Springer - Concurrency Theory Episode 2 docx
... right in Figure 2. 9 as pick stick1; B 1 [] pick stick2; B 2 i.e. a philosopher can either pick up stick 1 or stick 2. 2. 3.4 Nondeterminism Nondeterminism goes hand in hand with concurrency. Because, ... The main forms are: (i) i ; B 1 [] i ; B 2 (ii) i ; B 1 [] x ; B 2 (iii) x ; B 1 [] i ; B 2 (iv) x ; B 1 [] x ; B 2 36 2 Process Calculi: LOTOS u x w B Fig. 2. 15. Process I...
Ngày tải lên: 12/08/2014, 07:22
... 324 maximal valuation, 368–374 smallest upper bound, 364 Communicating Automata, 23 4 25 0 and process calculi, 24 6 25 0 Communication Protocol (example), 20 , 52, 20 7, 23 9, 25 2 computation, 381 concurrency, ... (D 1 ,D 2 ) ∈≈ c we know that D 2 a =⇒⇒ D 2 and (D 1 ,D 2 ) ∈≈. Hence, Q 2 = hide G in D 2 a =⇒⇒ Q 2 5 , Q 2 = hide G in D 2 and because (Q...
Ngày tải lên: 12/08/2014, 07:22
... 22 1 7.1.4 MinorDifferences 22 1 7 .2 CSPandLOTOS 22 2 7 .2. 1 Alphabets 22 2 7 .2. 2 Internal Actions 22 4 7 .2. 3 Choice 22 5 7 .2. 4 Parallelism 22 7 7 .2. 5 Hiding 22 7 Part II Concurrency Theory – Untimed Models Preface In ... 13 Part II Concurrency Theory – Untimed Models 2 Process Calculi: LOTOS 19 2. 1 Introduction 19 2. 2 ExampleSpecifications 20 2. 2.1 ACommunic...
Ngày tải lên: 12/08/2014, 07:22
Springer - Concurrency Theory Episode 3 pps
... (P 1 ,P 2 ), (P 1 ,P 1 2 ), (P 1 1 ,P 2 2 ), (P 2 1 ,P 3 2 ) } which is depicted in Figure 3.8(i). You should be able to convince yourself that, (P 2 1 ,P 3 2 ), (P 1 1 ,P 2 2 ), (P 1 ,P 1 2 ) are ... concatenation as: (σ 1 = =⇒ σ 1 .σ 2 = σ 2 ) ∧ (σ 2 = =⇒ σ 1 .σ 2 = σ 1 ) ∧ (σ 1 = x 1 x 2 x n ∧ σ 2 = y 1 y 2 y n ) =⇒ σ 1 .σ 2 = x 1 x 2 x n y 1 y 2 y...
Ngày tải lên: 12/08/2014, 07:22
Springer - Concurrency Theory Episode 5 ppt
... underspecified, be- causewedonothavedatatypesinpbLOTOS. Var := put ; Var2 Var2 := put ; Var2 [] get ; Var2 NDstack := put ; NDstack2 NDstack2 := put ; NDstack2 [] get; NDstack2 [] get; NDstack Now, ... trace-refusals characterisations. ❏ P 1 ❑ tr = { , x, xy} Ref P 1 ()={∅, {y}} Ref P 1 (x)={∅, {x}} Ref P 1 (xy)=P(L) ❏ P 2 ❑ tr = { , x, xy} Ref P 2 ()={∅, {y}} Ref P 2 (x)={∅, {x}} Re...
Ngày tải lên: 12/08/2014, 07:22
Springer - Concurrency Theory Episode 6 pdf
... pbLOTOS (DIS.i) : B 1 a −→ B 1 B 1 [>B 2 a −→ B 1 [>B 2 (a = δ) (DIS.ii) : B 1 δ −→ B 1 B 1 [>B 2 δ −→ B 1 (DIS.iii) : B 2 a −→ B 2 B 1 [>B 2 a −→ B 2 (a ∈ Act ∪{i, δ}) Thus, rule ... stan- dard LOTOS are feasible, e.g. axiomatisation [28 ]. Such investigations will be harder with E-LOTOS. In fact, in some respects, E-LOTOS is running against the tide of...
Ngày tải lên: 12/08/2014, 07:22
Springer - Concurrency Theory Episode 9 ppt
... Parallel Com- position = e f g i x i z [2, 8] 10 x [3,10] 9 [2, 7] xz 10 e’ (e,e’) x x w 9 (f,e ’ ) S |[x]| T [2, 7] [3,7] S [2, 12] g’ (*,f’) (g,*) (*,g’) |[x]| T [2, 12] f’ w Fig. 10. 12. Further ... Semantic Models for tLOTOS (a) y 2 8 z 2 [8 ,25 ] 18 i [ 12, 14] v ( b ) 2 z 8 y 2 [5,6] [ 12, 14] iv 18 x [8 ,25 ] w δ w δ Fig. 10.6. Semantics of Action Prefix 10 .2. 3 .2 Dela...
Ngày tải lên: 12/08/2014, 07:22
Springer - Concurrency Theory Episode 10 pdf
... (z>1 ∧ y =2) ∧ (t =0∧ w =0) ∧ ((x =1∧ z =2 y =2 t =0)∨ (x =1∧ z =2 w =1∧ t =0)∨ (y =2 z =2 y =2 t =0)∨ (y =2 z =2 w =1∧ t =0)) Now, for a state s =[l, v] to be a zeno-timelock local ... for location vectors, e.g. 1, 3. 12. 4 Zeno-timelocks 369 1 2 y =2 x:=0 x=1 y:=0 x<=1, y< =2 x<=1, y< =2 w>3 z:=0 a b c d 3 y =2 e f Fig. 12. 14. Zeno-timelocks: Loops, Maximal Valu...
Ngày tải lên: 12/08/2014, 07:22
Springer - Concurrency Theory Episode 12 pptx
... 22 1 observational congruence, 22 1 parallel composition, 21 7 retriction and hiding, 22 0 and CSP, 22 2 23 2 alphabets, 22 2 choice, 22 5 22 7 development relations and congru- ence, 23 0 divergence, 22 8 hiding ... maximal progress, 27 1 and time, 27 1 27 2 in LOTOS, 30–34, 43 and internal actions, 27 nonzenoness, see zeno-timelock observer, 22 , 23 , 27 , 32, 141, 165 on-th...
Ngày tải lên: 12/08/2014, 07:22
Tài liệu Integral Equations and Inverse Theory part 2 docx
... IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-5 2 1-4 310 8-5 ) Copyright (C) 198 8-1 9 92 by Cambridge University Press.Programs Copyright (C) 198 8-1 9 92 by Numerical Recipes Software. Permission is ... IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-5 2 1-4 310 8-5 ) Copyright (C) 198 8-1 9 92 by Cambridge University Press.Programs Copyright (C) 198 8-1 9 92 b...
Ngày tải lên: 21/01/2014, 18:20