur Respir J 2011, 37, 624−631 (d) Grommes, C.; Oxnard, G R.; Kris, M G.; Miller, V A.; Pao, W.; Holodny, A I.; Clarke, J L.; Lassman, A B “Pulsatile” high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer NeuroOncology 2011, 13, 1364−1369 (e) Jackman, D M.; Holmes, A J.; Lindeman, N.; Wen, P Y.; Kesari, S.; Borras, A M.; Bailey, C.; de Jong, F.; Janne, P A.; Johnson, B E Response and resistance in a non-smallcell lung cancer patient with an epidermal growth factor receptor mutation and leptomeningeal metastases treated with high-dose gefitinib J Clin Oncol 2006, 24, 4517−4520 (f) Park, S J.; Kim, H T.; Lee, D H.; Kim, K P.; Kim, S.-W.; Suh, C.; Lee, J S Efficacy of epidermal growth factor receptor tyrosine kinase inhibitors for brain metastasis in non-small cell lung cancer patients harboring either exon 19 or 21 mutation Lung Cancer 2012, 77, 556−560 (68) Noronha, V.; Joshi, A.; Gokarn, A.; Sharma, V.; Patil, V.; Janu, A.; Purandare, N.; Chougule, A.; Jambhekar, N.; Prabhash, K The importance of brain metastasis in EGFR mutation positive NSCLC patients Chemother Res Pract 2014, 2014, 856156 (69) Weber, B.; Winterdahl, M.; Memon, A.; Sorensen, B S.; Keiding, S.; Sorensen, L.; Nexo, E.; Meldgaard, P Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor J Thorac Oncol 2011, 6, 1287−1289 (70) Agarwal, S.; Manchanda, P.; Vogelbaum, M A.; Ohlfest, J R.; Elmquist, W F Function of the blood-brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma Drug Metab Dispos 2013, 41, 33−39 (71) Agarwal, S.; Sane, R.; Gallardo, J L.; Ohlfest, J R.; Elmquist, W F Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux J Pharmacol Exp Ther 2010, 334, 147−155 (72) Peters, S.; Zimmerman, S.; Adjei, A A Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of nonsmall cell lung cancer: comparative pharmacokinetics and drug-drug interactions Cancer Treat Rev 2014, 40, 917−926 (73) Highlights of Prescribing Information TAGRISSO http:// www.accessdata.fda.gov/drugsatfda_docs/label/2015/208065s000lbl pdf Accessed June 12, 2016 (74) Hoffknecht, P.; Tufman, A.; Wehler, T.; Pelzer, T.; Wiewrodt, R.; Schutz, M.; Serke, M.; Stohlmacher-Williams, J.; Marten, A.; Huber, R M.; Dickgreber, N J Efficacy of the irreversible ErbB family blocker afatinib in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-pretreated non-small-cell lung cancer patients with brain metastases or leptomeningeal disease J Thorac Oncol 2015, 10, 156−163 (75) Hatanpaa, K J.; Burma, S.; Zhao, D.; Habib, A A Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance Neoplasia 2010, 12, 675−684 (76) (a) Mellinghoff, I K.; Wang, M Y.; Vivanco, I.; Haas-Kogan, D A.; Zhu, S.; Dia, E Q.; Lu, K V.; Yoshimoto, K.; Huang, J H Y.; Chute, D J.; Riggs, B L.; Horvatch, S.; Liau, L M.; Cavanee, W K.; Rao, P N.; Beroukhim, R.; Peck, T C.; Lee, J C.; Sellers, W R.; Stokoe, D.; Prados, M.; Cloughesy, T F.; Sawyers, C L.; Mischel, P S Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors N Engl J Med 2005, 353, 2012−2024 (b) Rich, J N.; Reardon, D A.; Peery, T.; Dowell, J M.; Quinn, J A.; Penne, K L.; Wikstrand, C J.; Van Duyn, L B.; Dancey, J E.; McLendon, R E.; Kao, J C.; Stenzel, T T.; Rasheed, B K A.; Tourt-Uhlig, S E.; Herndon, J E.; Vredenburgh, J J.; Sampson, J H.; Friedman, A H.; Bigner, D D.; Friedman, H S Phase II trial of gefitinib in recurrent glioblastoma J Clin Oncol 2004, 22, 133−142 (77) Walter, A O.; Sjin, R T.; Haringsma, H J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovsky, A.; Labenski, M.; Zhu, Z.; Wang, Z.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D.; Nacht, 10055 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective M.; Petter, R C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; Van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A D.; Harding, T C.; Allen, A Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC Cancer Discovery 2013, 3, 1404−1415 (78) (a) Yoshida, Y.; Ozawa, T.; Butowski, N.; Shen, W.; Brown, D.; Pederson, H.; James, D Preclinical evaluation of NT-113, a novel ERBB inhibitor optimized for CNS biodistribution Neuro-Oncology 2013, 15 (Suppl.), ET-00 (b) Yoshida, Y.; Ozawa, T.; Yao, T.-W.; Shen, W.; Brown, D.; Parsa, A T.; Raizer, J J.; Cheng, S.-Y.; Stegh, A H.; Mazar, A P.; Giles, F J.; Sarkaria, J N.; Butowski, N.; Nicolaides, T.; James, C D NT113, a pan-ERBB inhibitor with high brain penetrance, inhibits the growth of glioblastoma xenografts with EGFR amplification Mol Cancer Ther 2014, 13, 2919−2929 (79) Zeng, Q.; Wang, J.; Cheng, Z.; Chen, K.; Johnstrom, P.; Varnas, K.; Li, D Y.; Yang, Z F.; Zhang, X Discovery and evaluation of clinical candidate AZD3759, a potent, oral active, central nervous systempenetrant, epidermal growth factor receptor tyrosine kinase inhibitor J Med Chem 2015, 58, 8200−8215 (80) Ströbele, S.; Schneider, M.; Schneele, L.; Siegelin, M D.; Nonnenmacher, L.; Zhou, S.; Karpel-Massle, G.; Westhoff, M.-A.; Halatsch, M.-E.; Debatin, K.-M A potential role for the inhibition of PI3K signaling in glioblastoma therapy PLoS One 2015, 10, e0131670 (81) Akhavan, D.; Cloughesy, T F.; Mischel, P S mTOR signaling in glioblastoma: lessons learned from bench to bedside NeuroOncology 2010, 12, 882−889 (82) The Cancer Genome Atlas Network Comprehensive genomic characterization defines human glioblastoma genes and core pathways Nature 2008, 455, 1061−1068 (83) Westhoff, M.-A.; Karpel-Massler, G.; Brühl, O.; Enzenmüller, S.; La Ferla-Brühl, K.; Siegelin, M D.; Nonnenmacher, L.; Debatin, K.-M A critical evaluation of PI3K inhibition in glioblastoma and neruoblastoma therapy Mol Cell Ther 2014, 2, 32 (84) Mohd Sharial, M S N.; Crown, J.; Hennessy, B T Overcoming resistance and restoring sensitivity to HER2-targeted therapies in breast cancer Ann Oncol 2012, 23, 3007−3016 (85) Wen, P Y.; Lee, E Q.; Reardon, D A.; Ligon, K L.; Yung, W K A Current clinical development of PI3K pathway inhibitors in glioblastoma Neuro-Oncology 2012, 14, 819−829 (86) Heffron, T P.; Ndubaku, C O.; Salphati, L.; Alicke, B.; Cheong, J.; Drobnick, J.; Edgar, K.; Gould, S E.; Lee, L B.; Lesnick, J D.; Lewis, C.; Nonomiya, J.; Pang, J.; Plise, E G.; Sideris, S.; Wallin, J.; Wang, L.; Zhang, X.; Olivero, A G Discovery of clinical development candidate GDC-0084, a brain penetrant inhibitor of PI3K and mTOR ACS Med Chem Lett 2016, 7, 351−356 (87) Burger, M T.; Pecchi, S.; Wagman, A.; Ni, Z.-J.; Knapp, M.; Hendrickson, T.; Atallah, G.; Pfister, K.; Zhang, Y.; Bartulis, S.; Frazier, K.; Ng, S.; Smith, A.; Verhagen, J.; Haznedar, J.; Huh, K.; Iwanowicz, E.; Xin, X.; Menezes, D.; Merritt, H.; Lee, I.; Wiesmann, M.; Kaufman, S.; Crawford, K.; Chin, M.; Bussiere, D.; Shoemaker, K.; Zaror, I.; Maira, S.-M.; Voliva, C F Identification of NVP-BKM120 as a potent, selective, orally bioavailable Class I PI3 kinase inhibitor for treating cancer ACS Med Chem Lett 2011, 2, 774−779 (88) Ihle, N T.; Williams, R.; Chow, S.; Chew, W.; Berggren, M I.; Paine-Murrieta, G.; Minion, D J.; Halter, R J.; Wipf, P.; Abraham, R.; Kirkpatrick, L.; Powis, G Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling Mol Cancer Ther 2004, 3, 763−772 (89) Foster, P.; Yamaguchi, K.; Hsu, P P.; Qian, F.; Du, X.; Wu, J.; Won, K A.; Yu, P.; Jaeger, C T.; Zhang, W.; Marlowe, C K.; Keast, P.; Abulafia, W.; Chen, J.; Young, J.; Plonowski, A.; Yakes, F M.; Chu, F.; Engell, K.; Bentzien, F.; Lam, S T.; Dale, S.; Yturralde, O.; Matthews, D J.; Lamb, P.; Laird, A D The selective PI3K inhibitor XL147 (SAR245408) inhibits tumor growth and survival and potentiates the activity of chemotherapeutic agents in preclinical models Mol Cancer Ther 2015, 14, 931−940 (90) Yu, P.; Laird, A D.; Du, X.; Wu, J.; Won, K.; Yamaguchi, K.; Hsu, P P.; Qian, F.; Jaeger, C T.; Zhang, W.; Buhr, C A.; Shen, P.; Abulafia, W.; Chen, J.; Young, J.; Plonowski, A.; Yakes, F M.; Chu, F.; Lee, M.; Bentzien, F.; Lam, S T.; Dale, S.; Matthews, D J.; Lamb, P.; Foster, P Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway Mol Cancer Ther 2014, 13, 1078−1091 (91) Lin, N U Targeted therapies in brain metastases Curr Treat Options Neurol 2014, 16, 276 (92) Sutherlin, D P.; Sampath, D.; Berry, M.; Castanedo, G.; Chang, Z.; Chuckowree, I.; Dotson, J.; Folkes, A.; Friedman, L.; Goldsmith, R.; Heffron, T.; Lee, L.; Lesnick, J.; Lewis, C.; Mathieu, S.; Nonomiya, J.; Olivero, A.; Pang, J.; Prior, W W.; Salphati, L.; Sideris, S.; Tian, Q.; Tsui, V.; Wan, N C.; Wang, S.; Wiesmann, C.; Wong, S.; Zhu, B.-Y Discovery of (thienopyrimidin-2-yl)aminopyrimidines as potent, selective, and orally available pan-PI3-kinase and dual pan-PI3kinase/mTOR inhibitors for the treatment of cancer J Med Chem 2010, 53, 1086−1097 (93) Folkes, A J.; Ahmadi, K.; Alderton, W K.; Alix, S.; Baker, S J.; Box, G.; Chuckowree, I S.; Clarke, P A.; Depledge, P.; Eccles, S A.; Friedman, L S.; Hayes, A.; Hancox, T C.; Kugendradas, A.; Lensun, L.; Moore, P.; Olivero, A G.; Pang, J.; Patel, S.; Pergl-Wilson, G H.; Raynaud, F I.; Robson, A.; Saghir, N.; Salphati, L.; Sohal, S.; Ultsch, M H.; Valenti, M.; Wallweber, H J.; Wan, N C.; Wiesmann, C.; Workman, P.; Zhyvoloup, A.; Zvelebil, M J.; Shuttleworth, S J The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer J Med Chem 2008, 51, 5522−5532 (94) (a) Heffron, T P.; Salphati, L.; Alicke, B.; Cheong, J.; Dotson, J.; Edgar, K.; Goldsmith, R.; Gould, S E.; Lee, L B.; Lesnick, J D.; Lewis, C.; Ndubaku, C O.; Nonomiya, J.; Olivero, A G.; Pang, J.; Plise, E G.; Sideris, S.; Trapp, S.; Wallin, J.; Wang, L.; Zhang, X The design and identification of brain penetrant inhibitors of phosphoinositide 3-kinase a J Med Chem 2012, 55, 8007−8020 (b) Salphati, L.; Heffron, T P.; Alicke, B.; Nishimura, M.; Barck, K.; Carano, R A.; Cheong, J.; Edgar, K.; Greve, J.; Kharbanda, S.; Koeppen, H.; Lau, S.; Lee, L B.; Pang, J.; Plise, E G.; Pokorny, J L.; Reslan, H B.; Sarkaria, J N.; Wallin, J J.; Zhang, X.; Gould, S E.; Olivero, A G.; Phillips, H S Targeting the PI3K pathway in the brain − efficacy of a PI3K inhibitor optimized to cross the blood-brain barrier Clin Cancer Res 2012, 18, 6239−6248 (95) Maira, M.; Schnell, C.; Lollini, P.; Chouaid, C.; Schmid, P.; Nanni, P.; Lam, D.; Di Tomaso, E.; C Massacesi, C.; Rodon, J Preclinical and preliminary clinical activity of NVP-BKM-120, an oral pan-class I PI3K inhibitor, in the brain Ann Oncol 2012, 23 (Suppl.), 1675 (96) Wen, P Y.; Yung, W K A.; Mellinghoff, I