Preview REACTIONS a collection of detailed mechanisms and synthetic applications. by JIE JACK LI (2020)

100 27 0
Preview REACTIONS  a collection of detailed mechanisms and synthetic applications. by JIE JACK LI (2020)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

https://1drv.ms/b/s!AmkCsf2WlV7n2jqZwojA-yu0-LvQ?e=l7Yuy0

Buchwald–Hartwig amination Catellani reaction JieChan–Lam Jack Li coupling reaction Dess–Martin oxidation Minisci reaction Mitsunobu reaction Negishi cross-coupling reaction Nicholas reaction Nozaki–Hiyama–Kishi reaction Overman rearrangement Petasis reaction Name Reactions A Collection of Detailed Mechanisms and Synthetic Applications Sixth Edition Name Reactions Jie Jack Li Name Reactions A Collection of Detailed Mechanisms and Synthetic Applications Sixth Edition Jie Jack Li, Ph.D Discovery Chemistry ChemPartner San Francisco, CA, USA ISBN 978-3-030-50864-7 ISBN 978-3-030-50865-4 (eBook) https://doi.org/10.1007/978-3-030-50865-4 © Springer Nature Switzerland AG 2021 This work is subject to copyright All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed The use of general descriptive names, registered names, trademarks, service marks, etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Dedicated to Prof David R Williams Preface Five years have elapsed since the fifth edition was published Much has happened since then The author has migrated from academia back to industry I have taken out some name reactions from the fifth edition because the book was physically getting too heavy and unwieldy This change allows more space to expand and update the more popular name reactions All references have been updated to 2020 when available As in previous editions, each reaction is delineated by detailed, step-by-step, electron-pushing mechanism, supplemented with the original and the latest references, especially review articles Now, with addition of many synthetic applications, it is not only an indispensable resource for senior undergraduate and graduate students to learn mechanisms and synthetic utility of name reactions and to prepare for their exams, but also a good reference book for all organic chemists in both industry and academia As always, I welcome your critique Please send your comments to this email address: lijiejackli@hotmail.com March 1, 2020 San Mateo, California Jie Jack Li ix Table of Contents Preface vii Abbreviations xv Alder ene reaction Aldol condensation Arndt–Eistert homologation Baeyer–Villiger oxidation 10 Baker–Venkataraman rearrangement 13 Bamford–Stevens reaction 16 Barbier reaction 19 Barton–McCombie deoxygenation 22 Beckmann rearrangement 25 Abnormal Beckmann rearrangement 28 Benzilic acid rearrangement 29 Benzoin condensation 32 Bergman cyclization 35 Biginelli reaction 38 Birch reduction 41 Bischler–Napieralski reaction 44 Brook rearrangement 47 Brown hydroboration 50 Bucherer–Bergs reaction 53 Büchner ring expansion 56 Buchwald–Hartwig amination 59 Burgess reagent 64 Cadiot–Chodkiewicz coupling 67 Cannizzaro reaction 70 Catellani reaction 73 Chan–Lam C–X coupling reaction 77 Chapman rearrangement 81 xi xii Table of Contents Chichibabin pyridine synthesis 83 Chugaev reaction 