1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Biến Đổi Năng Lượng Điện Cơ - Phần 6 pptx

11 477 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 180,68 KB

Nội dung

1Lecture 6 BÀI GIẢNG Biến Đổi Năng Lượng Điện Cơ TS. Hồ Phạm Huy Ánh TS. Nguyễn Quang Nam March 2010 http://www4.hcmut.edu.vn/~hphanh/teach.html 2Lecture 6 ¾ Các phần tử tập trung trong hệ thống bao gồm: vật nặng (động năng), lò so (thế năng), và bộ giảm chấn (tiêu tán năng lượng). Định luật Newton được dùng để biểu diễn các phương trình về chuyển động. ¾ Khảo sát vật nặng M = W/g treo trên lò so độ cứng K. Ở điều kiện cân bằng tĩnh, lực gia tốc W = Mg sẽ cân bằng với lực lò so Kl, với l là độ dãn của lò so do tác động của lực W. ¾ Nếu vị trí cân bằng được chọn làm điểm tham chiếu, ta chỉ khảo sát các lực làm vật xê dịch. Khảo sát sơ đồ ở Fig. 4.35(c) của GT. ¾ Định luật Newton: Lực gia tốc theo chiều x dương sẽ cân bằng với tổng đại số các lực tác động lên vật theo chiều x dương đó. Khảo sát hệ thống vật nặng-lò so KxxM − = && 0 = + KxxM && hay 3Lecture 6 ¾ Khi vị trí cân bằng được chọn làm tham chiếu (xem Fig. 4.36), ta được: MgKyyM +−= && MgKyyM = + && KlMg = ( ) 0 = − + lyKyM && ¾ Lưu ý: ¾ Ta tiếp tục khảo sát vật nặng M được đở bởi lò so (xem Fig. 4.37), phối hợp thêm lò so-giảm chấn (dashpot). f(t) là lực tác động. Khoảng cách x được đo từ vị trí cân bằng tĩnh. Bộ dashpot lý tưởng sẽ phát lực tỉ lệ với vận tốc tương đối giữa 2 node, kí hiệu thể hiện trên Hình 4.38. M x f K1 f B1 f(t) f K2 () () dt dx BxKxKtf ffftfxM BKK −−−= − − −= 21 21 && Khảo sát hệ thống vật nặng-lò so phần tử tiêu tán 4Lecture 6 ¾ Lập phương trình cho hệ thống thể hiện trên Hình 4.40. Bài Tập 4.17 M 1 x 1 K 2 x 11 B x & x & 2 B K 1 x 1 f 1 (t) 23 B x & M 1 x 2 K 3 x 2 x & 2 B K 2 x f 2 (t) ¾ Ta đặt x 2 –x 1 = x () ( ) ( ) 1111122122111 xKxBxxBxxKtfxM − − − + − + = &&&&& () ( ) ( ) 2323122122222 xKxBxxKxxBtfxM − − − − − − = &&&&& 5Lecture 6 ¾ Thiết lập các phương trình mô tả các ràng buộc điện-cơ cho phép minh họa quá trình động học của hệ thống. Các phương trình này ràng buộc nhau, biểu diễn dưới dạng hệ phương trình vi phân bậc nhất. Đó chính là mô hình không gian trạng thái (state space model ) của hệ thống. ¾ BT 4.19: Khảo sát hệ thống cho ở Hình 4.43, lập hệ phương trình chuyển động điện-cơ dưới dạng mô hình không gian trạng thái. Sử dụng k ết quả từ thông liên kết ở BT 4.8: Thiết lập mô hình không gian trạng thái () () xR iN xRR iN gc 22 = + = λ () xR iN W m 2 22 ' = Ö ¾ Quan hệ về điện cho ta, () () dt dx A xR iN dt di xR N iRv s 0 2 22 2 μ −+= 6Lecture 6 ¾ Quan hệ về của hệ thống, () () xAR iN f dt dx BlxK dt xd M e 2 0 22 2 2 μ −==+−+ Với l > 0 là vị trí cân bằng tĩnh của thành phầndiđộng. Nếuvị trí thựccủa thành phầndiđộng được tính từ vị trí cân bằng, thì phương trình sẽ biến (x – l). Phương trình trên đượcphảithỏa điềukiệnsau, ( ) ( ) 0 2 2 = − = − dt lxd d t lxd ¾ Mô hình không gian trạng thái của hệ thống sẽ gồm 3 phương trình vi phân bậc nhất. Ba biến trạng thái ( state variables ) gồm x, dx/dt (hay v), và i. Thiết lập mô hình không gian trạng thái (tt) 7Lecture 6 ¾ Ta xây dựng ba phương trình vi phân bậc nhất này bằng cách lấy vi phân x, v, và i và tìm cách biểu diễn chúng chỉ theo các biến x, v, i, và các biến đầu vào hệ thống. Bằng cách