K.; Ramkissoon, S.; Alexander, B M.; Rinne, M L.; Colman, H.; Omuro, A M P.; DeAngelis, L M.; Gilbert, M R.; De Groot, J F.; Cloughesy, T F.; Chi, A S.; Lee, E Q.; Nayak, L.; Betchelor, T.; Chang, S M.; Prados, M.; Reardon, D A.; Ligon, K Phase II trial of the phosphatidylinositol3 kinase (PI3K) inhibitor buparlisib (BKM120) in recurrent glioblastoma J Clin Oncol 2014, 32 (Suppl.), 2019 (97) Cmiljanovic, V.; Cmiljanovic, N.; Marone, R.; Beaufils, F.; Zhang, X.; Zvelebil, M.; Hebeisen, P.; Lang, M.; Mestan, J.; Melone, A.; Bohnacker, T.; Gaudio, E.; Tarantelli, C.; Bertoni, F.; Ritschard, R.; Pretre, V.; Wicki, A.; Fabbro, D.; Hillmann, P.; Williams, R.; Giese, B.; Wymann, M P Abstract 2664: PQR309: structure-based design, synthesis and biological evaluation of a novel, selective, dual panPI3K/mTOR inhibitor Cancer Res 2015, 75 (Suppl.), 2664 (98) Cmiljanovic, V.; Ettlin, R A.; Beaufils, F.; Dieterle, W.; Hillmann, P.; Mestan, J.; Melone, A.; Bohnacker, T.; Lang, M.; Cmiljanovic, N.; Giese, B.; Hebeisen, P.; Wymann, M P.; Fabbro, D Abstract 4514: PQR309: A potent, brain-penetrant, dual pan-PI3K/ mTOR inhibitor with excellent oral bioavailability and tolerability Cancer Res 2015, 75 (Suppl.), 4514 (99) Lannutti, B J.; Meadows, S A.; Herman, S E M.; Kashishian, A.; Steiner, B.; Johnson, A J.; Byrd, J C.; Tyner, J W.; Loriaux, M M.; Deininger, M.; Druker, B J.; Puri, K D.; Ulrich, R G.; Giese, N A CAL-101, a p100d selective phosphatidylinositol-3-kinase inhibitor for 10056 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability Blood 2011, 117, 591−594 (100) Janssens, A Ibrutinib and idelalisib, the B-cell receptor antagonists available for use in daily clinical practice Belg J Hematol 2015, 6, 216−224 (101) Highlights of Prescribing Information Zydelig http://www accessdata.fda.gov/drugsatfda_docs/label/2014/205858lbl.pdf (accessed June 12, 2016) (102) Benjamin, D.; Colombi, M.; Moroni, C.; Hall, M H Rapamycin passes the torch: a new generation of mTOR inhibitors Nat Rev Drug Discovery 2011, 10, 868−880 (103) Crowe, A.; Lemaire, M In vitro and in situ absorption of SDZRAD using a human intestinal cell line (Caco-2) and a single pass perfusion model in rats: comparison with rapamycin Pharm Res 1998, 15, 1666−1672 (104) Pike, K G.; Malagu, K.; Hummersone, M G.; Menear, K A.; Duggan, H M.; Gomez, S.; Martin, N M.; Ruston, L.; Pass, S L.; Pass, M Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: the discovery of AZD8055 and AZD2014 Bioorg Med Chem Lett 2013, 23, 1212−1216 (105) Mortensen, D S.; Perrin-Ninkovic, S M.; Shevlin, G.; Zhao, J.; Packard, G.; Bahmanyar, S.; Correa, M.; Elsner, J.; Harris, R.; Lee, B G S.; Papa, P.; Parnes, J S.; Riggs, J R.; Sapienza, J.; Tehrani, L.; Whitefield, B.; Apuy, J.; Bisonette, R R.; Gamez, J C.; Hickman, M.; Khambatta, G.; Leisten, J.; Peng, S X.; Richardson, S J.; Cathers, B E.; Canan, S S.; Moghaddam, M F.; Raymon, H K.; Worland, P.; Narla, R K.; Fultz, K E.; Sankar, S Discovery of mammalian target of rapamycin (mTOR) kinase inhibitor CC-223 J Med Chem 2015, 58, 5323−5333 (106) https://clinicaltrials.gov/ct2/show/NCT02619864 (accessed June 12, 2016) (107) Varga, A.; Mita, M M.; Wu, J J.; Nemunaitis, J J.; Cloughesy, T F.; Mischel, P S.; Bendell, J C.; Shih, K C.; Paz-Ares, L G.; Mahipal, A.; Delord, J.-P.; Kelley, R K.; Soria, J.-C.; Wong, L.; Xu, S.; James, A.; Wu, X.; Chopra, R.; Hege, K.; Muster, P N Phase I expansion trial of an oral TORC1/TORC2 inhibitor (CC-223) in advanced solid tumors J Clin Oncol 2013, 31 (Suppl.), 2606 (108) Basu, B.; Dean, E.; Puglisi, M.; Greystoke, A.; Ong, M.; Burke, W.; Cavallin, M.; Bigley, G.; Womack, C.; Harrington, E A.; Green, S.; Oelmann, E.; de Bono, J S.; Ranson, M.; Banerji, U First-in-human pharmacokinetic and pharmacodynamic study of the dual m-TORC 1/ inhibitor AZD2014 Clin Cancer Res 2015, 21, 3412−3419 (109) Lin, F.; Buil, L.; Sherris, D.; Beijnen, J H.; van Tellingen, O Dual mTORC1 and mTORC2 inhibitor Palmoid 529 penetrates the blood-brain barrier without restriction by ABCB1 and ABCG2 Int J Cancer 2013, 133, 1222−1234 (110) For AKT inhibitors that have entered clinical studies see the following: (a) Pal, S K.; Reckamp, K.; Yu, H.; Figlin, R A Akt inhibitors in clinical development for the treatment of cancer Expert Opin Invest Drugs 2010, 19, 1355−1366 (b) Rodon, J.; Dienstmann, R.; Serra, V.; Tabernero, J Development of PI3K inhibitors: lessons learned from early clinical trials Nat Rev Clin Oncol 2013, 10, 143− 153 (111) Hilgard, P.; Klenner, T.; Stekar, J.; Nossner, G.; Kutscher, B.; Engel, J D-21266, a new heterocyclic alkylphospholipid with antitumor activity Eur J Cancer 1997, 33, 442−446 (112) Hirai, H.; Sootome, H.; Nakatsuru, Y.; Miyama, K.; Taguchi, S.; Tsujioka, K.; Ueno, Y.; Hatch, H.; Majumder, P K.; Pan, B S.; Kotani, H MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo Mol Cancer Ther 2010, 9, 1956−1967 (113) Dunn, D E.; He, D N.; Yang, P.; Johansen, M.; Newman, R A.; Lo, D C In vitro and in vivo neuroprotective activity of the cardiac glycoside oleandrin from Nerium oleander in brain slice-based stroke models J Neurochem 2011, 119, 805−814 (114) Heerding, D A.; Rhodes, N.; Leber, J D.; Clark, T J.; Keenan, R M.; Lafrance, L V.; Li, M.; Safonov, I G.; Takata, D T.; Venslavsky, J W.; Yamashita, D S.; Choudhry, A E.; Copeland, R A.; Lai, Z.; Schaber, M D.; Tummino, P J.; Strum, S L.; Wood, E R.; Duckett, D R.; Eberwein, D.; Knick, V B.; Lansing, T J.; McConnell, R T.; Zhang, S.; Minthorn, E A.; Concha, N O.; Warren, G L.; Kumar, R Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase J Med Chem 2008, 51, 5663−5679 (115) Dumble, M.; Crouthamel, M.; Zhang, S.; Schaber, M.; Levy, D.; Robell, K.; Liu, Q.; Figueroa, D J.; Minthorn, E A.; Seefeld, M A.; Rouse, M B.; Rabindran, S K.; Heerding, D A.; Kumar, R Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor PLoS One 2014, 9, e100880 (116) Blake, J F.; Xu, R.; Bencsik, J R.; Xiao, D.; Kallan, N C.; Schlachter, S.; Mitchell, I S.; Spencer, K L.; Banka, A L.; Wallace, E M.; Gloor, S L.; Martinson, M.; Woessner, R D.; Vigers, G P.; Brandhuber, B J.; Liang, J.; Safina, B S.; Li, J.; Zhang, B.; Chabot, C.; Do, S.; Lee, L.; Oeh, J.; Sampath, D.; Lee, B B.; Lin, K.; Liederer, B M.; Skelton, N J Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors J Med Chem 2012, 55, 8110−8127 (117) Lapierre, J.-M.; Eathiraj, S.; Vensel, D.; Liu, Y.; Bull, C O.; Cornell-Kennon, S.; Iimura, S.; Kelleher, E W.; Kizer, D E.; Koerner, S.; Makhija, S.; Matsuda, A.; Moussa, M.; Namdev, N.; Savage, R E.; Szwaya, J.; Volckova, E.; Westlund, N.; Wu, H.; Schwartz, B Discovery of 3-(3-(4-(1-aminocyclobutyl)phenyl)-5-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine (ARQ 092): an orally bioavailable, selective, and potent allosteric AKT inhibitor J Med Chem 2016, 59, 6455−6469 (118) Vink, S R.; Schellens, J H.; van Blitterswijk, W J.; Verheij, M Tumor and normal tissue pharmacokinetics of perifosine, an oral anticancer alkylphospholipid Invest New Drugs 2005, 23, 279−286 (119) Dunn, D E.; He, D N.; Yang, P.; Johansen, M.; Newman, R A.; Lo, D C In vitro and in vivo neuroprotective activity of the cardiac glycoside oleandrin from Nerium oleander in brain slice-based stroke models J Neurochem 2011, 119, 805−814 (120) Newton, H B Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors Expert Rev Anticancer Ther 2003, 3, 595−614 (121) Singh, D.; Chan, J M.; Zoppoli, P.; Niola, F.; Sullivan, R.; Castano, A.; Liu, E M.; Reichel, J.; Porrati, P.; Pellegatta, S.; Qiu, K.; Gao, Z.; Ceccarelli, M.; Riccardi, R.; Brat, D J.; Guha, A.; Aldape, K.; Golfinos, J G.; Zagzag, D.; Mikkelsen, T.; Finocchiaro, G.; Lasorella, A.; Rabadan, R.; Iavarone, A Transofrming fusions of FGFR and TACC genes in human glioblastoma Science 2012, 337, 1231−1235 (122) (a) Shaw, A T.; Hsu, P P.; Awad, M M.; Engleman, J A Tyrosine kinase gene rearrangements in epithelial malignancies Nat Rev Cancer 2013, 13, 772−787 (b) Dieci, M V.; Arnedos, M.; Andre, F.; Soria, J C Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives Cancer Discovery 2013, 3, 264−279 (123) Brooks, A N.; Kilgour, E.; Smith, P D Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer Clin Cancer Res 2012, 18, 1855−1862 (124) Gavine, P R.; Mooney, L.; Kilgour, E.; Thomas, A P.; AlKadhimi, K.; Beck, S.; Rooney, C.; Coleman, T.; Baker, D.; Mellor, M J.; Brooks, A N.; Klinowska, T AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family Cancer Res 2012, 72, 2045−2056 (125) Guagnano, V.; Furet, P.; Spanka, C.; Bordas, V.; Le Douget, M.; Stamm, C.; Brueggen, J.; Jensen, M R.; Schnell, C.; Schmid, H.; Wartmann, M.; Berghausen, J.; Drueckes, P.; Zimmerlin, A.; Bussiere, D.; Murray, J.; Graus Porta, D Discovery of 3-(2,6-dichloro-3,5dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase J Med Chem 2011, 54, 7066−7083 (126) Angibaud, P R.; Mevellec, L.; Saxty, G.; Adelinet, C.; Akkari, R.; Berdini, V.; Bonnet, P.; Bourgeois, M.; Bourdrez, X.; Cleasby, A.; Colombel, H.; Csoka, I.; Embrechts, W.; Freyne, E.; Gilissen, R.; Jovcheva, E.; King, P.; Lacrampe, J.; Lardeau, D.; Ligny, Y.; Mcclue, S.; 10057 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective Meerpoel, L.; Newell, D R.; Page, M.; Papanikos, A.; Pasquier, E.; Pilatte, I.; Poncelet, V.; Querolle, O.; Rees, D C.; Rich, S.; Roux, B.; Sement, E.; Simonnet, Y.; Squires, M.; Tronel, V.; Verhulst, T.; Vialard, J.; Willems, M.; Woodhead, S J.; Wroblowski, B.; Murray, C W.; Perera, T Abstract 4748: Discovery of JNJ-42756493, a potent fibroblast growth factor receptor (FGFR) inhibitor using a fragment based approach Cancer Res 2014, 74 (Suppl.), 4748 (127) Nakanishi, Y.; Akiyama, N.; Tsukaguchi, T.; Fujii, T.; Sakata, K.; Sase, H.; Isobe, T.; Morikami, K.; Shindoh, H.; Mio, T.; Ebiike, H.; Taka; Naoki, N.; Aoki, Y.; Ishii, N The fibroblast growth factor receptor genetic status as a potential predictor for the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor Mol Cancer Ther 2014, 13, 2547−2558 (128) https://clinicaltrials.gov/ct2/show/NCT01975701 (accessed June 12, 2016) (129) Savage, R E.; Hall, T.; Schwartz, B ARQ 087, a novel pan FGFR-inhibitor crosses the BBB (blood brain barrier) and distributes to the brain of rats Eur J Cancer 2014, 50 (Suppl 6), 50 (130) Elmlinger, M W.; Deininger, M H.; Schuett, B S.; Meyermann, R.; Duffner, F.; Grote, E H.; Ranke, M