Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 22 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
22
Dung lượng
775,78 KB
Nội dung
GIỚI THIỆU CHƯƠNG TRÌNH ĐẠI SỐ LỚP GỒM CHƯƠNG: Chương I Số hữu tỉ - số thực Chương II Hàm số đồ thị Chương III Thống kê Chương IV Biểu thức đại số Chương I: SỐ HỮU TỈ - SỐ THỰC Tập hợp Q số hữu tỉ Các phép tính số hữu tỉ Giá trị tuyệt đối số hữu tỉ Lũy thừa số hữu tỉ Tỉ lệ thức Tính chất dãy tỉ số Số thập phân Làm tròn số Số vô tỉ Căn bậc hai Số thực CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ 3 5; −0, 4; 0; ; 4 Số hữu tỉ Giả sử ta có số: *Các phân số cách viết khác Em viết số thành phân số số, số gọi số hữu tỉ Trả lời Vậy số số hữu tỉ 3 5; −0, 4; 0; ; 4 10 −15 5= = = = ; −3 0 0 = = = = ; −1 −2 −6 −0,4 = = = = ; −5 15 −6 12 = = = = ; −8 16 31 −31 62 = = = = 7 −7 14 Có thể viết phân số thành phân số số đó? Trả lời: Có thể viết số thành vô số phân số số CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ *Các phân số cách viết khác số, số gọi số hữu tỉ Vậy số gọi số hữu tỉ? Vậy số số hữu tỉ 3 5; −0, 4; 0; ; 4 * Số hữu tỉ số viết dạng phân số a, b ∈ Z, b ≠ Tập hợp số hữu tỉ kí hiệu Q a b với ! CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ ?1 Vì số 0,là6;các−số1,hữu 25;1 tỉ ? *Các phân số cách viết khác Trả lời số, số gọi số hữu tỉ Ta có : = = 10 125 −1,25 = − = − = 100 4 = = = 3 0, = Vậy số số hữu tỉ 3 5; −0, 4; 0; ; 4 * Số hữu tỉ số viết dạng phân số a, b ∈ Z, b ≠ Tập hợp số hữu tỉ kí hiệu Q a b với ?2 nên 0,6 số hữu tỉ nên -1,25 số hữu tỉ nên 1là số hữu tỉ Số nguyên a có số hữu tỉ không ? Trả lời Với a ∈ Z, ta có a= a 10a = = a Vậy số nguyên a số hữu tỉ Bài tập: Số tự nhiên n có số hữu tỉ không ? Trả lời Với n ∈ N, ta có n= Vậy số tự nhiên n số hữu tỉ n ∈Q CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ Em có nhận xét mối quan hệ tập hợp số:N, Z, Q? N⊂Z⊂Q CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ Tập hợp số hữu tỉ Q N Z Tập hợp số tự nhiên Tập hợp số nguyên CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ *Các phân số cách viết khác Bài Điền kí hiệu (∈, ∉, ⊂) thích hợp vào vng số, số gọi số hữu tỉ Vậy số số hữu tỉ 3 5; −0, 4; 0; ; 4 * Số hữu tỉ số viết dạng phân số a, b ∈ Z, b ≠ Tập hợp số hữu tỉ kí hiệu Q a b với Giải ∉ ∈ ∉ ∈ ∈ ⊂ ⊂ CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ * Số hữu tỉ số viết dạng phân số a, b ∈ Z, b ≠ Tập hợp số hữu tỉ kí hiệu Q Biểu diễn số hữu tỉ trục số a b với CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ Biểu diễn số hữu tỉ trục số Ví dụ Biểu diễn số hữu tỉ -2 -1 trục số M 4 4 Chia đoạn thẳng đơn vị thành phần lấy đoạn làm đơn vị Số hữu tỉ biểu diễn điểm M nằm bên phải điểm cách điểm đoạn đơn vị CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ * Số hữu tỉ số viết dạng phân số a b a, b ∈ Z, b ≠ với Tập hợp số hữu tỉ kí hiệu Q Biểu diễn số hữu tỉ trục số Trên trục số điểm biểu diễn số hữu tỉ x gọi điểm x Ví dụ: Điểm biểu diễn số hữu tỉ gọi điểm CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ Biểu diễn số hữu tỉ trục số Ví dụ 2: Biểu diễn số hữu tỉ trục số -3 Giải Ta có −2 = −3 - Chia đoạn đơn vị thành phần - Lấy bên trái điểm đoạn đơn vị -1 -3 -2 -1 3 CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ * Số hữu tỉ số viết dạng phân số a b a, b ∈ Z, b ≠ *Lưu ý: Khi biểu diễn số hữu tỉ trục số với - Viết số hữu tỉ dạng phân số có mẫu dương - Chia đoạn thẳng đơn vị theo mẫu số Tập hợp số hữu tỉ kí hiệu Q Biểu diễn số hữu tỉ trục số - Xác định điểm biểu diễn số hữu tỉ theo tử số Trên trục số điểm biểu diễn số hữu tỉ x gọi điểm x Ví dụ: Điểm biểu diễn số hữu tỉ gọi điểm CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ * Số hữu tỉ số viết dạng phân số a b a, b ∈ Z, b ≠ với Tập hợp số hữu tỉ kí hiệu Q Biểu diễn số hữu tỉ trục số Trên trục số điểm biểu diễn số hữu tỉ x gọi điểm x Ví