86 Claisen condensation 89 Claisen rearrangement 91 para-Claisen rearrangement 94 Abnormal Claisen rearrangement 97 Eschenmoser–Claisen amide acetal rearrangement 100 Ireland–Claisen (silyl ketene acetal) rearrangement 103 Johnson–Claisen (orthoester) rearrangement 106 Clemmensen reduction 109 Cope elimination 112 Cope rearrangement 115 Anionic oxy-Cope rearrangement 118 Oxy-Cope rearrangement 120 Siloxy-Cope rearrangement 122 Corey–Bakshi–Shibata (CBS) reagent 124 CoreyChaykovsky reaction 128 Corey–Fuchs reaction 131 Curtius rearrangement 134 Dakin oxidation 137 Dakin–West reaction 140 Darzens condensation 144 de Mayo reaction 147 Demjanov rearrangement 151 Tiffeneau–Demjanov rearrangement 153 Dess–Martin oxidation 157 Dieckmann condensation 162 Diels–Alder reaction 166 Hetero-Diels–Alder reaction 170 Inverse electronic demand Diels–Alder reaction 173 Dienone–phenol rearrangement 176 Dötz reaction 179 Eschweiler–Clarke reductive amination 182 Favorskii rearrangement 186 quasi-Favorskii rearrangement 190 Ferrier carbocyclization 191 Ferrier glycal allylic rearrangement 194 Fischer indole synthesis 197 Friedel–Crafts reaction 200 Friedel–Crafts acylation reaction 200 Friedel–Crafts alkylation reaction 204 Friedländer quinoline synthesis 206 Fries rearrangement 209 Gabriel synthesis 212 Ing–Manske procedure 216 Gewald aminothiophene synthesis 218 Jie Jack Li 67 Cadiot–Chodkiewicz Coupling Bis-acetylene synthesis from alkynyl halides and alkynyl copper reagents Cf CastroStephens reaction Cu(III) intermediate Example 13 Example 27 Example 39 © Springer Nature Switzerland AG 2021 J J Li, Name Reactions, https://doi.org/10.1007/978-3-030-50865-4_22 68 Name Reactions Example 4, Cadiot–Chodkiewicz active template synthesis of rotaxanes and switchable molecular shuttles with weak intercomponent interactions10 Example 5, Gold-catalyzed Cadiot–Chodkiewicz cross-coupling of terminal alkynes with alkynyl hypervalent iodine reagents13 Jie Jack Li 69 Example 6, Cadiot–Chodkiewicz cross-coupling is superior to the Sonogashi coupling in this case:14 References 10 11 12 13 14 15 16 17 Chodkiewicz, W.; Cadiot, P C R Hebd Seances Acad Sci 1955, 241, 10551057 Both Paul Cadiot (1923) and Wladyslav Chodkiewicz (1921) were French chemists Cadiot, P.; Chodkiewicz, W In Chemistry of Acetylenes; Viehe, H G., ed.; Dekker: New York, 1969, 597647 (Review) Gotteland, J.-P.; Brunel, I.; Gendre, F.; Désiré, J.; Delhon, A.; Junquéro, A.; Oms, P.; Halazy, S J Med Chem 1995, 38, 32073216 Bartik, B.; Dembinski, R.; Bartik, T.; Arif, A M.; Gladysz, J A New J Chem 1997, 21, 739750 Montierth, J M.; DeMario, D R.; Kurth, M J.; Schore, N E Tetrahedron 1998, 54, 1174111748 Negishi, E.-i.; Hata, M.; Xu, C Org Lett 2000, 2, 36873689 Marino, J P.; Nguyen, H N J Org Chem 2002, 67, 68416844 Utesch, N F.; Diederich, F.; Boudon, C.; Gisselbrecht, J.-P.; Gross, M Helv Chim Acta 2004, 87, 698718 Bandyopadhyay, A.; Varghese, B.; Sankararaman, S J Org Chem 2006, 71, 4544– 45484548 Berna, J.; Goldup, S M.; Lee, A.-L.; Leigh, D A.; Symes, M D.; Teobaldi, G.; Zerbetto, F Angew Chem Int Ed 2008, 47, 43924396 Glen, P E.; OʹNeill, J A T.; Lee, A.