MODELLING OF MECHANICAL SYSTEM VOLUME 2 Episode 1 ppt
... 307 Chapter 6. Plates: out -of- plane motion 311 6 .1. Kirchhoff–Love hypotheses 3 12 6 .1. 1. Local displacements 3 12 6 .1 .2. Local and global strains 313 6 .1 .2. 1. Local strains 313 6 .1 .2. 2. Global flexure ... vibration of straight beams 19 0 4 .2. 1. Travelling waves of simplified models 19 0 4 .2. 1. 1. Longitudinal waves 19 0 4 .2. 1 .2. Flexure waves 19 3 4...
Ngày tải lên: 13/08/2014, 05:22
... is: X − X 0 = 1 + κξ 0 1 − ξ 2 0 ξ 2( 1 + κξ 0 (1 − ξ 0 )) − ξ 2 2 ;0≤ ξ ≤ ξ 0 X + X 0 = 1 + κξ 0 1 − ξ 2 0 (ξ − 1) 2( 1 + κξ 0 (1 − ξ 0 )) + 1 − ξ 2 2 ; ξ 0 ≤ ξ ≤ 1 Limit cases: κ ... In terms of local quantities it reduces to: ρ ∂ 2 ξ ∂t 2 − ∂ t 1 ∂x = f (e) (x, y, z; t) ρ ∂ 2 ξ j ∂t 2 − ∂σ xj ∂x = f (e) j (x, y, z; t); (j = 1,...
Ngày tải lên: 13/08/2014, 05:22
... B 1 =− 3A 1 4 EIZ ′′′ 1 (0.5) =−F 0 L 3 /2 ⇒ 6EIA 1 =−F 0 /2 ⇒ A 1 =− F 0 L 3 12 EI 11 6 Structural elements 2. 2.5 .2 Generalized mechanical impedances Besides the elastic supports, other kinds of ... =−Z ′ 1 (0.5) ⇒ Z ′ 2 (0.5) = Z ′ 1 (0.5) = 0 Calculation of the four constants is quite straightforward: Z 1 (0) = Z ′ 1 (0) = 0 ⇒ Z 1 (ξ) = A 1 ξ 3 + B...
Ngày tải lên: 13/08/2014, 05:22
MODELLING OF MECHANICAL SYSTEM VOLUME 2 Episode 5 pptx
... form as: k 1 −k 1 1 −k 1 k 1 + k 2 0 10 0 X 1 X 2 λ 1 + m 1 m 12 0 m 12 m 1 + m 2 0 000 ¨ X 1 ¨ X 2 ¨ λ 1 = F 1 F 2 D 1 [3 .10 1] where k 2 and m 2 are the diagonal ... principle 17 3 first finite element, which is constrained by the condition X 1 = D(t) is written as: k 1 [X 1 , X 2 ] 1 1 11 ...
Ngày tải lên: 13/08/2014, 05:22
MODELLING OF MECHANICAL SYSTEM VOLUME 2 Episode 2 pdf
... Figure 1. 17. Substituting [1. 111 ] into [1. 109] and [1. 110 ] we arrive at the linear system: − (U 2 + U 1 ) ( λ +2G(cos θ ) 2 ) +γGV sin 2 = 0 (U 2 − U 1 ) sin 2 − γV cos 2 = 0 [1. 1 12 ] which ... 2 R C = −γ cos 2 sin 2 [1. 113 ] which has the non-trivial solution: R = sin 2 sin 2 −(γ cos 2 ) 2 sin 2 sin 2 +(γ cos 2 ) 2 ; C = 2 sin 2 cos 2...