dụ: Điểm biểu diễn số hữu tỉ gọi điểm Giải So sánh hai số hữu tỉ + Với hai số hữu tỉ x, y ta ln có: x = y x < y x > y Giải CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ Biểu diễn số hữu tỉ trục số So sánh hai số hữu tỉ Vậy để so sánh hai số hữu tỉ ta cần làm gì? Để so sánh hai số hữu tỉ ta cần: + Viết hai số hữu tỉ dạng hai phân số có mẫu dương + So sánh hai tử số, số hữu tỉ có tử lớn lớn CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ + Nếu x < y trục số, điểm x bên trái điểm y * Số hữu tỉ số viết dạng phân số a b a, b ∈ Z, b ≠ với Tập hợp số hữu tỉ kí hiệu Q Biểu diễn số hữu tỉ trục số Trên trục số điểm biểu diễn số hữu tỉ x gọi điểm x Ví dụ: Điểm biểu diễn số hữu tỉ gọi điểm So sánh hai số hữu tỉ + Với hai số hữu tỉ x, y ta ln có: x = y x < y x > y -1 −3 Quan sát trục số điểm điểm có vị trí với nhau? Ta so sánh hai số hữu tỉ cách viết chúng dạng phân số so sánh hai phân số B A Điểm −3 Trả lời nằm bên trái điểm trục số −3 CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ + Nếu x < y trục số, điểm x bên trái điểm y * Số hữu tỉ số viết dạng phân số a b a, b ∈ Z, b ≠ với + Số hữu tỉ lớn gọi số hữu tỉ dương + Số hữu tỉ nhỏ gọi số hữu tỉ âm Tập hợp số hữu tỉ kí hiệu Q Biểu diễn số hữu tỉ trục số Số hữu tỉ không số hữu tỉ dương không số hữu tỉ Trên trục số điểm biểu diễn số hữu tỉ x gọi điểm x Ví dụ: Điểm biểu diễn số hữu tỉ gọi điểm So sánh hai số hữu tỉ + Với hai số hữu tỉ x, y ta ln có: x = y x < y x > y Ta so sánh hai số hữu tỉ cách viết chúng dạng phân số so sánh hai phân số âm CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ + Nếu x < y trục số, điểm x bên trái điểm y * Số hữu tỉ số viết dạng phân số a b a, b ∈ Z, b ≠ với + Số hữu tỉ lớn gọi số hữu tỉ dương + Số hữu tỉ nhỏ gọi số hữu tỉ âm Tập hợp số hữu tỉ kí hiệu Q Số hữu tỉ không số hữu tỉ dương không số hữu tỉ âm Biểu diễn số hữu tỉ trục số Trên trục số điểm biểu diễn số hữu tỉ x gọi điểm x Ví dụ: Điểm biểu diễn số hữu tỉ gọi điểm ?5 Trong số hữu tỉ sau, số số hữu tỉ dương, số số hữu tỉ âm, số không số hữu tỉ dương không số hữu tỉ âm ? So sánh hai số hữu tỉ + Với hai số hữu tỉ x, y ta ln có: x = y x < y x > y Giải Ta so sánh hai số hữu tỉ cách viết chúng dạng Số hữu tỉ dương Số hữu tỉ âm phân số so sánh hai phân số Số hữu tỉ âm −3 ; −5 −3 ; ; −4 −5 không số hữu tỉ dương không số hữu tỉ −2 Vậy số hữu tỉ a b akhi nào? nào? • Nhận xét: a, b khác dấu a > a, b dấu; b < a b LUYỆN TẬP CỦNG CỐ −4 a) Sắp xếp số hữu tỉ b) Biểu diễn số trục số ; tự tăng dần theo thứ 0, 75; −3 Giải −3 = ; −4 a) Ta có: Mà: -6 < -3 < 75 −3 −6 0, 75 = = ; = 100 4 −6 −3 < < 4 Suy −3 ; Vậy thứ tự tăng dần ; −4 0, 75 b) Biểu diễn trục số: -2 −3 -1 −3 4 * Số hữu tỉ số viết dạng phân số a b a, b ∈ Z, b ≠ Số hữu tỉ Tập hợp số hữu tỉ kí hiệu Q Biểu diễn số hữu tỉ trục số TẬP HỢP Q CÁC SỐ HỮU TỈ Trên trục số điểm biểu diễn số hữu tỉ x gọi điểm x Ta so sánh hai số hữu tỉ So sánh hai số hữu tỉ cách viết chúng dạng phân số so sánh hai phân số với §1 TẬP HỢP Q CÁC SỐ HỮU TỈ HƯỚNG DẪN HỌC Ở NHÀ * Đối với học tiết này: - Nắm vững định nghĩa số hữu tỉ, cách biểu diễn số hữu tỉ trục số, so sánh hai số hữu tỉ - Bài tập tập:2,3, 4; (tr 8/SGK) 1, 3, 4, (tr 3,4/SBT) * Đối với học tiết tiếp theo: Xem trước Cộng, trừ số hữu tỉ ... xét m? ?i quan hệ tập hợp số: N, Z, Q? N⊂Z? ?Q CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ Tập hợp số hữu tỉ Q N Z Tập hợp số tự nhiên Tập hợp số nguyên CHƯƠNG I SỐ HỮU TỈ - SỐ... l? ?i: Có thể viết số thành vơ số phân số số CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ *Các phân số cách viết khác số, số g? ?i số hữu tỉ Vậy số g? ?i số hữu tỉ? Vậy số số hữu. .. hợp số hữu tỉ kí hiệu Q Biểu diễn số hữu tỉ trục số a b v? ?i CHƯƠNG I SỐ HỮU TỈ - SỐ THỰC §1 TẬP HỢP Q CÁC SỐ HỮU TỈ Số hữu tỉ Biểu diễn số hữu tỉ trục số Ví dụ Biểu diễn số hữu tỉ -2 -1 trục số