-L Tetrahedron 2013, 69, 5768 Sindhu, K S.; Thankachan, A P.; Sajitha, P S.; Anilkumar, G Org Biomol Chem 2015, 13, 68916905 (Review) Li, X.; Xie, X.; Sun, N.; Liu, Y Angew Chem Int Ed 2017, 56, 69946998 Kanikarapu, S.; Marumudi, K.; Kunwar, A C.; Yadav, J S.; Mohapatra, D K Org Lett 2017, 19, 41674170 Geng, J.; Ren, Q.; Chang, C.; Xie, X.; Liu, J.; Du, Y RSC Adv 2019, 9, 1025310263 Radhika, S.; Harry, N A.; Neetha, M.; Anilkumar, G Org Biomol Chem 2019, 17, 90819094 (Review) Kaldhi, D.; Vodnala, N.; Gujjarappa, R.; Kabi, A K.; Nayak, S.; Malakar, C C Tetrahedron Lett 2020, 61, 151775 Name Reactions 70 Cannizzaro Reaction Base-induced disproportionation between two aldehydes to produce an alcohol and a carboxylic acid If the starting material is an -ketoaldehyde, an intramolecular Cannizzaro disproportionation reaction can also occur (see Examples 1, and 6) Aldehydes are aromatic aldehydes, formaldehyde or other aliphatic aldehydes without -hydrogen Pathway A: Final deprotonation of the carboxylic acid drives the reaction forward Pathway B: Example 1, Intramolecular Cannizzaro disproportionation reaction3 © Springer Nature Switzerland AG 2021 J J Li, Name Reactions, https://doi.org/10.1007/978-3-030-50865-4_23 Jie Jack Li Example 24 Example 36 Example 48 TMG = 1,1,3,3-tetramethylguanidine, an organic base Example 5, Desymmetrization by intramolecular Cannizzaro reaction9 71 Name Reactions 72 Example 6, Intramolecular aza-Cannizzaro reaction11 Example 7, Ball mill Cannizzaro reaction12 References 10 11 12 13 Cannizzaro, S Ann 1853, 88, 129130 Stanislao Cannizzaro (18261910) was born in Palermo, Sicily, Italy In 1847, he had to escape to Paris for participating in the Sicilian Rebellion Upon his return to Italy, he discovered the disproportionation reaction at the Collegio Nazionale di Alessandria (Piedmont) using bitter almond oil (benzaldehyde) and potash (potassium hydroxide) as the base Political interests brought Cannizzaro to the Italian Senate and he later became its vice president Geissman, T A Org React 1944, 1, 94113 (Review) Russell, A E.; Miller, S P.; Morken, J P J Org Chem 2000, 65, 83818383 Yoshizawa, K.; Toyota, S.; Toda, F Tetrahedron Lett 2001, 42, 79837985 Reddy, B V S.; Srinvas, R.; Yadav, J S.; Ramalingam, T Synth Commun 2002, 32, 219223 Ishihara, K.; Yano, T Org Lett 2004, 6, 19831986 Curini, M.; Epifano, F.; Genovese, S.; Marcotullio, M C.; Rosati, O Org Lett 2005, 7, 13311333 Basavaiah, D.; Sharada, D S.; Veerendhar, A Tetrahedron Lett 2006, 47, 57715774 Ruiz-Sanchez, A J.; Vida, Y.; Suau, R.; Perez-Inestrosa, E Tetrahedron 2008, 64, 1166111665 Shen, M.-G.; Shang, S.-B.; Song, Z.-Q.; Wang, D.; Rao, X.-P.; Gao, H.; Liu, H J Chem Res 2013, 37, 5152 Sud, A.; Chaudhari, P S.; Agarwal, I.; Mohammad, A B.; Dahanukar, V H.; Bandichhor, R Tetrahedron Lett 2017, 58, 18911894 Chacon-Huete, F.; Messina, C.; Chen, F.; Cuccia, L.; Ottenwaelder, X.; Forgione, P Green Chem 2018, 20, 52615265 Janczewski, L.; Walczak, M.; Fraczyk, J.; Kaminski, Z J.; Kolesinska, B Synth Commun 2019, 49, 32903300 Jie Jack Li 73 Catellani Reaction Selective ortho-alkylation and -arylation of aryl iodides can be achieved by the cooperative catalytic action of palladium and norbornene