Ngày tải lên: 13/08/2014, 05:22
MODELLING OF MECHANICAL SYSTEM VOLUME 2 Episode 6 ppsx
... 0 1 0 0 0 − 12 6γℓ 0 12 6γℓ 0 −6γℓ 2 ℓ 2 06γℓ 4γℓ 2 ⇒ K (1) = K ℓ 4γℓ 2 06γℓ 2 ℓ 2 010 0 6γℓ 0 12 6γℓ 2 ℓ 2 06γℓ 4γℓ 2 U 2 W 2 ϕ 2 U 3 W 3 ϕ 3 T ⇒ U 2 W 2 ϕ 2 ϕ 3 T K ℓ 10 ... 4γℓ 2 U 2 W 2 ϕ 2 U 3 W 3 ϕ 3 T ⇒ U 2 W 2 ϕ 2 ϕ 3 T K ℓ 10 0 10 0 0 12 −6γℓ 0 − 12 −6...
Ngày tải lên: 13/08/2014, 05:22
MODELLING OF MECHANICAL SYSTEM VOLUME 2 Episode 7 pdf
... energy: M 1 ˙ X 1 + M 2 ˙ X 2 = M 1 ˙ X ′ 1 + M 2 ˙ X ′ 2 1 2 M 1 ˙ X 2 1 + 1 2 M 2 ˙ X 2 2 = 1 2 M 1 ˙ X ′ 2 1 + 1 2 M 2 ˙ X ′ 2 2 [4 .10 0] where ˙ X 1 , ˙ X 2 and ˙ X ′ 1 , ˙ X ′ 2 denote the ... follows: 2 L + ̟ 2 1 − ̟ 2 2 L 2 L 2 L 2 L 2 L + ̟ 2 2 − ̟ 2 2 L 2 L 2 L 2 L 2 L + ̟ 2 3 − ̟ 2 2...
Ngày tải lên: 13/08/2014, 05:22
MODELLING OF MECHANICAL SYSTEM VOLUME 2 Episode 8 potx
... or odd Ehπ 2 4 n 2 η + m 2 η 2 α 2 n,m + n 2 η + m 2 2η β 2 n,m otherwise Ehπ 2 4 n 2 η + m 2 η 2 α 2 n,m + n 2 η + m 2 2η β 2 n,m + 8n 2 m 2 π 2 (n 2 − m 2 ) 2 α n,m β n,m where ... system: 4Eh M π 2 4 n 2 + m 2 η 2 2 − ω ′ n,m 2 2n 2 m 2 η 2 (n 2 − m 2 ) 2 2n 2 m 2 η 2 (n 2 −...
Ngày tải lên: 13/08/2014, 05:22
MODELLING OF MECHANICAL SYSTEM VOLUME 2 Episode 9 pps
... Z ε xx =−z ∂ 2 Z ∂x 2 + 1 2 ∂Z ∂x 2 + z 2 2 ∂ 2 Z ∂x 2 2 + ∂ 2 Z ∂x∂y 2 ε xy =−z ∂ 2 Z ∂x∂y + z 2 2 ∂ 2 Z ∂x∂y ∂ 2 Z ∂x 2 + ∂ 2 Z ∂y 2 + 1 2 ∂Z ∂x ∂Z ∂y ε yy =−z ∂ 2 Z ∂y 2 + 1 2 ∂Z ∂y 2 + z 2 2 ∂ 2 Z ∂y 2 2 + ∂ 2 Z ∂x∂y 2 [6.89] In ... finite f (1, 1) = 783 Hz f (1 ,2) out -of- phase = 10...
Ngày tải lên: 13/08/2014, 05:22
MODELLING OF MECHANICAL SYSTEM VOLUME 2 Episode 10 pdf
... [6.68], D[[Z]]=p 0 ⇒ ∂ 2 ∂r 2 + 1 r ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 ∂ 2 Z ∂r 2 + 1 r ∂Z ∂r + 1 r 2 ∂ 2 Z ∂θ 2 = p 0 D [6. 12 4 ] The problem is independent of θ, so the corresponding derivatives are null and [6. 12 4 ] is ... out -of- plane motion 3 51 Then [6 .1 12 ] takes the form: χ rr =− ∂ 2 Z ∂r 2 ; χ θθ =− 1 r ∂ ∂θ 1 r ∂Z ∂θ + 1 r ∂Z ∂r ;...
Ngày tải lên: 13/08/2014, 05:22