INTRODUCTION TO ALGORITHMS 3rd phần 7 pps
... use to analyze multithreaded algorithms. Section 27. 2 investigates how to multiply matrices with multithread- ing, and Section 27. 3 tackles the tougher problem of multithreading merge sort. 27. 1 ... the two recursive calls to P-MERGE-SORT on lines 7 and 8 operate logically in parallel, we can ignore one of them, obtaining the recurrence 77 4 Chapter 27 Multithreaded Algorithms...
Ngày tải lên: 13/08/2014, 18:20
... created by G. Cantor during the period 1 874 –1895. Cantor focused primarily on sets of infinite cardinality. The term “function” is attributed to G. W. Leibniz, who used it to refer to several kinds ... 0. B.4 Graphs 1 171 12 3 45 6 uvwxyz (a) 12 3 4 5 uvwxy (b) G G′ Figure B.3 (a) A pair of isomorphic graphs. The vertices of the top graph are mapped to the vertices of the bottom gra...
Ngày tải lên: 13/08/2014, 18:20
... 70 9 26.2 The Ford-Fulkerson method 71 4 26.3 Maximum bipartite matching 73 2 ? 26.4 Push-relabel algorithms 73 6 ? 26.5 The relabel -to- front algorithm 74 8 VII Selected Topics Introduction 76 9 27 ... Topics Introduction 76 9 27 Multithreaded Algorithms 77 2 27. 1 The basics of dynamic multithreading 77 4 27. 2 Multithreaded matrix multiplication 79 2 27. 3 Multith...
Ngày tải lên: 13/08/2014, 18:20
INTRODUCTION TO ALGORITHMS 3rd phần 2 pdf
... (k) 123 478 9101416 10 2 13 478 9 1614 1 23 478 9 161410 3 21 9 874 10 14 16 4 23 9 871 10 14 16 8 37 4219 161410 7 43 9821 10 14 16 9 83 2 174 161410 10 89 3 174 16142 14 810 3 974 1612 16 14 10 3 978 142 A i i i ii ii i i Figure ... wish to hire. 158 Chapter 6 Heapsort 1 23 45 67 8910 1 23 45 67 8910 1 23 45 67 8910 1 23 45 67 8910 1 23 45 67 8910 1 23 45 67 8910 4 13 29...
Ngày tải lên: 13/08/2014, 18:20
INTRODUCTION TO ALGORITHMS 3rd phần 3 potx
... key k not already stored in the table is equally likely to hash to any of the m slots. The expected time to search unsuccessfully for a key k is the expected time to search to the end of list ... interest are pointers to other nodes, and they vary according to the type of tree. Binary trees Figure 10.9 shows how we use the attributes p, left,andright to store pointers to the...
Ngày tải lên: 13/08/2014, 18:20
INTRODUCTION TO ALGORITHMS 3rd phần 4 ppt
... 377 northwest from A j . Each horizontal row in the table contains the entries for matrix chains of the same length. MATR IX-CHAIN-ORDER computes the rows from bot- tom to top and from left to ... 3 97 15.4-5 Give an O.n 2 /-time algorithm to find the longest monotonically increasing subse- quence of a sequence of n numbers. 15.4-6 ? Give an O.nlg n/-time algorithm to find the longest...
Ngày tải lên: 13/08/2014, 18:20
INTRODUCTION TO ALGORITHMS 3rd phần 5 pdf
... (d) (e) 17 30 24 23 26 35 46 7 17 30 2423 26 35 46 7 21 18 52 38 39 41 (a) 3 (b) (f) (g) 21 18 52 38 39 41 (h) 17 30 2423 26 35 46 7 21 18 52 38 39 41 17 30 2423 26 35 46 7 21 18 52 38 39 41 17 30 2423 26 35 46 7 ... node 521 17 30 24 23 26 35 15 7 21 18 52 38 39 41 (b) 17 30 24 23 26 515 7 21 18 52 38 39 41 (c) 17 30 24 23 26515 7 21 18 52 38 39 41 (d) 17 30...
Ngày tải lên: 13/08/2014, 18:20
INTRODUCTION TO ALGORITHMS 3rd phần 6 pdf
... added to S,wehadx:d D ı.s; x/ when x was added 24.3 Dijkstra’s algorithm 659 0 ∞∞ ∞∞ 0 ∞ ∞ 1 2 10 5 (c) 10 5 0 8 5 14 7 0 8 5 13 7 0 8 5 9 7 0 5 9 7 8 6432 9 7 s tx yz 1 2 10 5 (f) 6432 9 7 s tx yz 1 2 10 5 (b) 6432 9 7 s tx yz 1 2 10 5 (e) 6432 9 7 s tx yz 1 2 10 5 (a) 6432 9 7 s tx yz 1 2 10 5 (d) 6432 9 7 s tx yz Figure ... ∞ 7 1–2 2 (a) xtsryz 25 16 34 7 1–2 2 (c)...
Ngày tải lên: 13/08/2014, 18:20
INTRODUCTION TO ALGORITHMS 3rd phần 8 pptx
... 941 012345 0 1 2 3 4 5 012345 012345 012345 012345 012345 012345 (a) 1 2 4 7 8 11 13 14 1 2 4 7 8 11 13 14 1 2 4 7 8 11 13 14 2 4 8 14 1 7 11 13 4811321 471 1 71 4134112 1 8 8 1 2114131 47 1 171 42131 8 4 13 11 7 1 14 8 4 2 141311 874 21 (b) + 6 · 15 Figure ... the algorithm is given p and w. d. Compute the DFT modulo p D 17 of the vector .0;5;3 ;7; 7;2;1;6/. Note that g D 3 is a...
Ngày tải lên: 13/08/2014, 18:20
INTRODUCTION TO ALGORITHMS 3rd phần 9 docx
... is a tautology if it evaluates to 1 for every assignment of 1 and 0 to the input variables. Define TAUTOLOGY as the language of boolean formulas that are tautologies. Show that TAUTOLOGY 2 co-NP. 34.2-9 Prove ... all three together do also, and so we have a way to decide on ˛ in polynomial time. In other words, by “reducing” solving problem A to solving problem B, we use the “easines...
Ngày tải lên: 13/08/2014, 18:20