The first reported case was the ortho-dialkylation of aryl iodides, followed by Heck reaction.2 Here an aryl iodide with free o-positions reacts with an aliphatic iodide and a terminal olefin in the presence of palladium/norbornene (NBE) as catalyst and a base, to give a 2,6-substituted vinylarene Analogously, an aryl iodide with one substituted oposition leads to a vinylarene containing two different ortho groups.3 Example 1, A three-component reaction allowing the construction of three adjacent C–C bonds through C–I and C–H activation.2 Mechanism for the reaction of an o-substitued aryl iodide: Pd(0), Pd(II) and Pd(IV) intermediates and catalytic role of palladium and norbornene 1–3 The mechanism involves initial oxidative addition of an o-substituted aryl iodide to Pd(0) followed by a stereoselective norbornene (NBE) insertion leading to the cis,exo complex -Hydrogen elimination is prevented by geometric constraints, and a five-membered palladacycle (3) readily forms through intramolecu© Springer Nature Switzerland AG 2021 J J Li, Name Reactions, https://doi.org/10.1007/978-3-030-50865-4_24 74 Name Reactions lar C–H activation Oxidative addition of an alkyl iodide to affords a Pd(IV) intermediate (4) which undergoes reductive elimination by selective migration of the alkyl moiety onto the aromatic ring to form Norbornene deinsertion occurs spontaneously at this point, likely due to steric hindrance, giving 2,6-disubstituted phenylpalladium(II) species (6) which finally react with the terminal olefin to liberate the organic product and Pd(0) Alternatively the sequence can be terminated by other well-known reactions of the aryl-Pd bond such as the Suzuki or Sonogashira couplings, hydrogenolysis, amination, or cyanation The described methodology can also be extended to ring-forming reactions.1e Thus, the reaction is very versatile and offers countless possibilities for building up many types of functionalized aromatic compounds Example 2, The synthesis of fused aromatic compounds through final intramolecular Heck reaction was first reported by the Lautens group 4,1e Example 3, The high tolerance to functional groups enabled a key step to the synthesis of a precursor of (+)-linoxepin by Lautens.5 ortho-Arylation of an aryl iodide leading to the construction of a biaryl moiety is also possible, provided that the starting aryl iodide bears an ortho substituent The o-substituent in palladacycles of type is essential for selectively directing the attack of an aryl halide onto the aromatic site (ortho effect).1,6 Example 4, Aryl-aryl coupling combined with Heck reaction.7 Jie Jack Li 75 Example The non symmetrical coupling of an aryl iodide bearing an o-electrondonating group, an aryl bromide containing an electron-withdrawing substituent, and a terminal olefin illustrates the importance of correctly tuning the electronic properties of the two aryl halides for selectivity control Example 6, Internal chelation to Pd(IV)9 can cancel the ortho effect.10 Example 7, Synthjesis of benzo[1,6]naphthyridinones11 Example 8, Iterative CH bis-silylation12 Name Reactions 76 Example 9, Borono-Catellani arylation for unsymmetrical biaryl synthesis13,14 