B In vivo expression of insulin-like growth factor-binding protein-2 in human gliomas increases with the tumor grade Endocrinology 2001, 142, 1652−1658 (131) Chen, H X.; Sharon, E IGF-1R as an anti-cancer targettrials and tribulations Aizheng 2013, 32, 242−252 (132) Mulvihill, M J.; Cooke, A.; Rosenfeld-Franklin, M.; Buck, E.; Foreman, K.; Landfair, D.; O’Connor, M.; Pirritt, C.; Sun, Y.; Yao, Y.; Arnold, L D.; Gibson, N W.; Ji, Q S Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-I receptor and insulin receptor Future Med Chem 2009, 1, 1153−1171 (133) Carboni, J M.; Wittman, M.; Yang, Z.; Lee, F.; Greer, A.; Hurlburt, W.; Hillerman, S.; Cao, C.; Cantor, G H.; Dell-John, J.; Chen, C.; Discenza, L.; Menard, K.; Li, A.; Trainor, G.; Vyas, D.; Kramer, R.; Attar, R M.; Gottardis, M M BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR Mol Cancer Ther 2009, 8, 3341−3349 (134) Vasilcanu, D.; Girnita, A.; Girnita, L.; Vasilcanu, R.; Axelson, A.; Larsson, O The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor1 receptor Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway Oncogene 2004, 23, 7854−7862 (135) Guz, N R.; Leuser, H.; Goldman, E Process development and multikilogram syntheses of XL228 utilizing a regioselective isoxazole formation and a selective SNAr reaction to a pyrimidine core Org Process Res Dev 2013, 17, 1066−1073 (136) Rodon, J.; De Santos, V.; Ferry, R J.; Kurzrock, R Early drug development of inhibitors of the insulin-like growth factor-I receptor pathway: lessons from the first clinical trials Mol Cancer Ther 2008, 7, 2575−2588 (137) Halvorson, K G.; Barton, K L.; Schroeder, K.; Misuraca, K L.; Hoeman, C.; Chung, A.; Crabtree, D M.; Cordero, F J.; Singh, R.; Spasojevic, I.; Berlow, N.; Pal, R.; Becher, O J A high-throughput in vitro drug screen in a genetically engineered mouse model of diffuse intrinsic pontine glioma identifies BMS-754807 as a promising therapeutic agent PLoS One 2015, 10, e0118926 (138) Boston-Howes, W.; Williams, E O.; Bogush, A.; Scolere, M.; Pasinelli, P.; Trotti, D Nordihydroguaiaretic acid increases glutamate uptake in vitro and in vivo: therapeutic implications for amyotrophic lateral sclerosis Exp Neurol 2008, 213, 229−237 (139) Parsons, D W.; Jones, S.; Zhang, X.; Lin, J C.-H.; Leary, R J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.-M.; Gallia, G L.; Olivi, A.; McLendon, R.; Rasheed, B A.; Keir, S.; Nikolskaya, T.; Nikolsky, Y.; Busam, D A.; Tekleab, H.; Diaz, L A.; Hartigan, J.; Smith, D R.; Strausberg, R L.; Marie, S K N.; Shinjo, S M O.; Yan, H.; Riggins, G J.; Bigner, D D.; Karchin, R.; Papadopoulos, N.; Parmiqiani, G.; Vogelstein, B.; Velculescu, V E.; Kinzler, K W An integrated genomic analysis of human glioblastoma multiforme Science 2008, 321, 1807− 1812 (140) (a) Paugh, B S.; Broniscer, A.; Qu, C.; Miller, C P.; Zhang, J.; Tatevossian, R G.; Olson, J M.; Geyer, J R.; Chi, S N.; da Silva, N S.; Onar-Thomas, A.; Baker, J N.; Gajjar, A.; Ellison, D W.; Baker, Z J Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma J Clin Oncol 2011, 29, 3999−4006 (b) Warren, K E.; Killian, K.; Suuriniemi, M.; Wang, Y.; Quezado, M.; Meltzer, P S Genomic aberrations in pediatric diffuse intrinsic pontine gliomas Neuro-Oncology 2012, 14, 326−332 (141) Toogood, P L.; Harvey, P J.; Repine, J T.; Sheehan, D J.; VanderWel, S N.; Zhou, H.; Keller, P R.; McNamara, D J.; Sherry, D.; Zhu, T.; Brodfuehrer, J.; Choi, C.; Barvian, M R.; Fry, D W Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6 J Med Chem 2005, 48, 2388−2406 (142) Barton, K L.; Misuraca, K.; Cordero, F.; Dobrikova, E.; Min, H D.; Gromeier, M.; Kirsch, D G.; Becher, O J PD-0332991, a CDK4/6 inhibitor, significantly prolongs survival in a genetically engineered mouse model of brainstem glioma PLoS One 2013, 8, e77639 (143) Michaud, K.; Solomon, D A.; Oermann, E.; Kim, J.-S.; Zhong, W.-Z.; Prados, M D.; Ozawa, T.; James, C D.; Waldman, T Pharmacologic inhibition of cyclin-dependent kinases and arrests the growth of glioblastoma multiforme intracranial xenografts Cancer Res 2010, 70, 3228−3238 (144) Parrish, K E.; Pokorny, J L.; Mittapalli, R K.; Bakken, K.; Sarkaria, J N.; Elmquist, W F Efflux transporters at the blood-brain barrier limit delivery and efficacy of CDK4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model J Pharmacol Exp Ther 2015, 355, 264−271 (145) Gelbert, L M.; Cai, S.; Lin, X.; Sanchez-Martinez, C.; del Prado, M.; Lallena, M J.; Torres, R.; Ajamie, R T.; Wishart, G N.; Flack, R S.; Neubauer, B L.; Young, J.; Chan, E M.; Iversen, P.; Cronier, D.; Kreklau, E.; de Dios, A Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine Invest New Drugs 2014, 32, 825−837 (146) Raub, T J.; Wishart, G N.; Kulanthaivel, P.; Staton, B A.; Ajamie, R T.; Sawada, G A.; Gelbert, L M.; Shannon, H E.; SanchezMartinez, C.; De Dios, A Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft Drug Metab Dispos 2015, 43, 1360−1371 (147) Sanchez-Martinez, C.; Gelbert, L M.; Shannon, H.; De Dios, A.; Staton, B A.; Ajamie, R T.; Sawada, G.; Wishart, G N.; Raub, T J Abstract B234: LY2835219, a potent oral inhibitor of the cyclindependent kinases and (CDK4/6) that crosses the blood-brain barrier and demonstrates in vivo activity against intracranial human brain tumor xenografts Mol Cancer Ther 2011, 10, B234 (148) https://clinicaltrials.gov/ct2/show/NCT02308020 (accessed June 12, 2016) (149) Asghar, U.; Witkiewicz, A K.; Turner, N C.; Knudsen, E S The history and future of targeting cyclin-dependent kinases in cancer therapy Nat Rev Drug Discovery 2015, 14, 130−146 (150) Cheng, C K.; Gustafson, W C.; Charron, E.; Houseman, B T.; Zunder, E.; Goga, A.; Gray, N S.; Pollok, B.; Oakes, S A.; James, C D.; Shokat, K M.; Weiss, W A.; Fan, Q W Dual blockade of lipid and cyclin-dependent kinases induces synthetic lethality in malignant glioma Proc Natl Acad Sci U S A 2012, 109, 12722−12727 (151) Senderowicz, A M Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials Invest New Drugs 1999, 17, 313−320 (152) Newcomb, E W.; Tamasdan, C.; Entzminger, Y.; Arena, E.; Schnee, T.; Kim, M.; Crisan, D.; Lukyanov, Y.; Miller, D C.; Zagzag, D Flavopiridol inhibits the growth of GL261 gliomas in vivo Cell Cycle 2004, 3, 218−222 (153) Zhou, L.; Schmidt, K.; Nelson, F R.; Zelesky, V.; Troutman, M D.; Feng, B The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-210058 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice Drug Metab Dispos 2009, 37, 946−955 (154) Vita, M.; Abdel-Rehim, M.; Olofsson, S.; Hassan, Z.; Meurling, L.; Siden, A.; Siden, M.; Pettersson, T.; Hassan, M Tissue distribution, pharmacokinetics and identification of roscovitine metabolites in rat Eur J Pharm Sci 2005, 25, 91−103 (155) Rajnai, Z.; Mehn, D.; Beery, E.; Okyar, A.; Jani, M.; Toth, G K.; Fulop, F.; Levi, F.; Krajcsi, P ATP-binding cassette B1 transports seliciclib (R-roscovitine), a cyclin-dependent kinase inhibitor Drug Metab Dispos 2010, 38, 2000−2006 (156) Paruch, K.; Dwyer, M P.; Alvarez, C.; Brown, C.; Chan, T Y.; Doll, R J.; Keertikar, K.; Knutson, C.; McKittrick, B.; Rivera, J.; Rossman, R.; Tucker, G.; Fischmann, T.; Hruza, A.; Madison, V.; Nomeir, A A.; Wang, Y.; Kirschmeier, P.; Lees, E.; Parry, D.; Sqambellone, N.; Seghezzi, W.; Schultz, L.; Shanahan, F.; Wiswell, D.; Xu, X.; Zhou, Q.; James, R A.; Paradkar, V M.; Park, H.; Rokosz, L R.; Stauffer, T M.; Guzi, T J Discovery of dinaciclib (SCH 727965): a potent and selective inhibitor of cyclin-dependent kinases ACS Med Chem Lett 2010, 1, 204−208 (157) Jane, E P.; Premkumar, D R.; Cavaleri, J M.; Sutera, P A.; Rajasekar, T.; Pollack, I F Dinaciclib, a cyclin-dependent kinase inhibitor promotes proteasomal degradation of Mcl-1 and enhances glioma cell lines J Pharmacol Exp Ther 2016, 356, 354−365 (158) Loschmann, N.; Michaelis, M.; Rothweiler, F.; Zehner, R.; Cinati, J.; Voges, Y.; Sharifi, M.; Riecken, K.; Meyer, J.; von Deimling, A.; Fichter, I.; Ghafourian, T.; Westermann, F.; Cinatl, J Testing of SNS-032 in a panel of human neuroblastoma cell lines with acquired resistance to a broad range of drugs Transl Oncol 2013, 6, 685−696 (159) Kamath, A V.; Chong, S.; Chang, M.; Marthe, P H Pglycoprotein plays a role in the oral absorption of BMS-387032, a potent cyclin-dependent kinase inhibitor, in rats Cancer Chemother Pharmacol 2005, 55, 110−116 (160) Wyatt, P G.; Woodhead, A J.; Berdini, V.; Boulstridge, J A.; Carr, M G.; Cross, D M.; Davis, D J.; Devine, L A.; Early, T R.; Feltell, R E.; Lewis, E J.; McMenamin, R L.; Navarro, E F.; O’Brien, M A.; O’Reilly, M.; Reule, M.; Saxty, G.; Seavers, L C.; Smith, D M.; Squires, M S.; Trewartha, G.; Walker, M T.; Woolford, A J Identification of N-(4-piperidinyl)-4-(2,6-dichlorbenzoylamino)-1Hpyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design J Med Chem 2008, 51, 4986−4999 (161) Cihalova, D.; Staud, F.; Ceckova, M Interactions of cyclindependent kinase inhibitors AT-7519, flavopiridol and SNS-032 with ABCB1, ABCG2 and ABCC1 trasporters and their potential to overcome multidrug resistance in vitro Cancer Chemother Pharmacol 2015, 76, 105−116 (162) Chu, X J.; DePinto, W.; Bartkovitz, D.; So, S S.; Vu, B T.; Packman, K.; Lukacs, C.; Ding, Q.; Jiang, N.; Wang, K.; Goelzer, P.; Yin, X.; Smith, M A.; Higgins, B X.; Chen, Y.; Xiang, Q.; Moliterni, J.; Kaplan, G.; Graves, B.; Lovey, A.; Fotouhi, N Discovery of [4-amino2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6-methoxyphenyl)methanone (R547), a potent and selective cyclin-dependent kinase inhibitor with significant in vivo antitumor activity J Med Chem 2006, 49, 6549−6560 (163) Byth, K F.; Thomas, A.; Hughes, G.; Forder, C.; McGregor, A.; Geh, C.; Oakes, S.; Green, C.; Walker, M.; Newcombe, N.; Green, S.; Growcott, J.; Barker, A.; Wilkinson, R W AZD5438, a potent oral inhibitor of cyclin-dependent kinases 1, 2, and 9, leads to pharmacodynamic changes and potent antitumor effects in human tumor xenografts Mol Cancer Ther 2009, 8, 1856−1866 (164) Zhang, I.; Zaorsky, N G.; Palmer, J D.; Mehra, R.; Lu, B Targeting brain metastases in ALK-rearranged non-small-cell lung cancer Lancet Oncol 2015, 16, e510−e521 (165) Cui, J J.; Tran-Dube, M.; Shen, H.; Nambu, M.; Kung, P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R S.; Edwards, M P Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK) J Med Chem 2011, 54, 6342−6363 (166) Camidge, D R.; Bang, Y.