này, ta được mô hình không gian trạng thái của hệ thống như sau, v dt dx = () () ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −−− − = BvlxK xAR iN Mdt dv 2 0 22 1 μ () () ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ++−= s vv A xR iN iR xLdt di 0 2 2 21 μ Trong đó () () xR N xL 2 = ( ) 32111 ,, xxxfx = & ( ) 32122 ,, xxxfx = & ( ) uxxxfx ,,, 32133 = & Thiết lập mô hình không gian trạng thái (tt) 8Lecture 6 ¾ Khảo sát phương trình . Nếu biến đầu vào u là hằng số, ta đặt , thể đưa về dạng phương trình . Phương trình dạng này thể cho nhiều nghiệm. Chúng được gọi là các điểm cân bằng tỉnh ( static equilibrium points ). ¾ Với hệ thống số chiều không quá lớn, ta thể dùng đồ thị để minh họa. Với hệ thống bậc cao số chiều quá lớn, các kĩ thuật số thường được áp dụng để cho đáp án khả thi. ¾ Giải BT 4.19, đặt các đạo hàm về 0 sẽ cho kết quả Các điểm cân bằng ( ) uxfx , = & 0=x & ( ) uxf ˆ ,0 = 0= e v Rvi s e = () ( ) () () xif xAR iN lxK ee e , 2 0 2 2 −==−− μ x e có thể tìm đượctrênđồ thị là giao điểmcủa –K(x – l) và –f e (i e , x). 9Lecture 6 ¾ hai nhóm phương pháp chính: tường minh (explicit) và nội hàm (implicit). Phương pháp Euler’s là dạng tường minh điển hình, nó dễ dùng khi cài đặt cho hệ thống nhỏ. Với hệ thống lớn, phương pháp nội hàm tỏ ra mạnh hơn nhờ tính ổn định với nghiệm số tìm được. ¾ Khảo sát phương trình Với x , f, và u là các vector. ¾ Thời gian tích phân sẽđượcchẻđềuvớigiátrị chọn Δt phù hợp (xem Fig. 4.45). Trong khoảng từng bướctừ t n đến t n+1 , toán tử tích phân đượcxemlàhằng. Vì thế ta được, Tích phân số ( ) uxfx , = & ( ) 0 0 xx = () () ∫∫ ++ = 11 , n n n n t t t t dtuxfdttx & ()() ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] nnnnnnnn tutxfttutxftttxtx ,, 11 Δ = − = − ++ 10Lecture 6 ¾ Hãy tính x(t) ở các thời điểm t = 0.1, 0.2, và 0.3 seconds. Bài Tập 4.21 ( ) 2 2 xtx +−= & ( ) 10 =x () ( ) ( ) ( ) [ ] n nnn txftxx , 1 Δ+= + ¾ Ta chọn Δt = 0.1 s. Công thức tổng quát để tính x (n+1) như sau , 2,1,0 = n () 1 0 =x ¾ Tại t 0 ¾ Tại t 1 = 0.1 s ( ) ( ) ( ) 2120, 2 0 0 −=+−=txf () ( ) ( ) ( ) [ ] ( ) 8.021.01, 0 001 =−×+=Δ+= txftxx () 8.0 1 =x ( ) ( ) ( ) 344.18.021.0, 2 1 1 −=+−=txf () () ( ) ( ) [ ] () 6656.0344.11.08.0, 1 112 =−×+=Δ+= txftxx ¾ Tương tự, ta tìm được ( ) 5681.0 3 =x ( ) 4939.0 4 =x [...]... x (0 ) = 0 x (1) = 0 u (0 ) = 0 u (1) = 0.25 ⇒ ) ( n = 0,1,2, ) f x (0 ) , u (0 ) , t 0 = 0 ⇒ x (1) = 0 f (x (1) , u (1) , t1 ) = −(1 + 0 2 )0 + 0.25 = 0.25 x (2 ) = x (1) + (0.025)(0.25) = 0.0 062 5 Lecture 6 11 . 1Lecture 6 BÀI GIẢNG Biến Đổi Năng Lượng Điện Cơ TS. Hồ Phạm Huy Ánh TS. Nguyễn Quang Nam March 2010 http://www4.hcmut.edu.vn/~hphanh/teach.html 2Lecture 6 ¾. 2010 http://www4.hcmut.edu.vn/~hphanh/teach.html 2Lecture 6 ¾ Các phần tử tập trung trong hệ thống cơ bao gồm: vật nặng (động năng) , lò so (thế năng) , và bộ giảm chấn (tiêu tán năng lượng) . Định luật

Ngày đăng: 25/01/2014, 17:20

HÌNH ẢNH LIÊN QUAN

¾ Lập phương trình cơ cho hệ thống thể hiện trên Hình 4.40. - Tài liệu Biến Đổi Năng Lượng Điện Cơ - Phần 6 pptx
p phương trình cơ cho hệ thống thể hiện trên Hình 4.40 (Trang 4)
Thiết lập mô hình không gian trạng thái (tt) - Tài liệu Biến Đổi Năng Lượng Điện Cơ - Phần 6 pptx
hi ết lập mô hình không gian trạng thái (tt) (Trang 7)

TỪ KHÓA LIÊN QUAN