References 10 11 12 13 14 15 (a) Tsuji, J Palladium Reagents and Catalysts – New Perspective for the 21st Century, 2004, John Wiley & Sons, pp 409–416 (b) Catellani, M Synlett 2003, 298–313 (c) Catellani, M Top Organomet Chem 2005, 14, 21–53 (d) Catellani, M.; Motti, E.; Della Caʹ, N Acc Chem Res 2008, 41, 1512–1522 (e) Martins, A.; Mariampillai, B.; Lautens, M Top Curr Chem 2010, 292, 1–33 (f) Chiusoli, G P.; Catellani, M.; Costa, M.; Motti, E.; Della Caʹ, N.; Maestri, G Coord Chem Rev 2010, 254, 456–469 Marta Catellani and coworkers at the University of Parma discovered an elegant entry into the synthesis of o,o-disubstituuted vinylarenes starting from aryl iodides The reaction exploits a multicomponent protocol where, together with the reactants and catalyst, norbornene or another strained olefin is used The latter is essential as it enters the complex catalytic cycle by activating three adjacent positions of the arene, being recycled at the end of the process (a) Catellani, M.; Frignani, F.; Rangoni, A Angew Chem Int Ed Engl 1997, 36, 119–122 (b) Catellani, M.; Fagnola, M C Angew Chem Int Ed Engl 1994, 33, 2421–2422 Catellani, M; Cugini, F Tetrahedron, 1999, 55, 6595–6602 (a) Lautens, M.; Piguel, S.; Dahlmann, M Angew Chem Int Ed Engl 2000, 39, 1045–1046 (b) Lautens, M.; Paquin, J.-F.; Piguel, S J Org Chem 2001, 66, 8127– 8134 (c) Lautens, M.; Paquin, J.-F.; Piguel, S J Org Chem 2002, 67, 3972–3974 Weinstabl, H.; Suhartono, M.; Qureshi, Z.; Lautens, M Angew Chem Int Ed 2013, 125, 5413–5416 Maestri, G.; Motti, E.; Della Caʹ, N.; Malacria, M.; Derat, E.; Catellani, M J Am Chem Soc 2011, 133, 8574–8585 Motti, E.; Ippomei, G.; Deledda, S.; Catellani, M Synthesis 2003, 2671–2678 Faccini, F.; Motti, E.; Catellani, M J Am Chem Soc 2004, 126, 78–79 Vicente, J.; Arcas, A.; Juliá-Hernández, F.; Bautista, D Angew Chem Int Ed 2011, 50, 6896–6899 Della Caʹ, N.; Maestri, G.; Malacria, M.; Derat, E.; Catellani, M Angew Chem Int Ed 2011, 50, 12257–12261 Elsayed, M S A.; Griggs, B.; Cushman, M Org Lett 2018, 20, 52285232 Lv, W.; Yu, J.; Ge, B.; Wen, S.; Cheng, G J Org Chem 2018, 83, 12683–12693 Chen, S.; Liu, Z.-S.; Yang, T.; Hua, Y.; Zhou, Z.; Cheng, H.-G.; Zhou, Q Angew Chem Int Ed 2018, 57, 7161–7165 Wang, P.; Chen, S.; Zhou, Z.; Cheng, H.-G.; Zhou, Q Org Lett 2019, 21, 3233327 Cheng, H.-G.; Chen, S.; Chen, R.; Zhou, Q Angew Chem Int Ed 2019, 58, 5832– 5844 (Review) Jie Jack Li 77 Chan–Lam C–X Coupling Reaction Arylation, vinylation and alkylation of a wide range of NH/OH/SH substrates by oxidative cross-coupling with boronic acids in the presence of catalytic cupric acetate, weak base and in air (open-flask chemistry) The reaction works for amides, amines, amidines, anilines, azides, azoles, hydantoins, hydrazines, imides, imines, nitroso, pyrazinones, pyridines, purines, pyrimidines, sulfonamides, sulfinates, sulfoximines, ureas, alcohols, phenols, thiols, etc The boronic acids can be replaced with siloxanes, stannanes or other organometalloids The mild condition of this reaction is an advantage over Buchwald–Hartwigʹs Pd-catalyzed crosscoupling using halides, though boronic acids are more expensive than halides The Chan–Lam C–X bond