-J.; Kwak, E L.; Iafrate, A J.; VarellaGarcia, M.; Fox, S B.; Riely, G J.; Solomon, B.; Ou, S.-H I.; Kim, D.W.; Salgia, R.; Fidias, P.; Engelman, J A.; Gandhi, L.; Janne, P A.; Costa, D B.; Shapiro, G I.; LoRusso, P.; Ruffner, K.; Stephenson, P.; Tang, Y.; Wilner, K.; Clark, J W.; Shaw, A T Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase study Lancet Oncol 2012, 13, 1011− 1019 (167) Otterson, G A.; Riely, G J.; Shaw, A T.; Crino, L.; Kim, D.W.; Marins, R.; Salgia, R.; Zhou, C.; Solomon, B J.; Wilner, K D.; Polli, A.; Tang, Y.; Bartlett, C H.; Ou, S.-H I Clinical characteristics of ALK+ NSCLC patients treated with crizotnib beyond disease progression: potential implications for management J Clin Oncol 2012, 30 (Suppl.), 7600 (168) Costa, D B.; Kobayashi, S.; Pandya, S S.; Yeo, W.-L.; Shen, Z.; Tan, W.; Wilner, K D CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib J Clin Oncol 2011, 29, e443−445 (169) Johnson, T W.; Richardson, P F.; Bailey, S.; Brooun, A.; Burke, B J.; Collins, M R.; Cui, J J.; Deal, J G.; Deng, Y.-L.; Dinh, D.; Engstrom, L D.; He, M.; Hoffman, J.; Hoffman, R L.; Huang, Q.; Kania, R S.; Kath, J C.; Lam, H.; Lam, J L.; Le, P T.; Lingardo, L.; Liu, W.; McTigue, M.; Palmer, C L.; Sach, N W.; Smeal, T.; Smith, G L.; Stewart, A E.; Timofeevski, S.; Zhu, H.; Zhu, J.; Zou, H Y.; Edwards, M P Discovery of (10R)-7-amino-12-fluoro-2,10,16trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations J Med Chem 2014, 57, 4720−4744 (170) Awad, M M.; Shaw, A T ALK inhibitors in non-small cell lung cancer: crizotinib and beyond Clin Adv Hematol Oncol 2014, 12, 429−439 (171) Marsilje, T H.; Pei, W.; Chen, B.; Lu, W.; Uno, T.; Jin, Y.; Jiang, T.; Kim, S.; Li, N.; Warmuth, M.; Sarkisova, Y.; Sun, F.; Steffy, A.; Pferdekamper, A C.; Li, A G.; Joseph, S B.; Kim, Y.; Liu, B.; Tuntland, T.; Cui, X.; Gray, N S.; Steensma, R.; Wan, Y.; Jiang, J.; Chopiuk, G.; Li, J.; Gordon, W P.; Richmond, W.; Johnson, K.; Chang, J.; Groessl, T.; He, Y.-Q.; Phimister, A.; Aycinena, A.; Lee, C C.; Bursulaya, B.; Karanewsky, D S.; Seidel, H M.; Harris, J L.; Michellys, P.-Y Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase and phase clinical trials J Med Chem 2013, 56, 5675−5690 (172) (a) Shaw, A T.; Kim, D W.; Mehra, R.; Tan, D S W.; Felip, E.; Chow, L Q M.; Camidge, D R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G J.; Solomon, B J.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Lau, Y Y.; Goldwasser, M.; Boral, A L.; Engelman, J A Ceritinib in ALK-rearranged non-small-cell lung cancer N Engl J Med 2014, 370, 1189−1197 (b) Kim, D.-W.; Mehra, R.; Tan, D S.-W.; Felip, E.; Chow, L Q M.; Camidge, D R.; Vansteenkiste, J F.; Sharma, S.; De Pas, T.; Riely, G J.; Solomon, B J.; Wolf, J.; Thomas, M.; Schuler, M H.; Liu, G.; Santoro, A.; Geraldes, M.; Boral, A.; Yovine, A J.; Shaw, A T Ceritinib in advanced anaplastic lymphoma (ALK)-rearranged (ALK+) non-small cell lung cancer (NSCLC): results of the ASCEND-1 trial J Clin Oncol 2014, 32 (Suppl.), 8003 (c) Shaw, A.; Mehra, R.; Tan, D S W.; Felip, E.; Chow, L Q.; Camidge, D R.; Vansteenkiste, J R.; Sharma, S.; De Pas, T.; Riely, G J.; Solomon, B.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Geraldes, M.; Boral, A L.; Yovine, A.; Kim, D Evaluation of ceritinib-treated patients (pts) with anaplastic lymphoma kinase rearranged (ALK+) non-small cell lung cancer (NSCLC) and brain metastases in the ASCEND-1 Study Ann Oncol 2014, 25 (Suppl 4), iv455−iv456 10059 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective (173) Kinoshita, K.; Asoh, K.; Furuichi, N.; Ito, T.; Kawada, H.; Hara, S.; Ohwada, J.; Miyagi, T.; Kobayashi, T.; Takanashi, K.; Tsukaguchi, T.; Sakamoto, H.; Tsukuda, T.; Oikawa, N Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802) Bioorg Med Chem 2012, 20, 1271−1280 (174) Kodama, T.; Hasegawa, M.; Takanashi, K.; Sakurai, Y.; Kondoh, O.; Sakamoto, H Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases Cancer Chemother Pharmacol 2014, 74, 1023−1028 (175) (a) Gadgeel, S M.; Gandhi, L.; Riely, G J.; Chiappori, A A.; West, H L.; Azada, M C.; Morcos, P N.; Lee, R.-M.; Garcia, L.; Yu, L.; Boisserie, F.; Di Laurenzio, L.; Golding, S.; Sato, J.; Yokoyama, S.; Tanaka, T.; Ou, S.-H I Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALKrearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study Lancet Oncol 2014, 15, 1119−1128 (b) Ajimizu, H.; Kim, Y H.; Mishima, M Rapid response of brain metastases to alectinib in a patient with non-small-cell lung cancer resistant to crizotinib Med Oncol 2015, 32, (c) Gainor, J F.; Sherman, C A.; Willoughby, K.; Logan, J.; Kennedy, E.; Brastianos, P K.; Chi, A S.; Shaw, A T Alectinib salvages CNS relapses in ALKpositive lung cancer patients previously treated with crizotinib and ceritinib J Thorac Oncol 2015, 10, 232−236 (176) Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; Corti, L.; Donati, D.; Fasolini, M.; Felder, E.; Fiorelli, C.; Fiorentini, F.; Galvani, A.; Isacchi, A.; Borgia, A L.; Marchionni, C.; Nesi, M.; Orrenius, C.; Panzeri, A.; Pesenti, E.; Rusconi, L.; Saccardo, M B.; Vanotti, E.; Perrone, E.; Orsini, P Discovery of entrectinib: a new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene kinase (ROS1), and pan-tropomyosin receptor kinases (pan-TRKs) inhibitor J Med Chem 2016, 59, 3392−3408 (177) Farago, A F.; Le, L P.; Zheng, Z.; Muzikansky, A.; Drilon, A.; Patel, M.; Bauer, T M.; Liu, S V.; Ou, S I.; Jackman, D.; Costa, D B.; Multani, P S.; Li, G G.; Hornby, Z.; Chow-Maneval, E.; Luo, D.; Lim, J E.; Iafrate, A J.; Shaw, A T Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer J Thorac Oncol 2015, 10, 1670−1674 (178) Mori, M.; Ueno, Y.; Konagai, S.; Fushiki, H.; Shimada, I.; Kondoh, Y.; Saito, R.; Mori, K.; Shindou, N.; Soga, T.; Sakagami, H.; Furutani, T.; Doihara, H.; Kudoh, M.; Kuromitsu, S The selective anaplastic lymphoma receptor tyrosine kinase inhibitor ASP3026 induces tumor regression and prolongs survival in non-small cell lung cancer model mice Mol Cancer Ther 2014, 13, 329−340 (179) Fushiki, H.; Saito, R.; Jitsuoka, M.; Shimada, I.; Kondoh, Y.; Sakagami, H.; Funatsu, Y.; Noda, A.; Murakami, Y.; Miyoshi, S.; Ueon, Y.; Konagai, S.; Soga, T.; Nishimura, S.; Mori, M.; Kuromitsu, S Abstract 2678: First demonstration of in vivo PET imaging for ALK inhibitor using [11C]ASP3026, a novel brain-permeable type of ALK inhibitor Cancer Res 2013, 73 (Suppl.), 2678 (180) Huang, W S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; Cai, L.; Dwight, T A.; Xu, Y.; Xu, R.; Dodd, R.; Toms, A.; Parillon, L.; Lu, X.; Anjum, R.; Zhang, S.; Wang, F.; Keats, J.; Wardwell, S D.; Ning, Y.; Xu, Q.; Moran, L E.; Mohemmad, Q K.; Jang, H G.; Clackson, T.; Narashimhan, N I.; Rivera, V M.; Zhu, X.; Dalgarno, D.; Shakespeare, W C Discovery of brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of analplastic lymphoma kinase J Med Chem 2016, 59, 4948−4964 (181) Gettinger, S N.; Bazhenova, L.; Salgia, R.; Langer, C J.; Gold, K A.; Rosell, R.; Shaw, A T.; Weiss, G J.; Narasimhan, N I.; Dorer, D J.; Rivera, V M.; Clackson, T.; Haluska, F G.; Camidge, D R Updated efficacy and safety of the ALK inhibitor AP26113 in patients with advanced malignancies, including ALK+ non-small cell lung cancer J Thorac Oncol 2013, (Suppl 2), S296 (182) Camidge, D R.; Bazhenova, L.; Salgia, R.; Langer, C J.; Gold, K A.; Rosell, R.; Shaw, A T.; Weiss, G J.; Narasimhan, N I.; Dorer, D J.; Rivera, V M.; Clackson, T P.; Conlan, M G.; Kerstein, D.; Haluska, F G.; Gettinger, S N Safety and efficacy of brigatinib (AP26113) in advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC) J Clin Oncol 2015, 33 (Suppl.), 8062 (183) Lovly, C M.; Heuckmann, J M.; de Stanchina, E.; Chen, H.; Thomas, R K.; Liang, C.; Pao, W Insights into ALK-driven cancers revealed through development of novel ALK tyrosine kinase inhibitors Cancer Res 2011, 71, 4920−4931 (184) Lin, N U.; Dieras, V.; Paul, D.; Lossignol, D.; Christodoulou, C.; Stemmler, H.-J.; Roche, H.; Liu, M C.; Greil, R.; Ciruelos, E.; Loibl, S.; Gori, S.; Wardley, A.; Yardley, D.; Brufsky, A.; Blum, J L.; Rubin, S D.; Dharan, B.; Steplewski, K.; Zembryki, D.; Oliva, C.; Roychowdhury, D.; Paoletti, P.; Winer, E P Multicenter phase II study of lapatinib in patients with brain metastases from HER2positive breast cancer Clin Cancer Res 2009, 15, 1452−1459 (185) Medina, P J.; Goodin, S Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases Clin Ther 2008, 30, 1426−1447 (186) Taskar, K S.; Rudraraju, V.; Mittapalli, R K.; Samala, R.; Thorsheim, H R.; Lockman, J.; Gril, B.; Hua, E.; Palmieri, D.; Polli, J W.; Castellino, S.; Rubin, S D.; Lockman, P R.; Steeg, P S.; Smith, Q R Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer Pharm Res 2012, 29, 770−781 (187) Polli, J W.; Olson, K L.; Chism, J P.; St John-Williams, L.; Yeager, R L.; Woodard, S M.; Otto, V.; Castellino, S.; Demby, V E An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]4-quinazolinamine; GW572016 Drug Metab Dispos 2009, 37, 439− 442 (188) Morikawa, A.; Peereboom, D M.; Thorsheim, H R.; Samala, R.; Balyan, R.; Murphy, C G.; Lockman, P R.; Simmons, A.; Weil, R J.; Tabar, V.; Steeg, P S.; Smith, Q R.; Seidman, A D Capcitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study Neuro-Oncology 2015, 17, 289−295 (189) Schroeder, R L.; Stevens, C L.; Sridhar, J Small molecule tyrosine kinase inhibitors of ErbB2/HER2/Neu in the treatment of aggressive breast cancer Molecules 2014, 19, 15196−15212 (190) Feldinger, K.; Kong, A Profile of neratinib and its potential in the treatment of breast cancer Breast Cancer: Targets Ther 2015, 7, 147−162 (191) Dinkel, V.; Anderson, D.; Winski, S.; Winkler, J.; Koch, K.; Lee, P A Abstract 852: ARRY-380, a potent, small molecule inhibitor of ErbB2, increases survival in intracranial ErbB2+ xenograft models in mice Cancer Res 2012, 72 (Suppl.), 852 (192) Freedman, R A.; Gelman, R S.; Wefel, J S.; Melisko, M E.; Hess, K R.; Connolly, R M.; Van Poznak, C H.; Niravath, P A.; Puhalla, S L.; Ibrahim, N.; Blackwell, K L.; Liu, M C.; Lowe, A.; Agar, N Y R.; Ryabin, N.; Farooq, S.; Lawler, E.; Rimawi, M F.; Krop, I E.; Wolff, A C.; Winer, E P.; Lin, N U Translational Breast Cancer Research Consortium (TBCRC) 022: A phase II trial of neratinib for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases J Clin Oncol 2016, 34, 945−952 (193) Roche, S.; Pedersen, K.; Dunne, G.; Collins, D.; Devery, A.; Crown, J.; Clynes, M.; O’Connor, R Pharmacological interactions of TKIs with the P-gp drug transport protein J Clin Oncol 2012, 30 (Suppl.), 2536 (194) Metzger-Filho, O.; Barry, W T.; Krop, I E.; Younger, W J.; Lawler, E S.; Winer, E P.; Lin, N U Phase I dose-escalation trial of ONT-380 in combination with trastuzumab in participants with brain metastases from HER2+ breast cancer J Clin Oncol 2014, 32 (Suppl.), TPS660 (195) Ishikawa, T.; Seto, M.; Banno, H.; Kawakita, Y.; Oorui, M.; Taniguchi, T.; Ohta, Y.; Tamura, T.; Nakayama, A.; Miki, H.; Kamiguchi, H.; Tanaka, T.; Habuka, N.; Sogabe, S.; Yano, J.; Aertgeerts, K.; Kamiyama, K Design and synthesis of novel human epidermal growth factor receptor (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold J Med Chem 2011, 54, 8030−8050 10060 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective (196) Erdo, F.; Gordon, J.; Wu, J T.; Sziraki, I Verification of brain penetration of the unbound fraction of a novel HER2/EGFR dual kinase inhibitor (TAK-285) by microdialysis in rats Brain Res Bull 2012, 87, 413−419 (197) Nakayama, A.; Takagi, S.; Yusa, T.; Yaguchi, M.; Hayashi, A.; Tamura, T.; Kawakita, Y.; Ishikawa, T.; Ohta, Y Antitumor activity of TAK-285, an investigational, non-Pgp substrate HER2/EGFR kinase inhibitor, in cultured tumor cells, mouse and rat xenograft tumors, and in an HER2-positive brain metastasis model J Cancer 2013, 4, 557− 565 (198) Kalous, O.; Conklin, D.; Desai, A J.; O’Brien, N A.; Ginther, C.; Anderson, L.; Cohen, D J.; Britten, C D.; Taylor, I.; Christensen, J G.; Slamon, D J.; Finn, R S Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor, inhibits proliferation of HER2amplified breast cancer cell lines resistant to trastuzumab and lapatinib Mol Cancer Ther 2012, 11, 1978−1987 (199) Wong, T W.; Lee, F Y.; Yu, C.; Luo, F R.; Oppenheimer, S.; Zhang, H.; Smykla, R A.; Mastalerz, H.; Fink, B E.; Hunt, J T.; Gavai, A V.; Vite, G D Preclinical antitumor activity of BMS-599626, a panHER kinase inhibitor that inhibits HER1/HER2 homodimer and heterodimer signaling Clin Cancer Res 2006, 12, 6186−6193 (200) Desjardins, A.; Reardon, D A.; Vredenburgh, J J.; Peters, K.; Trikha, M.; James, J.; Gardner, M.; Brickhouse, A.; Herndon, J E.; Friedman, H S A pharmacokinetic study of AC48 administered twice daily in patients with surgically resectable, recurrent malignant glioma (MG) not on enzyme-inducing antiepileptic drug (EIAED) J Clin Oncol 2011, 29 (Suppl.), 2070 (201) Traxler, P.; Allegrini, P R.; Brandt, R.; Brueggen, J.; Cozens, R.; Fabbro, D.; Grosios, K.; Lane, H A.; McSheehy, P.; Mestan, J.; Meyer, T.; Tang, C.; Wartmann, M.; Wood, J.; Caravatti, G AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity Cancer Res 2004, 64, 4931− 4941 (202) Meco, D.; Servidei, T.; Zannoni, G F.; Martinelli, E.; Prisco, M G.; de Waure, C.; Riccardi, R Dual inhibitor AEE788 reduces tumor growth in preclinical models of medulloblastoma Trans Oncol 2010, 3, 326−335 (203) Goudar, R K.; Shi, Q.; Hjelmeland, M D.; Keir, S T.; McLendon, R E.; Wikstrand, C J.; Reese, E D.; Conrad, C A.; Traxler, P.; Lane, H A.; Reardon, D A.; Cavenee, W K.; Wang, X F.; Bigner, D D.; Friedman, H S.; Rich, J N Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition Mol Cancer Ther 2005, 4, 101−112 (204) Reardon, D A.; Conrad, C A.; Cloughesy, T.; Prados, M D.; Friedman, H S.; Aldape, K D.; Mischel, P.; Xia, J.; DiLea, C.; Huang, J.; Mietlowski, W.; Dugan, M.; Chen, W.; Yung, W K A Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptorfamily tyrosine kinases, in recurrent glioblastoma patients Cancer Chemother Pharmacol 2012, 69, 1507−1518 (205) Wissner, A.; Mansour, T S The development of HKI-272 and related compounds for the treatment of cancer Arch Pharm 2008, 341, 465−477 (206) Hegedus, C.; Truta-Feles, K.; Antalffy, G.; Varady, G.; Nemet, K.; Ozvegy-Laczka, C.; Keri, G.; Orfi, L.; Szakacs, G.; Settleman, J.; Varadi, A.; Sarkadi, B Interaction of the EGFR inhibitors gefitinib, vandetanib, pelitinib and neratinib with the ABCG2 multidrug transporter: implications for the emergence and reversal of cancer drug resistance Biochem Pharmacol 2012, 84, 260−267 (207) Jani, J P.; Finn, R S.; Campbell, M.; Coleman, K G.; Connell, R D.; Currier, N.; Emerson, E O.; Floyd, E.; Harriman, S.; Kath, J C.; Morris, J.; Moyer, J D.; Pustilnik, L R.; Rafidi, K.; Ralston, S.; Rossi, A M K.; Steyn, S J.; Wagner, L.; Winter, S M.; Bhattacharya, S K Discovery and pharmacologic characterization of CP-724,714, a selective ErbB2 tyrosine kinase inhibitor Cancer Res 2007, 67, 9887−9893 (208) Feng, B.; Xu, J J.; Bi, Y A.; Mireles, R.; Davidson, R.; Duignan, D B.; Campbell, S.; Kostrubsky, V E.; Dunn, M C.; Smith, A R.; Wang, H F Role of hepatic transporters in the disposition and hepatotoxicity of a HER2 tyrosine kinase inhibitor CP-724,714 Toxicol Sci 2009, 108, 492−500 (209) Cai, X.; Zhai, H X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C J.; Bao, R.; Qian, C Discovery of 7-(4-(3-ethynylphenylamino)-7methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer J Med Chem 2010, 53, 2000−2009 (210) Barlaam, B.; Anderton, J.; Ballard, P.; Bradbury, R H.; Hennequin, L F A.; Hickinson, D M.; Kettle, J G.; Kirk, G.; Klinowska, T.; Lambert-van der Brempt, C.; Trigwell, C.; Vincent, J.; Ogilvie, D Discovery of AZD8931, an equipotent, reversible inhibitor of signaling by EGFR, HER2, and HER3 receptors ACS Med Chem Lett 2013, 4, 742−746 (211) Xie, H.; Lin, L.; Tong, L.; Jiang, Y.; Zheng, M.; Chen, Z.; Jiang, X.; Zhang, X.; Ren, X.; Qu, W.; Yang, Y.; Wan, H.; Chen, Y.; Zuo, J.; Jiang, H.; Geng, M.; Ding, J AST1306, a novel irreversible inhibitor of the epidermal growth factor receptor and 2, exhibits antitumor activity both in vitro and in vivo PLoS One 2011, 6, e21487 (212) (a) Fife, K M.; Colman, M H.; Stevens, G N.; Firth, I C.; Moon, D.; Shannon, K F.; Harman, R.; Petersen-Schaefer, K.; Zacest, A C.; Besser, M.; Milton, G W.; McCarthy, W H.; Thompson, J F Determinants of outcome in melanoma patients with cerebral metastases J Clin Oncol 2004, 22, 1293−1300 (b) Sampson, J H.; Carter, J H.; Friedman, A H.; Seigler, H F Demographics, prognosis, and therapy in 702 patients with brain metastases from malignant melanoma J Neurosurg 1998, 88, 11−20 (213) Flaherty, K T.; Yasothan, U.; Kirkpatrick, P Vemurafenib Nat Rev Drug Discovery 2011, 10, 811−812 (214) Rheault, T R.; Stellwagen, J C.; Adjabeng, G M.; Hornberger, K R.; Petrov, K G.; Waterson, A G.; Dickerson, S H.; Mook, R A.; Laquerre, S G.; King, A J.; Rossanese, O W.; Arnone, M R.; Smitheman, K N.; Kane-Carson, L S.; Han, C.; Moorthy, G S.; Moss, K G.; Uehling, D E Discovery of dabrafenib: a selective inhibitor of Raf kinases with antitumor activity against B-Raf-driven tumors ACS Med Chem Lett 2013, 4, 358−362 (215) Hoeflich, K P.; Merchant, M.; Orr, C.; Chan, J.; Den Otter, D.; Berry, L.; Kasman, I.; Koeppen, H.; Rice, K.; Yang, N Y.; Engst, S.; Johnston, S.; Friedman, L S.; Belvin, M Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition Cancer Res 2012, 72, 210−219 (216) Abe, H.; Kikuchi, S.; Hayakawa, K.; Iida, T.; Nagahashi, N.; Maeda, K.; Sakamoto, J.; Matsumoto, N.; Miura, T.; Matsumura, K.; Seki, N.; Inaba, T.; Kawasaki, H.; Yamaguchi, T.; Kakefuda, R.; Nanayama, T.; Kurachi, H.; Hori, Y.; Yoshida, T.; Kakegawa, J.; Watanabe, Y.; Gilmartin, A G.; Richter, M C.; Moss, K G.; Laquerre, S G Discovery of a highly potent and selective MEK inhibitor: GSK1120212 (JTP-74057 DMSO solvate) ACS Med Chem Lett 2011, 2, 320−324 (217) Myung, J K.; Cho, H.; Park, C.-K.; Kim, S K.; Lee, S H.; Park, S H Analysis of the BRAF V600E mutation in central nervous system tumors Transl Oncol 2012, 5, 430−436 (218) Kieran, M W Targeting BRAF in pediatric brain tumors In American Society of Clinical Oncology 2014 Educational Book; Dizon, D S., Pennell, N., Burke, L., Carter, D., Dottellis, D., Eds.; American Society of Clinical Oncology: Alexandria, VA, 2014; pp e436−e440, DOI: 10.14694/EdBook_AM.2014.34.e436 (219) See, W L.; Tan, I L.; Mukherjee, J.; Nicolaides, T.; Pieper, R O Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin deficiency Cancer Res 2012, 72, 3350− 3359 (220) (a) McCubrey, J A.; Steelman, L S.; Chappell, W H.; Abrams, S L.; Franklin, R A.; Montalto, G.; Cervello, M.; Libra, M.; Candido, S.; Malaponte, G.; Mazzarino, M C.; Fagone, P.; Nicoletti, F.; Basecke, J.; Mijatovic, S.; Maksimovic-Ivanic, D.; Milella, M.; Tafuri, A.; Chiarini, F.; Evangelisti, C.; Cocco, L.; Martelli, A M Ras/Raf/MEK/ 10061 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance Oncotarget 2012, 3, 1068−1111 (b) Huang, T.; Karsy, M.; Zhuge, J.; Zhong, M.; Liu, D B-Raf and the inhibitors: from bench to bedside J Hematol Oncol 2013, 6, 30 (221) (a) Zhao, Y.; Adjei, A A The clinical development of MEK inhibitors Nat Rev Clin Oncol 2014, 11, 385−400 (b) Akinleye, A.; Furqan, M.; Mukhi, N.; Ravella, P.; Liu, D MEK and the inhibitors: from bench to bedside J Hematol Oncol 2013, 6, 27 (c) McDermott, L.; Qin, C Allosteric MEK1/2 Inhibitors for the Treatment of Cancer: An Overview J Drug Res Dev 2015, 1, DOI: 10.16966/24701009.101; http://dx.doi.org/10.16966/2470-1009.101 (222) (a) Rochet, N M.; Dronca, R S.; Kottschade, L A.; Chavan, R N.; Gorman, B.; Gilbertson, J R.; Markovic, S N Melanoma brain metastases and vemurafenib: need for further investigation Mayo Clin Proc 2012, 87, 976−981 (b) Gummadi, T.; Zhang, B Y.; Valpione, S.; Kim, C.; Kottschade, L A.; Mittapalli, R K.; Chiarion-Sileni, V.; Pigozzo, J.; Elmquist, W F.; Dudek, A Impact of BRAF mutation and BRAF inhibition on melanoma brain metastases Melanoma Res 2015, 25, 75−79 (c) Dummer, R.; Goldinger, S M.; Turtschi, C P.; Eggmann, N B.; Michielin, O.; Mitchell, L.; Veronese, L.; Hilfikeer, P R.; Felderer, L.; Rinderknecht, J D Vemurafenib in patients with BRAF(V600) mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study Eur J Cancer 2014, 50, 611−621 (d) Robinson, G W.; Orr, B A.; Gajjar, A Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multi-forme after BRAF Inhibitor therapy BMC Cancer 2014, 14, 258 (223) (a) Falchook, G S.; Long, G V.; Kurzrock, R.; Kim, K B.; Arkenau, T H.; Brown, M P.; Hamid, O.; Infante, J R.; Millward, M.; Pavlick, A C.; O’Day, S J.; Blackman, S C.; Curtis, C M.; Lebowitz, P.; Ma, B.; Ouellet, D.; Kefford, R F Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase I dose-escalation trial Lancet 2012, 379, 1893−1901 (b) Long, G V.; Trefzer, U.; Davies, M A.; Kefford, R F.; Ascierto, P A.; Chapman, P B.; Puzanov, I.; Hauschild, A.; Robert, C.; Algazi, A.; Mortier, L.; Tawbi, H.; Wilhelm, T.; Zimmer, L.; Switzky, J.; Swann, S.; Martin, A M.; Guckert, M.; Goodman, V.; Streit, M.; Kirkwood, J M.; Schadendorf, D Dabrafenib in patients with Val600Glu or V600Lys BRAF-mutant melanoma metastatic to the brain (BREAKMB): a multicenter, open-label, phase trial Lancet Oncol 2012, 13, 1087−1095 (224) Vaidhyanathan, S.; Mittapalli, R K.; Sarkaria, J N.; Elmquist, W F Factors influencing the CNS distribution of a novel MEK-1/2 inhibitor: implications for combination therapy for melanoma brain metastases Drug Metab Dispos 2014, 42, 1292−1300 (225) (a) Mittapalli, R K.; Vaidhyanathan, S.; Sane, R.; Elmquist, W F Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032) J Pharmacol Exp Ther 2012, 342, 33−40 (b) Mittapalli, R K.; Vaidhyanathan, S.; Dudek, A Z.; Elmquist, W F Mechanisms limiting distribution of the threonine-protein kinase BRafV600E inhibitor dabrafenib to the brain: implications for the treatment of melanoma brain metastases J Pharmacol Exp Ther 2013, 344, 655−664 (226) Williams, T E.; Subramanian, S.; Verhagen, J.; McBride, C M.; Costales, A.; Sung, L.; Antonios-McCrea, W.; McKenna, M.; Louie, A K.; Ramurthy, S.; Levine, B.; Shafer, C M.; Machajewski, T.; Renhowe, P A.; Appleton, B A.; Amiri, P.; Chou, J.; Stuart, D.; Aardalen, K.; Poon, D Discovery of RAF265: a potent mut-B-Raf inhibitor for the treatment of metastatic melanoma ACS Med Chem Lett 2015, 6, 961−965 (227) Liu, X.; Ide, J L.; Norton, I.; Marchionni, M A.; Ebling, M C.; Wang, L Y.; Davis, E.; Sauvageot, C M.; Kesari, S.; Kellersberger, K A.; Easterling, M L.; Santagata, S.; Stuart, D D.; Alberta, J.; Agar, J N.; Stiles, C D.; Agar, N Y R Molecular imaging of drug transit through the blood-brain barrier with MALDI mass spectrometry imaging Sci Rep 2013, 3, 2859 (228) Liveblogging First-Time Disclosures of Drug Structures from #ACSNOLA http://cenblog.org/the-haystack/2013/04/livebloggingfirst-time-disclosures-of-drug-structures-from-acsnola/ (ccessed June 10, 2016) (229) Rusconi, P.; Caiola, E.; Broggini, M Ras/Raf/MEK inhibitors in oncology Curr Med Chem 2012, 19, 1164−1176 (230) Choo, E F.; Ly, J.; Chan, J.; Shahidi-Latham, S K.; Messick, K.; Plise, E.; Quiason, C M.; Yang, L Role of P-glycoprotein on the brain penetration and brain pharmacodynamic activity of the MEK inhibitor cobimetinib Mol Pharmaceutics 2014, 11, 4199−4207 (231) (a) Choo, E F.; Belvin, M.; Boggs, J.; Deng, Y.; Hoeflich, K P.; Ly, J.; Merchant, M.; Orr, C.; Plise, E.; Robarge, K.; Martini, J F.; Kassees, R.; Aoyama, R G.; Ramaiya, A.; Johnston, S H Preclinical disposition of GDC-0973 and prospective and retrospective analysis of human dose and efficacy predictions Drug Metab Dispos 2012, 40, 919−927 (b) Gilmartin, A G.; Bleam, M R.; Groy, A.; Moss, K G.; Minthorn, E A.; Kulkami, S G.; Rominger, C M.; Erskine, S.; Fisher, K E.; Yang, J.; Azppacosta, F.; Annan, R.; Sutton, D.; Laquerre, S G GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition Clin Cancer Res 2011, 17, 989−1000 (232) (a) Widemann, B C.; Marcus, L J.; Fisher, M J.; Weiss, B D.; Kim, A.; Dombi, E.; Baldwin, A.; Whitcomb, P.; Martin, S.; Gillespie, A.; Doyle, A Phase I study of the MEK1/2 inhibitor selumetinib (AZ6244) hydrogen sulfate in children and young adults with neurofibromatosis type (NF1) and inoperable plexiform neurofibromas (PNs) J Clin Oncol 2014, 32 (Suppl.), 10018 (b) https:// clinicaltrials.gov/ct2/show/NCT01089101 (accessed June 12, 2016) (233) Binimetinib has advanced to a trial enrolling patients with brain cancer: https://clinicaltrials.gov/ct2/show/NCT02285439 (accessed June 10, 2016) (234) Iverson, C.; Larson, G.; Lai, C.; Yeh, L T.; Dadson, C.; Weingarten, P.; Appleby, T.; Vo, T.; Maderna, A.; Vernier, J M.; Hamatake, R.; Miner, J N.; Quart, B RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer Cancer Res 2009, 69, 6839−6847 (235) Isshiki, Y.; Kohchi, Y.; Iikura, H.; Matsubara, Y.; Asoh, K.; Murata, T.; Kohchi, M.; Mizuguchi, E.; Tsujii, S.; Hattori, K.; Miura, T.; Yoshimura, Y.; Aida, S.; Miwa, M.; Saitoh, R.; Murao, N.; Okabe, H.; Belunis, C.; Janson, C.; Lukacs, C.; Schuck, V.; Shimma, N Design and synthesis of novel allosteric MEK inhibitor CH4987655 as an orally available anticancer agent Bioorg Med Chem Lett 2011, 21, 1795−1801 (236) Cohen, R B.; Aamdal, S.; Nyakas, M.; Cavallin, M.; Green, D.; Learoyd, M.; Smith, I.; Kurzrock, R A phase I dose-finding, safety and tolerability study of AZD8330 in patients with advanced malignancies Eur J Cancer 2013, 49, 1521−1529 (237) Shaw, J V.; Zhang, H.; Carden, R.; Qiu, D.; Tian, H.; Ma, J.; Clark, A.; Ogden, J.; Goodstal, S Abstract LB-456: Evaluation of brain pharmacokinetics as a potential differentiation factor for the MEK inhibitors, MSC2015103 and pimasertib Cancer Res 2012, 72, LB456 (238) Goutopoulos, A.; Askew, B.; Bankston, D.; Clark, A.; Dhanabal, M.; Dong, R.; Fischer, D.; Healey, B.; Jiang, X.; Josephson, K.; Lin, J.; Ma, J.; Noonan, T.; Qiu, D.; Rocha, C.; Romanelli, A.; Shutes, A.; Spooner, E.; Tian, H.; Yu, H Abstract 4476: AS703026: a novel allosteric MEK inhibitor Cancer Res 2009, 69 (Suppl.), 4776 (239) Shen, Y.; Boivin, R.; Yoneda, N.; Du, H.; Schiller, S.; Matsushima, T.; Goto, M.; Shirota, H.; Gusovsky, F.; Lemelin, C.; Jiang, Y.; Zhang, Z.; Pelletier, R.; Ikemori-Kawada, M.; Kawakami, Y.; Inoue, A Discovery of anti-inflammatory clinical candidate E6201, inspired from resorcylic lactone LL-Z1640-2, III Bioorg Med Chem Lett 2010, 20, 3155−3157 (240) Wu, J.; Nomoto, K.; Wang, J.; Kuznetsov, G.; Agoulnik, S.; Shuck, E.; Wong, N.; Towle, M.; Schnaderbeck, M.; Wu, S.; Littlefield, B Abstract 3687: In vivo anticancer activity of E6201, a novel MEK1 inhibitor, against BRAF-mutated human cancer xenografts Cancer Res 2009, 69 (Suppl.), 3687 10062 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective (241) (a) Lee, C.; Fotovati, A.; Triscott, J.; Chen, J.; Venugopal, C.; Singhal, A.; Dunham, C.; Kerr, J M.; Verreault, M.; Yip, S.; Wakimoto, H.; Jones, C.; Jayanthan, A.; Narendran, A.; Singh, S K.; Dunn, S E Polo-like kinase inhibition kills glioblastoma multiforme brain tumor cells in part through loss of SOX2 and delays tumor progression in mice Stem Cells 2012, 30, 1064−1075 (b) Danovi, D.; Folarin, A.; Gogolok, S.; Ender, C.; Elbatsh, A M O.; Engström, P G.; Stricker, S H.; Gagrica, S.; Georgian, A.; Yu, D.; U, K P.; Harvey, K J.; Ferretti, P.; Paddison, P J.; Preston, J E.; Abbott, N J.; Bertone, P.; Smith, A.; Pollard, S M A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase PLoS One 2013, 8, e77053 (c) Pezuk, J A.; Brassesco, M S.; Morales, A G.; de Oliveira, J C.; de Paula Queiroz, R G.; Machado, H R.; Carlotti, C G.; Neder, L.; Scrideli, C A.; Tone, L G Polo-like kinase inhibition causes decreased proliferation by cell cycle arrest, leading to cell death in glioblastoma Cancer Gene Ther 2013, 20, 499−506 (d) Tandle, A T.; Kramp, T.; Kil, W J.; Halthore, A.; Gehlhaus, K.; Shankavaram, U.; Tofilon, P J.; Caplen, N J.; Camphausen, K Inhibition of polo-like kinase in glioblastoma multiforme induces mitotic catastrophe and enhances radiosensitisation Eur J Cancer 2013, 49, 3020−3028 (e) Pezuk, J A.; Brassesco, M S.; Morales, A G.; de Oliveira, J C.; de Oliveira, H F.; Scrideli, C A.; Tone, L G Inhibition of polo-like kinase induces cell cycle arrest and sensitizes glioblastoma cells to ionizing radiation Cancer Biother.Radiopharm 2013, 28, 516−522 (f) Triscott, J.; Lee, C.; Foster, C.; Manoranjan, B.; Pamid, M R.; Berns, R.; Fotovati, A.; Venugopal, C.; O’Halloran, K.; Narendran, A.; Hawkins, C.; Ramaswamy, V.; Bouffet, E.; Taylor, M D.; Singhal, A.; Hukin, J.; Rassekh, R.; Yip, S.; Northcott, P.; Singh, S K.; Dunham, C.; Dunn, S Personalizing the treatment of pediatric medulloblastoma: polo-like kinase as a molecular target in high-risk children Cancer Res 2013, 73, 6734−6744 (242) (a) Markant, S L.; Esparza, L A.; Sun, J.; Barton, K L.; McCoig, L M.; Grant, G A.; Crawford, J R.; Levy, M L.; Northcott, P A.; Shih, D.; Remke, M.; Taylor, M D.; Wechsler-Reya, R J Targeting sonic hedgehog-associated medulloblastoma through inhibition of aurora and polo-like kinases Cancer Res 2013, 73, 6310−6322 (b) Barton, V N.; Foreman, N K.; Donson, A M.; Birks, D K.; Handler, M H.; Vibhakar, R Aurora kinase A as a rational target for therapy in glioblastoma J Neurosurg Pediatr 2010, 6, 98−105 (c) Klein, A.; Reichardt, W.; Jung, V.; Zang, K D.; Meese, E.; Urbschat, S Overexpression and amplification of STK15 in human gliomas Int J Oncol 2004, 25, 1789−1794 (243) Li, N.; Maly, D J.; Chanthery, Y H.; Sirkis, D W.; Nakamura, J L.; Berger, M S.; James, C D.; Shokat, K M.; Weiss, W A.; Persson, A I Radiotherapy followed by aurora kinase inhibition targets tumorpropagating cells in human glioblastoma Mol Cancer Ther 2015, 14, 419−428 (244) Wu, C.-P.; Hsieh, C.-H.; Hsiao, S.-H.; Luo, S.-Y.; Su, C.-Y.; Li, Y.-Q.; Huang, Y.-H.; Huang, C.-W.; Hsu, S.-C Human ATP-binding cassette transporter ABCB1 confers resistance to volasertib (BI6727), a selective inhibitor of polo-like kinase Mol Pharmaceutics 2015, 12, 3885−3895 (245) Wu, C.-P.; Hsiao, S.-H.; Sim, H.-M.; Luo, S.-Y.; Tuo, W.-C.; Cheng, H.-W.; Li, Y.-Q.; Huan, Y.-H.; Ambudkar, S V Human ABCB1 (P-glycoprotein) and ABCG2 mediate resistance to BI 2536, a potent and selective inhibitor of polo-like kinase Biochem Pharmacol 2013, 86, 904−913 (246) Wu, C.-P.; Hsiao, S.-H.; Luo, S.-Y.; Tuo, W.-C.; Su, C.-Y.; Li, Y.-Q.; Huang, Y.