cross-coupling reaction has emerged as a powerful and popular methodogy similar to Suzuki–Miyauraʹs C–C bond cross-coupling reaction Proposed Mechanism:4 Oxidation of CuII–Ar to a CuIII species Transmetallation (turnover-limiting step) X2BOAc catalyst resting state ArBX2 1/2 [CuII(OAc)2]2 CuII(Ar)OAc CuII(OAc)2•ArBX2 ArBX2 H2O + CuII(OAc) CuIOAc CuIII(Ar)(OAc)2 HNRZ CuIOAc 1/2 O2 + AcOH + CuIOAc Aerobic oxidation of catalyst CuII(OAc)2 Ar–NRZ + AcOH Reductive elimination of Ar–NRZ from CuIII © Springer Nature Switzerland AG 2021 J J Li, Name Reactions, https://doi.org/10.1007/978-3-030-50865-4_25 78 Example 11a,d Example 25 Example 36 Example 414 Example 515 Name Reactions Jie Jack Li 79 Example 6, Chan–Lam coupling between aryl boroxines and enolates as sp3carbon nucleophiles18 Example 7, Using tertiary trifluoroborates20 References (a) Chan, D M T.; Monaco, K L.; Wang, R.-P.; Winters, M P Tetrahe dron Lett 1998, 39, 29332936 (b) Lam, P Y S.; Clark, C G.; Saubern, S.; Adams, J.; Winters, M P.; Chan, D M T.; Combs, A Tet rahedron Lett 1998, 39, 29412949 Dominic Chan is a chemist at DuPont Crop Protection, Wilming ton, DE, USA He did his PhD research with Prof Barry Trost at the University of Wisconson, Madison Patrick Lam is a research director at Bristol–Myers Squibb, Princeton, NJ, USA He was formerly with DuPont Pharmaceuticals Company He did his PhD research with Prof Louis Friedrich in the Univeristy of Rochester and Post-doc research with Prof Michael Jung and the late Prof Don ald Cram in UCLA (c) Evans, D A.; Katz, J L.; West, T R Tetrahedron Lett 1998, 39, 29372940 Prof Evans’ group found out about the discovery of this reaction on a National Organic Symposium poster and be came interested in the O-arylation because of his long interest in vancomycin total synthesis (d) Lam, P Y S.; Clark, C G.; Saubern, S.; Adams, J.; Averill, K M.; Chan, D M T.; Combs, A Synlett 2000, 674676 (e) Lam, P Y S.; Bonne, D.; Vincent, G.; Clark, C G.; Combs, A P Tetrahedron Lett 2003, 44, 16911694 Reviews: (a) Qiao, J X.; Lam, P Y S Syn 2011, 829856; (b) Chan, D M T.; Lam, P Y S., Book chapter in Boronic Acids Hall, ed 2005, Wiley–VCH, 205– 240 (c) Ley, S V.; Thomas, A W Angew Chem., Int Ed Engl 2003, 42, 5400– 5449 Catalytic copper: (a) Lam, P Y S.; Vincent, G.; Clark, C G.; Deudon, S.; Jadhav, P K Tetrahedron Lett 2001, 42, 34153418 (b) Antilla, J C.; Buch wald, S L Org Lett 2001, 3, 20772079 (c) Quach, T D.; Batey, R A Org Lett 2003, 5, 43974400 (d) Collman, J P.; Zhong, M Org Lett 2000, 2, 12331236 (e) Lan, J.-B.; Zhang, G.-L.; Yu, X.-Q.; You, J.-S.; Chen, L.; Yan, M.; Xie, R.-G Synlett 2004, 10951097 80 10 11 12 13 14 15 16 17 18 19 20 21 22 Name Reactions Mechanism (Part of the mechanistic work from Shannon’s lab was funded and in collaboration with BMS: (a) Huffman, L M.; Stahl, S S J Am Chem Soc 2008, 130, 91969197 (b) King, A E.; Brunold, T C.; Stahl, S S J Am Chem Soc 2009, 131, 5044 (c) King, A E.; Huffman, L M.; Casitas, A.; Costas, M.; Ribas, X.; Stahl, S S J Am Chem Soc 2010, 132, 1206812073 (d) Casita, A.; King, A E.; Prella, T.; Costas, M.; Stahl, S S.; Ribas, X J Chem Sci 2010, 1, 326330 Vinyl boronic acids: Lam, P Y S.; Vincent, G.; Bonne, D.; Clark, C G Tetrahe dron Lett 2003, 44, 49274931 Intramolecular: Decicco, C P.; Song, Y.; Evans, D.A Org Lett 2001, 3, 10291032 Solid phase: (a) Combs, A P.; Saubern, S.; Rafalski, M.; Lam, P Y S Tetrahe dron Lett 1999, 40, 16231626 (b) Combs, A P.; Tadesse, S.; Rafalski, M.; Haque, T S.; Lam, P Y S J Comb Chem 2002, 4, 179182 Boronates/borates: (a) Chan, D M T.; Monaco, K L.; Li, R.; Bonne, D.; Clark, C G.; Lam, P Y S Tetrahedron Lett 2003, 44, 38633865 (b) Yu, X Q.; Yamamoto, Y.; Miyuara, N Chem Asian J 2008, 3, 15171522 Siloxanes: (a) Lam, P Y S.; Deudon, S.; Averill, K M.; Li, R.; He, M Y.; DeShong, P.; Clark, C G J Am Chem Soc 2000, 122, 76007601 (b) Lam, P Y S.; Deudon, S.; Hauptman, E.; Clark, C G Tetrahedron Lett 2001, 42, 24272429 Stannanes: Lam, P Y S.; Vincent, G.; Bonne, D.; Clark, C G Tetrahedron Lett 2002, 43, 30913094 Thiols: (a) Herradura, P S.; Pendora, K A.; Guy, R K Org Lett 2000, 2, 20192022 (b) Savarin, C.; Srogl, J.; Liebeskind, L S Org Lett 2002, 4, 43094312 (c) Xu, H.-J.; Zhao, Y.-Q.; Feng, T.; Feng, Y.-S J Org Chem 2012, 77, 28782884 Sulfinates: (a) Beaulieu, C.; Guay D.; Wang, C.; Evans, D A Tetrahedron Lett 2004, 45, 32333236 (b) Huang, H.; Batey, R A Tetrahedron 2007, 63, 76677672 (c) Kar, A.; Sayyed, L.A.; Lo, W.F.; Kaiser, H.M.; Beller, M.; Tse, M K Org Lett 2007, 9, 34053408 Sulfoximines: Moessner, C.; Bolm, C Org Lett 2005, 7, 26672669 -Lactam: Wang, W.; et al Bio Med Chem Lett 2008, 18, 19391944 Cyclopropyl boronic acid: Tsuritani, T.; Strotman, N A.; Yamamoto, Y.; Kawa saki, M.; Yasuda, N.; Mase, T Org Lett 2008, 10, 16531655 Alcohols: Quach, T D.; Batey, R A Org Lett 2003, 5, 13811384 Fluorides: (a) Ye, Y.; Sanford, M S J Am Chem Soc 2013, 135, 46484651 (b) Fier, P S.; Luo, J.; Hartwig, J F J Am Chem Soc 2013, 135, 25522559 Moon, P J.; Halperin, H M.; Lundgren, R J Angew Chem., Int Ed Engl 2016, 55, 1894–1898 Vantourout, J C.; Law, R P.; Isidro-Llobet, A.; Atkinson, S J.; Watson, A J B J Org Chem 2016, 81, 39423950 Harris, M R.; Li, Q.; Lian, Y.; Xiao, J.; Londregan, A T Org Lett 2017, 19, 24502453 Ando, S.; Hirota, Y.; Matsunaga, H.; Ishizuka, T Tetrahedron Lett 2019, 60, 12771280 Clerc, A.; Beneteau, V.; Pale, P.; Chassaing, S ChemCatChem 2020, 12, 20602065 Jie Jack Li Chapman Rearrangement Thermal aryl rearrangement of O-aryliminoethers to amides Mechanism: oxazete intermediate Example 12 Example 24 © Springer Nature Switzerland AG 2021 J J Li, Name Reactions, https://doi.org/10.1007/978-3-030-50865-4_26 81 ...Name Reactions Jie Jack Li Name Reactions A Collection of Detailed Mechanisms and Synthetic Applications Sixth Edition Jie Jack Li, Ph.D Discovery Chemistry ChemPartner San Francisco, CA, USA... BakerVenkataraman rearrangement9 Example 4, BakerVenkataraman rearrangement10 Example 5, In the presence of the C-aryl glycoside11 Jie Jack Li 15 Example 6, Soft-enolization BakerVenkataraman rearrangement12... industry and academia As always, I welcome your critique Please send your comments to this email address: lijiejackli@hotmail.com March 1, 2020 San Mateo, California Jie Jack Li ix Table of Contents

Ngày đăng: 09/03/2022, 00:07

Tài liệu cùng người dùng

Tài liệu liên quan