-H.; Hsieh, C H Overexpression of human ABCB1 in cancer cells leads to reduced activity of GSK461364, a specific inhibitor of polo-like kinase Mol Pharmaceutics 2014, 11, 3727− 3736 (247) White, M P.; Babayeva, M.; Taft, D R.; Maniar, M Determination of intestinal permeability of rigosertib (ON 01910.Na, Estybon): correlation with systemic exposure J Pharm Pharmacol 2013, 65, 960−969 (248) Sero, V.; Tavanti, E.; Vella, S.; Hattinger, C M.; Fanelli, M.; Michelacci, F.; Versteeg, R.; Valsasina, B.; Gudeman, B.; Picci, P.; Serra, M Targeting polo-like kinase by NMS-P937 in osteosarcoma cell lines inhibits tumor cell growth and partially overcomes drug resistance Invest New Drugs 2014, 32, 1167−1180 (249) Nie, Z.; Feher, V.; Natala, S.; McBride, C.; Kiryanov, A.; Jones, B.; Lam, B.; Liu, Y.; Kaldor, S.; Stafford, J.; Hikami, K.; Uchiyama, N.; Kawamoto, T.; Hikichi, Y.; Matsumoto, S.; Amano, N.; Zhang, L.; Hosfield, D.; Skene, R.; Zou, H.; Cao, X.; Ichikawa, T Discovery of TAK-960: an orally available small molecule inhibitor of polo-like kinase (PLK1) Bioorg Med Chem Lett 2013, 23, 3662−3666 (250) Cheung, C H A.; Sarvagalla, S.; Lee, J Y C.; Huang, Y C.; Coumar, M S Aurora kinase inhibitor patents and agents in clinical testing: an update (2011−2013) Expert Opin Ther Pat 2014, 24, 1021−1038 (251) Van Brocklyn, J R.; Wojton, J.; Meisen, W H.; Kellough, D A.; Ecsedy, J A.; Kaur, B.; Lehman, N L Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma Cancer Res 2014, 74, 5364−5370 (252) Sathornsumetee, S.; Reardon, D A.; Desjardins, A.; Quinn, J A.; Vredenburgh, J J.; Rich, J N Molecularly targeted therapy for malignant glioma Cancer 2007, 110, 13−24 (253) Mochly-Rosen, D.; Das, K.; Grimes, K V Protein kinase C, an elusive target? Nat Rev Drug Discovery 2012, 11, 937−957 (254) (a) Kreisl, T N.; Kotliarova, S.; Butman, J A.; Albert, P S.; Kim, L.; Musib, L.; Thornton, D.; Fine, H A A phase I/II trial of enzastaurin in pateints with recurrent high-grade gliomas NeuroOncology 2010, 12, 181−189 (b) Wick, W.; Puduvalli, V K.; Chamberlain, M C.; van den Bent, M J.; Carpentier, A F.; Cher, L M.; Mason, W.; Weller, M.; Hong, S.; Musib, L.; Liepa, A M.; Thornton, D E.; Fine, H A Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma J Clin Oncol 2010, 28, 1168−1174 (255) Gronberg, B H.; Ciuleanu, T.; Flotten, O.; Knuuttila, A.; Abel, E.; Langer, S W.; Krejcy, K.; Liepa, A M.; Munoz, M.; HahkaKemppinen, M.; Sundstrom, S A placebo-controlled, randomized phase II study of maintenance enzastaurin following whole brain radiation therapy in the treatment of brain metastases from lung cancer Lung Cancer 2012, 78, 63−69 (256) Yasoshima, K.; Kuwabara, T.; Fuse, E.; Kuramitu, T.; Kurata, N.; Nishiie, H.; Oishi, T.; Kobayashi, H.; Kobayashi, S Pharmacokinetics, distribution, metabolism and excretion of [3H]UCN-01 in rats and dogs after intravenous administration Cancer Chemother Pharmacol 2001, 47, 106−112 (257) Budworth, J.; Davies, R.; Malkhandi, J.; Gant, T W.; Ferry, D R.; Gescher, A Comparison of staurosporine and four analogues: their effects on growth, rhodamine 123 retention and binding to P-glycoprotein in multidrug-resistance MCF-7/Adr cells Br J Cancer 1996, 73, 1063−1068 (258) Capdeville, R.; Buchdunger, E.; Zimmerman, J.; Matter, A Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug Nat Rev Drug Discovery 2002, 1, 493−502 (259) Quintas-Cardama, A.; Kantarjian, H M.; Cortes, J E Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia Cancer Control 2009, 16, 122−131 (260) Leis, J F.; Stepan, D E.; Curtin, P T.; Ford, J M.; Peng, B.; Schubach, S.; Druker, B J.; Mariarz, R T Central nervous system failure in patients with chroinic mylogenous leukemia lymphoid blast crisis and Philadelphia chromosome positive acute lymphoblastic leukemia treated with imatinib (STI-571) Leuk Lymphoma 2004, 45, 695−698 (261) (a) Dai, H.; Marbach, P.; Lemaire, M.; Hayes, M.; Elmquist, W F Distribution of STI-571 to the brain is limited by Pglycoprotein-mediated efflux J Pharmacol Exp Ther 2003, 304, 1085−1092 (b) Breedveld, P.; Pluim, D.; Cipriani, G.; Wielinga, P.; van Tellingen, O.; Schinkel, A H.; Schellens, J H The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients Cancer Res 2005, 65, 2577−2582 (c) Rajappa, S.; Uppin, S G.; Raghunadharao, D.; Rao, I S.; Surath, A 10063 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective Isolated central nervous system blast crisis in chronic myeloid leukemia Hematol Oncol 2004, 22, 179−181 (d) Neville, K.; Parise, R A.; Thompson, P.; Aleksic, A.; Egorin, M J.; Balis, F M.; McGuffey, L.; McCully, C.; Berg, S L.; Blaney, S M Plasma and cerebrospinal fluid pharmacokinetics of imatinib after administration to nonhuman primates Clin Cancer Res 2004, 10, 2525−2529 (262) Das, J.; Chen, P.; Norris, D.; Padmanabha, R.; Lin, J.; Moquin, R V.; Shen, Z.; Cook, L S.; Doweyko, A M.; Pitt, S.; Pang, S.; Shen, D R.; Fang, Q.; de Fex, H F.; McIntyre, K W.; Shuster, D J.; Gillooly, K M.; Behnia, K.; Schieven, G L.; Wityak, J.; Barrish, J C 2-Aminothiazole as a novel kinase inhibitor template Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS354825) as a potent pan-Src kinase inhibitor J Med Chem 2006, 49, 6819−6832 (263) Remsing Rix, L L.; Rix, U.; Colinge, J.; Hantschel, O.; Bennett, K L.; Stranzl, T.; Müller, A.; Baumgartner, C.; Valent, P.; Augustin, M.; Till, J H.; Superti-Funga, G Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells Leukemia 2009, 23, 477−485 (264) (a) Du, J.; Bernasconi, P.; Clauser, K R.; Mani, D R.; Finn, S P.; Beroukhim, R.; Burns, M.; Julian, B.; Peng, X P.; Hieronymus, H.; Maglathin, R L.; Lewis, T A.; Liau, L M.; Nghiemphu, P.; Mellinghoff, I K.; Louis, D N.; Loda, M.; Carr, S A.; Kung, A L.; Golub, T R Bead-based kinase phosphorylation profiling identifies SRC as a therapeutic target in glioblastoma Nat Biotechnol 2009, 27, 77−83 (b) Zhang, S.; Huang, W.-C.; Zhang, L.; Zhang, C.; Lowery, F J.; Ding, Z.; Guo, H.; Wang, H.; Huang, S.; Sahin, A A.; Aldape, K D.; Steeg, P S.; Yu, D Src family kinases as novel therapeutic targets to treat breast cancer brain metastases Cancer Res 2013, 73, 5764−5774 (265) Chen, Y.; Agarwal, S.; Shaik, N M.; Chen, C.; Yang, Z.; Elmquist, W F P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib J Pharmacol Exp Ther 2009, 330, 956−963 (266) Porkka, K.; Koskenvesa, P.; Lundan, T.; Rimpilainen, J.; Mustjoki, S.; Smykla, R.; Wild, R.; Luo, R.; Arnan, M.; Brethon, B.; Eccersley, L.; Hjorth-Hansen, H.; Hoglund, M.; Klamova, H.; Knutsen, H.; Parikh, S.; Raffoux, E.; Gruber, F.; Brito-Babapulle, F.; Dombret, H.; Duarte, R F.; Elonen, E.; Paquette, R.; Zwaan, C M.; Lee, F Y F Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia Blood 2008, 112, 1005−1012 (267) Hegedus, C.; Ö zvegy-Laczka, C.; Apati, A.; Magocsi, M.; Nemet, K.; Orfi, L.; Keri, G.; Katona, M.; Takats, Z.; Varadi, A.; Szakacs, G.; Sarkadi, B Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties Br J Pharmacol 2009, 158, 1153− 1164 (268) Atilla, E.; Ataca, P.; Ozyurek, E.; Erden, I.; Gurman, G Successful bosutinib experience in an elderly acute lymphoblastic leukemia patient with suspected central nervous system involvement transformed from chronic myeloid leukemia Case Rep Hematol 2015, 2015, 689423 (269) Taylor, J W.; Dietrich, J.; Gerstner, E R.; Norden, A D.; Rinne, M L.; Cahill, D P.; Stemmer-Rachamimov, A.; Wen, P Y.; Betensky, R A.; Giorgio, D H.; Snodgrass, K.; Randall, A E.; Batchelor, T T.; Chi, A S Phase study of bosutinib, a Src inhibitor, in adults with recurrent glioblastoma J Neuro-Oncol 2015, 121, 557− 563 (270) (a) Kosztyu, P.; Dolezel, P.; Mlejnek, P Can P-glycoprotein mediate resistance to nilotinib in human leukaemia cells? Pharmacol Res 2013, 67, 79−83 (b) Yamakawa, Y.; Hamada, A.; Uchida, T.; Sato, D.; Yuki, M.; Hayashi, M.; Kawaguchi, T.; Saito, H Distinct interaction of nilotinib and imatinib with P-glycoprotein in intracellular accumulation and cytotoxicity in CML cell line K562 cells Biol Pharm Bull 2014, 37, 1330−1335 (271) Weisberg, E.; Manley, P W.; Breitenstein, W.; Brüggen, J.; Cowan-jacob, S W.; Ray, A.; Huntly, B.; Fabbro, D.; Fendrich, G.; Hall-Meyers, E.; Kung, A L.; Mestan, J.; Daley, G Q.; Callahan, L.; Catley, L.; Cavazza, C.; Mohammed, A.; Neuberg, D.; Wright, R D.; Gilliand, D G.; Griffin, J D Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl Cancer Cell 2005, 7, 129−141 (272) Reinwald, M.; Schleyer, E.; Kiewe, P.; Blau, I W.; Burmeister, T.; Pursche, S.; Neumann, M.; Notter, M.; Thiel, E.; Hofmann, W.-K.; Kolb, H.-J.; Burdach, S.; Bender, H.-U Efficacy and pharmacologic data of second-generation tyrosine kinase inhibitor nilotinib in BCRABL-positive leukemia patients with central nervous system relapse after allogeneic stem cell transplantation BioMed Res Int 2014, 2014, 637059 (273) For example see the following and references therein: Lonskaya, I.; Hebron, M L.; Selby, S T.; Turner, R S.; Moussa, C E.-H Nilotinib and bosutinib modulate pre-plaque alterations of blood immune markers and neuro-inflammation in alzheimer’s disease models Neuroscience 2015, 304, 316−327 (274) Huang, W.-S.; Metcalf, C A.; Sundaramoorthi, R.; Wang, Y.; Zou, D.; Thomas, R M.; Zhu, X.; Cai, L.; Wen, D.; Liu, S.; Romero, J.; Qi, J.; Chen, I.; Banda, G.; Lentini, S P.; Das, S.; Xu, Q.; Keats, J.; Wang, F.; Wardwell, S.; Ning, Y.; Snodgrass, J T.; Broudy, M I.; Russian, K.; Zhou, T.; Commodore, L.; Narasimhan, N I.; Mohemmad, Q K.; Iuliucci, J.; Rivera, V M.; Dalgarno, D C.; Sawyer, T K.; Clackson, T.; Shakespeare, W C Discovery of 3-[2(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)-methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-Abelson (BCR-ABL) kinase including the T315I gatekeeper mutant J Med Chem 2010, 53, 4701−4719 (275) Laramy, J K.; Parrish, K E.; Zhang, S.; Bakken, K K.; Carlson, B L.; Mladek, A C.; Ma, D J.; Sarkaria, J N.; Elmquist, W F Brain distribution of ponatinib, a multi-kinase inhibitor: implications for the treatment of malignant brain tumors Am Assoc Pharm Sci 2015, W4339 (276) Niwa, T.; Asaki, T.; Kimura, S NS-187 (INNO-406), a BcrAbl/Lyn dual tyrosine kinase inhibitor Anal Chem Insights 2007, 2, 93−106 (277) Portnow, J.; Badie, B.; Markel, S.; Liu, A.; D’Apuzzo, M.; Frankel, P.; Jandial, R.; Synold, T W A neuropharmocokinetic assessment of bafetinib, a second generation dual BCR-Abl/Lyn tyrosine kinase inhibitor, in patients with recurrent high-grade gliomas Eur J Cancer 2013, 49, 1634−1640 (278) Yokota, A.; Kimura, S.; Masuda, S.; Ashihara, E.; Kuroda, J.; Sato, K.; Kamitsuji, Y.; Kawata, E.; Deguchi, Y.; Urasaki, Y.; Terui, Y.; Ruthardt, M.; Ueda, T.; Hatake, K.; Inui, K.; Maekawa, T INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity Blood 2007, 109, 306− 314 (279) Hennequin, L F.; Allen, J.; Breed, J.; Curwen, J.; Fennell, M.; Green, T P.; Lambert-van der Brempt, C.; Morgentin, R.; Norman, R A.; Olivier, A.; Otterbein, L.; Ple, P A.; Warin, N.; Costello, G N-(5chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor J Med Chem 2006, 49, 6465−6488 (280) Kaufman, A C.; Salazar, S V.; Haas, L T.; Yang, J.; Kostylev, M A.; Jeng, A T.; Robinson, S A.; Gunther, E C.; van Dyck, C H.; Nygaard, H B.; Strittmatter, S M Fyn inhibition rescues established memory and synapse loss in Alzheimer mice Ann Neurol 2015, 77, 953−971 (281) Nygaard, H B.; Wagner, A F.; Bowen, G S.; Good, S P.; MacAvoy, M G.; Strittmatter, K A.; Kaufman, A C.; Rosenberg, B J.; Sekine-Konno, T.; Varma, P.; Chen, K.; Koleske, A J.; Reiman, E M.; Strittmatter, S M.; van Dyck, C H A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease Alzheimer's Res Ther 2015, 7, 35 (282) (a) Abounader, R.; Laterra, J Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis Neuro-Oncology 2005, 10064 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective 7, 436−451 (b) Zhang, Y.; Farenholtz, K E.; Yang, Y.; Guessous, F.; diPierro, C G.; Calvert, V S.; Deng, J.; Schiff, D.; Xin, W.; Lee, J K.; Purow, B.; Christensen, J.; Petricoin, E.; Abounader, R Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition Clin Cancer Res 2013, 19, 1433−1444 (283) Qian, F.; Engst, S.; Yamaguchi, K.; Yu, P.; Won, K A.; Mock, L.; Lou, T.; Tan, J.; Li, C.; Tam, D.; Lougheed, J.; Yakes, F M.; Bentzien, F.; Xu, W.; Zaks, T.; Wooster, R.; Greshock, J.; Joly, A H Inhibition of tumor cell growth, invasion, and metastasis by EXEL2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases Cancer Res 2009, 69, 8009−8016 (284) Faria, C C.; Golbourn, B J.; Dubuc, A M.; Remke, M.; Diaz, R J.; Agnihotri, S.; Luck, A.; Sabha, N.; Olsen, S.; Wu, X.; Garzia, L.; Ramaswamy, V.; Mack, S C.; Wang, X.; Leadley, M.; Reynaud, D.; Ermini, L.; Post, M.; Northcott, P A.; Pfister, S M.; Croul, S E.; Kool, M.; Korshunov, A.; Smith, C A.; Taylor, M D.; Rutka, J T Foretinib is effective for metastatic sonic hedgehog medulloblastoma Cancer Res 2015, 75, 134−146 (285) Buchanan, S G.; Hendle, J.; Lee, P S.; Smith, C R.; Bounaud, P Y.; Jessen, K A.; Tang, C M.; Huser, N H.; Felce, J D.; Froning, K J.; Peterman, M C.; Aubol, B E.; Gessert, S F.; Sauder, J M.; Schwinn, K D.; Russell, M.; Rooney, I A.; Adams, J.; Leon, B C.; Do, T H.; Blaney, J M.; Sprengeler, P A.; Thompson, D A.; Smyth, L.; Pelletier, L A.; Atwell, S.; Holme, K.; Wasserman, S R.; Emtage, S.; Burley, S K.; Reich, S H SGX is an exquisitely selective, ATPcompetitive inhibitor of the MET receptor tyrosine kinase with antitumor activity in vivo Mol Cancer Ther 2009, 8, 3181−3190 (286) Guessous, F.; Zhang, Y.; diPierro, C.; Marcinkiewicz, L.; Sarkaria, J.; Schiff, D.; Buchanan, S.; Abounader, R An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth Anti-Cancer Agents Med Chem 2010, 10, 28− 35 (287) (a) Underiner, T L.; Herbertz, T.; Miknyoczki, S J Disovery of small molecule c-Met inhibitors: evolution and profiles of clinical candidates Anti-Cancer Agents Med Chem 2010, 10, 7−27 (b) Burbridge, M F.; Bossard, C J.; Saunier, C.; Fejes, I.; Bruno, I.; Bruno, A.; Leonce, S.; Ferry, G.; Da Violante, G.; Bouzom, F.; Cattan, V.; Jacquet-Bescond, A.; Comoglio, P M.; Lockhart, B P.; Boutin, J A.; Cordi, A.; Ortuno, J C.; Pierre, A.; Hickman, J A.; Cruzalegui, F H.; Depil, S S49076 is a novel kinase inhibitor of MET, AXL, and FGFR with strong preclinical activity alone and in association with bevacizumab Mol Cancer Ther 2013, 12, 1749−1762 (288) Literature related to the following c-Met inhibitors was reviewed in an effort to identify any information regarding potential for CNS penetration, including whether the molecules are P-gp substrates: LY2801653, PF-04217903, golvatinib, JNJ-58877605, PHA66752, tivantinib (289) (a) Gutenberg, A.; Brück, W.; Buchfelder, M.; Ludwig, H C Expression of tyrosine kinases FAK and Pyk2 in 331 human astrocytomas Acta Neuropathol 2004, 108, 224−230 (b) RolonReyes, K.; Kucheryavykh, Y V.; Cubano, L A.; Inyushin, M.; Skatchkov, S N.; Eaton, M J.; Harrison, J K.; Kucheryavykh, L Y Microglia activate migration of glioma cells through a Pyk2 intracellular pathway PLoS One 2015, 10, e0131059 (290) Sulzmaier, F J.; Jean, C.; Schlaepfer, D D FAK in cancer: mechanistic findings and clinical applications Nat Rev Cancer 2014, 14, 598−610 (291) Luzzio, M.; Autry, C.; Berliner, M.; Coleman, K.; Cooper, B.; Desrosiers, E.; Emerson, E.; Griffor, M.; Hulford, C.; Jani, J.; Kath, J.; LaGreca, S.; Lin, J.; Lorenzen, M.; Marr, E.; Martinez-Alsina, L.; Patel, N.; Richter, D.; Ung, E.; Vajdos, F.; Wessel, M.; Whalen, P.; Yao, L.; Roberts, W Abstract 5432: Design, synthesis, activity and properties of selective focal adhesion kinase inhibitors which are suitable for advanced preclinical evaluation: the discovery of PF-562271 Cancer Res 2007, 67 (Suppl.), 5432 (292) Xu, Q.; Pachter, J A.; Tam, W Methods and compositions for treating abnormal cell growth (e.g., cancer) using FAK inhibitor and a MEK inhibitor WO Patent WO2015120289 A1, 2015 (293) Schlaepfer, D Method of promoting apoptosis and inhibiting metastasis WO Patent WO2011019943 A1, 2011 (294) Auger, K R.; Peddareddigari, V G R Combinations WO Patent WO2014059095 A1, 2014 (295) Mulholland, P.; Williams, M.; Arkenau, H T.; Fleming, R.; Tolson, J.; Yan, L.; Zhang, J.; Swartz, L.; Singh, R.; Auger, K.; Lenox, L.; Cox, D.; Plisson, C.; Saleem, A.; Searle, G.; Blagden, S ATNT 06 Evaluation of the safety of GSK2256098 and pharmacokinetics of 11CGSK2256098 in patients with recurrent glioblastoma by positron emission tomography (PET) imaging Neuro-Oncology 2015, 17 (Suppl 5), v11 (296) (a) Han, J.; Alvarez-Breckenridge, C A.; Wang, Q E.; Yu, J TGF-b signaling and its targeting for glioma treatment Am J Cancer Res 2015, 5, 945−955 (b) Luwor, R B.; Kaye, A H.; Zhu, H J Transforming growth factor-beta (TGF-b) and brain tumors J Clin Neurosci 2008, 15, 845−855 (297) Herbertz, S.; Sawyer, J S.; Stauber, A J.; Gueorguieva, I.; Driscoll, K E.; Estrem, S T.; Cleverly, A L.; Desaiah, D.; Guba, S C.; Benhadji, K A.; Slapak, C A.; Lahn, M M Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta singaling pathway Drug Des., Dev Ther 2015, 9, 4479−4499 (298) Herzog, S.; Fink, M A.; Weitmann, K.; Friedel, C.; Hadlich, S.; Langner, S.; Kindermann, K.; Holm, T.; Bohm, A.; Eskilsson, E.; Miletic, H.; Hildner, M.; Fritsch, M.; Vogelgesang, S.; Havemann, C.; Ritter, C A.; Meyer zu Schwabedissen, H E.; Rauch, B.; Hoffmann, W.; Kroemer, H K.; Schroeder, H.; Bien-Moller, S Pim1 kinase is upregulated in glioblastoma multiforme and mediates tumor cell survival Neuro-Oncology 2015, 17, 223−242 (299) Chen, L S.; Redkar, S.; Bearss, D.; Wierda, W G.; Gandhi, V Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells Blood 2009, 114, 4150−4157 (300) Burger, M T.; Nishiguchi, G.; Han, W.; Lan, J.; Simmons, R.; Atallah, G.; Ding, Y.; Tamez, V.; Zhang, Y.; Mathur, M.; Muller, K.; Bellamacina, C.; Lindvall, M K.; Zang, R.; Huh, K.; Feucht, P.; Zavorotinskaya, T.; Dai, Y.; Basham, S.; Chan, J.; Ginn, E.; Aycinena, A.; Holash, J.; Castillo, J.; Langowski, J L.; Wang, Y.; Chen, M Y.; Lambert, A.; Fritsch, C.; Kauffmann, A.; Pfister, E.; Vanasse, K G.; Garcia, P D Identification of N-(4-((1R,3S,5S)-3-amino-5methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a potent and selective proviral insertion site of moloney murine leukemia (PIM) 1, 2, and kinase inhibitor in clinical trials for hematological malignancies J Med Chem 2015, 58, 8373− 8386 (301) Keeton, E K.; McEachern, K.; Dillman, K S.; Palakurthi, S.; Cao, Y.; Grondine, M R.; Kaur, S.; Wang, S.; Chen, Y.; Wu, A.; Shen, M.; Gibbons, F D.; Lamb, M L.; Zheng, X.; Stone, R M.; DeAngelo, D J.; Platanias, L C.; Dakin, L A.; Chen, H.; Lyne, P D.; Huszar, D AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia Blood 2014, 123, 905−913 (302) Pan, Z.; Scheerens, H.; Li, S J.; Schultz, B E.; Sprengeler, P A.; Burrill, L C.; Mendonca, R V.; Sweeney, M D.; Scott, K C K.; Grothaus, P G.; Jeffery, D A.; Spoerke, J M.; Honigberg, L A.; Young, P R.; Dalrymple, S A.; Palmer, J T Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase ChemMedChem 2007, 2, 58−61 (303) Bernard, S.; Goldwirt, L.; Amorim, S.; Brice, P.; Bnere, J.; de Kerviller, E.; Mourah, S.; Sauvageon, H.; Thieblemont, C Activity of ibrutinib in mantle cell lymphoma patients with central nervous system relapse Blood 2015, 126, 1695−1698 (304) 205552 Clinical Pharmacology Review http://www.accessdata fda.gov/drugsatfda_docs/nda/2013/205552Orig1s000ClinPharmR pdf (accessed June 12, 2016) (305) (a) Biddlestone-Thorpe, L.; Sajjad, M.; Rosenberg, E.; Beckta, J M.; Valerie, N C K.; Tokarz, M.; Adams, B R.; Wagner, A F.; Khalil, A.; Gilfor, D.; Golding, S E.; Deb, S.; Temesi, D G.; Lau, A.; O’Connor, M J.; Choe, K S.; Parada, L F.; Lim, S K.; Mukhopadhyay, N D.; Valerie, K ATM kinase inhibition preferen10065 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 Journal of Medicinal Chemistry Perspective tially sensitizes p53-mutant glioma to ionizing radiation Clin Cancer Res 2013, 19, 3189−3200 (b) Nadkarni, A.; Shrivastav, M.; Mladek, A C.; Schwingler, P M.; Grogan, P T.; Chen, J.; Sarkaria, J N ATM inhibitor Ku-55993 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells J Neuro-Oncol 2012, 110, 349−357 (306) Linger, R M A.; Keating, A K.; Earp, H Sh.; Graham, D K Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors Expert Opin Ther Targets 2010, 14, 1073−1090 (307) As an example of the potential importance of inhibiting multiple kinases: Joshi, A D.; Loilome, W.; Siu, I.-M.; Tyler, B.; Gallia, G L.; Riggins, G J Evaluation of tyrosine kinase inhibitor combinations for glioblastoma therapy PLoS One 2012, 7, e44372 (308) See Supporting Information for details of individual inhibitors 10066 DOI: 10.1021/acs.jmedchem.6b00618 J Med Chem 2016, 59, 10030−10066 ... impact the discovery of new treatments of brain cancer is evident Over the previous decades, a large number of kinase inhibitors advanced to clinical study for brain cancer treatment where, given the. .. unable to identify data informing the potential of erdafitinib, 40, or 43 to freely cross the BBB On the other hand and of interest for its potential for the treatment of brain cancer, ARQ 087 was reported... of the extent of brain penetration of the molecule or whether it is a substrate of efflux transporters is available, and so a conclusion on the expected potential utility of this molecule for the

Ngày đăng: 28/03/2022, 01:11

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN