0
  1. Trang chủ >
  2. Giáo Dục - Đào Tạo >
  3. Cao đẳng - Đại học >

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 5 ppt

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 5 ppt

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 5 ppt

... short-chain poly-P was higher in the internal hyphae (67). Long-chain poly-P seems to be more efficient in transporting Pi from the extraradical to the intraradical part of the fungi. Activity of enzymes ... Inc.4)-glucans (53 ).Xyloglucansare -1 ,4-glucanswithsidechainsthatcanhydrogenbondtocellulosemicrofibrils,cross-linkingthemandrestrainingcellexpansion.Inadditiontoastructuralrole,xyloglucanscanbehydrolyzedbyhydrolyticenzymes,andtheoligosac-charidesproducedmayactassignalmolecules( 15, 54).Theplantcellwallcontainsglucanasesandglycosidasesthathydrolyzexyloglucanintomonosaccharides.Endo- -1 ,4-glucanaseactivityisresponsibleforthefirststepofdegradationwherebythexyloglucanisendohydrolyzedintolargefragmentsandexo-1, 4- glucanaseactivityliberateslow-molecular-weightfractionsfromtheendsoflongpolysac-charidechains(41).TheproductionofhemicellulolyticenzymeshasbeenobservednotonlyinparasitesbutalsoinmutualisticmicroorganismssuchasRhizobiumspecies(24)andarbuscularmycorrhiza(28).Endoxyloglucanaseactivityincreasesduringgrowthanddevelopmentofroots (55 ).Thisactivitywasconsistentlyhigheratthebeginningofcolonizationandthelogarithmicstageofdevelopmentofmycorrhizalfungus (55 ).Theincreaseinfungalstructuresthatpenetratethecellwallduringthelogarithmicstageofrootcolonizationmayexplaintheincreaseinthedifferentactivitiesatthistime (56 ).Theevolutionofendoxyloglucanaseactivitiesinplantsparalleledthechangesintheexternalmycelium.Therewere,however,bandsofxyloglucanaseactivityinnonmycorrhizalrootsthatwereabsentinmycorrhizalroots;thatmaysuggestqualitativeinhibitionbythefungusofsomeplantactivity.Inhibi-tionofplantproteinsynthesisbyAMfungihasbeenobservedinseveralplant–AMfungiassociations (57 ,58 ).III.ENZYMESINTHEPHYSIOLOGYOFTHEASSOCIATIONA.PhosphorusUptakeItnowisestablishedthatmycorrhizalcolonizationcanenhancetheuptakefromsoilofsolubleinorganicPbyplantroots (59 ).Althoughparticularlyimportantinlow-Psoils,anincreasedrateofPuptakecanoccuroverarangeofsoilPlevelsevenwhenmycorrhizalgrowthresponsesnolongeroccur.TheenhancedPuptakebymycorrhizalplantsismostlikelytheresultoftheexternalfungalhyphae’sactingasanextensionoftherootsystem,therebyprovidingamoreefficient(moreextensiveandbetterdistributed)absorbingsur-faceforuptakeofnutrientsfromthesoilandfortranslocationtothehostroot(60).ExternalhyphaeofAMfungimustabsorborthophosphate(Pi)byactivetransport (59 ,61).TheyhaveanactiveHϩ-ATPaseintheplasmamembranethatwouldbecapableofgeneratingtherequiredproton-motiveforcetodriveHϩ-phosphatecotransport,andPcertainlyisaccumulatedtohighconcentration(62).Polyphosphate(poly-P)isamajorPreserveinmanyfungianditaccumulatesinvacuolesofAMfungi(63).Transferofmycorrhizalrootsfromlow-tohigh-Pmediaresultsinarapidaccumulationofpoly-P(64).Enzymesofpoly-Psynthesishavebeenfoundinmycorrhizaltissue(63, 65) .Polyphosphatekinase,whichcatalyzesthetransferoftheterminalphosphatefromATPtopoly-P,wasdetectedinbothexternalhyphaeandmycorrhizalrootsbutnotinuninfectedroots,indicatingthatpoly-Pcanbesynthesizedonlybythefungalcomponentofthemycorrhiza.AlthoughitnowseemslikelythatPistranslocatedbyprotoplasmicstreamingintotheintraradicalhyphaeaspoly-P(66),littleisyetknownofthebiochemicalmechanismsinvolved.Thetransportthroughthehyphaeandunloadingstepswithinthearbusculemaybelinkedtopoly-Pmetabolism(Fig.2).Highproportionoflong-chainpoly-PtototalCopyright ... drought on non-mycorrhizal and mycorrhizal maize: Changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids.New...
  • 27
  • 420
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 2 pptx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 2 pptx

... Inc.lakewater.Figures2Band2CshowthatectoenzymesynthesisinDOM-enrichedsampleswasnolongerrepressedwhentheconcentrationofthereadilyutilizablelowmolecular-weightmoleculesfellbelowacriticallevel,andpolymericsubstrateshadtobeusedtosupportthegrowthandmetabolismofbacteria.Similarinsituobservationsduringphyto-planktonbloomdevelopmentandbreakdownwerereportedforβ-glucosidaseactivityineutrophicLakePlußsee(24),forβ-glucosidaseandaminopeptidaseactivitiesinmeso-trophicLakeScho¨hsee( 25) ,andforlipaseactivityineutrophicLakeMikołajskie(40).Despitethewidespreadoccurrenceofcatabolicrepression,withtheexceptionofthoseforentericbacteria,themoleculardetailsoftherepressionarepoorlyunderstood.Somestudieshaveindicatedthatcyclicadenosinemonophosphate(cAMP),togetherwithitsreceptorprotein,mayplayacentralroleincontrolofcatabolicrepression(41,42).Usingtherepressionstrategyforectoenzymesynthesis,microorganismscanavoidthewastefulproductionofinducibleenzymes,whicharenotusefulwhentheirgrowthisnotlimitedbyUDOM(3,19,24, 35) .B.InhibitionofActivityItisimportanttoconsiderthattherepression/derepressionofanectoenzymenotbeequatedtothereversibleinhibitionofactivity.Evenifanectoenzymeissynthesized,itsactivitymaybeinhibitedbytheaccumulationoftheendproductorbyhighconcentrationsofthesubstrate(19).Twogeneraltypesofreversibleinhibitionareknown:competitiveandnoncompetitiveinhibition.Competitiveinhibitionoccurswhenaninhibitingcompoundisstructurallysimilartothenaturalsubstrateand,bymimicry,bindstotheenzyme.Indoingso,itcompeteswithanenzyme’snaturalsubstratefortheactivesubstrate-bindingsite.Thehallmarkofcompetitiveinhibitionofmanyectoenzymes(e.g.,alkalinephosphatase,β-glucosidase,aminopeptidase)isthatitdecreasestheaffinityofanectoenzyme(anincreaseoftheapparentMichaelisconstantisobserved)forthesubstrateand,therefore,inhibitstheinitialvelocityofthereaction(Fig.3)(13,26,37).Competitiveinhibitionisreversibleandcanbeovercomebyincreasedsubstrateconcentration,andthereforethemaximumvelocity(Vmax)ofthereactionisunchanged(Fig.3A).Noncompetitive ... Inc.Currently,itisevidentthatmicroorganismsformcomplexmicrobialfoodwebsinallaquaticecosystems,andthattheiractivitiesandmetabolismsoftenaretightlycoupled and/ ormutuallyaffected(132,143,144).Therefore,itisnotsurprisingthatenzymaticpropertiesandactivitiesofdifferentcomponentscreatingthemicrobialfoodwebsinlakeecosystemshavedemonstratedcloserelationships.Severalreportshavedocumentedthestrongdependencyofbacterialsecondaryproductiononectoenzymeactivitiesofaquaticmicroorganisms(2–4,16,17,19, 25, 28,29,33,36 ,59 ).Thereoftenisasignificantcorrelationbetweenphytoplanktonprimaryproductionandactivitiesofdifferentectoenzymesinfreshwaterecosystems( 25, 28,29,33 ,52 ).Ourstudiesinlakesofdifferingdegreesofeutrophicationhaveshownmicrobialesteraseactivitytobepositivelycorrelatedtophytoplanktonprimaryproduction,bacterialsecondaryproduction,andconcentrationofdissolvedorganiccarbon(DOC)(Fig.13).Wehavefoundasignificantnegativerelationshipbetweenenzymeactivityandtheper-centageofphytoplanktonextracellularrelease(PER)ofphotosyntheticorganiccarboninthestudiedlakes.ThisnegativecorrelationbetweenPERandesteraseactivityindicatedthatenzymesynthesiswaspartiallyinhibitedinbacteriabylow-molecular-weightphoto-syntheticproductsofphytoplanktonthatwerereadilyutilizedbythesemicroheterotrophs:i.e.,catabolicrepressionofesterasesynthesiswasfoundinlakescharacterizedbyhighPERofphytoplankton(29,33).VIII.ECTOENZYMEACTIVITYANDLAKEWATEREUTROPHICATIONTheimportanceoforganicmatterasavariableforevaluatingthetrophicstatusoflakeshasbeenrecognizedsincethebeginningofthe20thcentury(1 45, 146).Increasingconcen-trationsoforganicconstituentsinwaterarethedistinctindicatorsofacceleratedeutrophi-cationprocessesinmanylakes(147–149).OurstudiesclearlydemonstratedthatenzymeactivitiesweresignificantlypositivelyproportionaltoDOCcontentoflakes(Fig.13C).Asdescribedearlierinthischapter,severalmicrobialectoenzymesareresponsibleforrapidtransformationanddegradationofbothdissolvedorganicmatterandPOMinfresh-waterecosystems.Therefore,wehypothesizethatan‘‘enzymaticapproach’’canbeveryusefulinthestudiesoflakeeutrophication.Severalreportspointedoutthatmicrobialenzymaticactivitieswerecloselyrelatedtotheindicesofwatereutrophicationand/orthetrophicstatusofaquaticecosystems( 25, 27,29,31,33,38 ,52 ,58 ,62,78).Ourstudiesalongthetrophicgradientoflakes(fromoligo/mesotrophictohypereutrophiclakes[Fig.14A]supportourhypothesis(andtheassumptionsofothers)thatselectedenzymaticmicrobialactivitiesareverypracticalforarapidrecognitionofthecurrenttrophicstatusoflakes.Activitiesofalkalinephosphatase,esterase,andaminopeptidaseincreasedexponentiallyalongatrophicgradientandcorre-latedsignificantlywiththetrophicstateindexofthestudiedlakes(Fig.14B,C,D).Wealsofoundastrongrelationshipbetweenactivitiesofectoenzymesandphytoplanktonprimaryproductionintheselakes.RapidincreasesinectoenzymeactivitieswereobservedespeciallyinarangeofgraduallyeutrophiclakeswhenthevalueofCarlson’strophicstateindex(TSI)wasabove 55( 150 )(Fig.14).Moreover, ... the cyto-plasmic membrane, where they hydrolyze macromolecules in close vicinity to the cell. The resulting low-molecular-weight products are then transported across the cell mem-brane and utilized...
  • 38
  • 511
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 16 pptx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 16 pptx

... indicating that the ester probably interfered with nutrient cycling’’(103). In the former study, urease and acid- and alkaline-phosphatase activities were tem-porarily reduced, whereas in the ... c1 and c2, ED 50 (1), and ED 50 (2)representuninhibited rates and ED 50 values for the full- and partial-inhibition models, respectively; c2a/b,minimum (asymptote) for the partial-inhibition ... Although the reason for the choice of these particular enzymes is not clear, a dis-criminant function combining seven properties, including alkaline phosphatase and argi-nine deaminase activities,...
  • 25
  • 337
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 1 ppsx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 1 ppsx

... aspartase-Ca-montmoril-lonite systems ( 159 ). Deamination of l- and d-glutamic and aspartic amino acids and oftheir DL racemic mixtures in the presence of Na-montmorillonite showed a stereoselectiv-ity ... phenylalanine, proline, methionine, and cysteine by birnessite, and the role of pyrogallol in influencing their mineralizationhave been investigated ( 152 , 153 ). Nitrogen mineralization was inhibited by pyrogallol,whereas ... effective for both L- and D- glutamic acid. The PLP-Cu2ϩ-smectitehas acted as a ‘‘pseudoenzyme’’ wherein the PLP was active and independent of the protein matrix of the enzyme and the silicate structure...
  • 46
  • 555
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 3 pdf

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 3 pdf

... Inc.inthefreeform,andconsequentlyavailableforrapiduptake,remainsunknown.Thisadsorptionandtheconcurrentloweravailabilityforbacterialuptakemightcauseanunder-estimationoftheactualbacterialproductiononandinpolysaccharide-richmaterialsuchasmarinesnow(44),relativetobacterialenzymeactivity.ThecouplingbetweenhydrolysisanduptakeofDOMinparticle-associatedandfreebacteriaisstillnotfullyunderstood.Thereasonswhytheattachedbacteriabenefitsolittlefromtheirstronghydrolyticactivities,iftherearenolimitingfactorsinterferingwiththeuptakeofenzymatichydrolysisproducts,areunknown.Thisfundamentaldiscrepancyshouldbemorethoroughlyinvestigatedinordertoimproveunderstandingofthebiogeo-chemicalfluxoforganicmatterandtheroleofbacteriainthecyclingofDOMintheocean.Inanycase,itiswellacceptedthatparticledecomposition( 45) contributessignificantlytothelossoforganicmaterialfromsettlingparticlesduringsinkingandthusdeterminestheefficiencyofthebiologicalCpump(organicmattertransportfromtheseasurfacetotheseabed).D.EnvironmentalFactorsInfluencingEnzymaticActivityThemagnitudeofthemainextracellularenzymeactivitiesinmarinewaterisfrequentlyintheorderaminopeptidaseϾphosphataseϾβ-glucosidaseϾchitobiaseϾesteraseϾα-glucosidase.However,exceptionsmayoccur,asobservedbyChristianandKarl(46)intheequatorialPacific,whereβ-glucosidasewasaboutfourtimeshigherthanaminopep-tidase.Thissuggeststhattheremaybefactorsregulatingactivitiesonalargescale.How-ever,knowledgeofglobalregulatingfactorsisscarce.ChristianandKarl(47)foundthathistidineandphenylalanineinhibitedaminopeptidaseexpressioninAntarcticwaters.Like-wise,KimandLipscomb(48)suggestedthatmetalsmayberegulatingfactorsforproteases(leucineaminopeptidaseseemstobeprincipallyaZn2ϩ-dependentenzyme).ThiswasespeciallyduetoZn2ϩ(whichisrareinmarinewaters),butMn2ϩ,Co2ϩ,Fe2ϩ,andMg2ϩmightalsoplayarole(47 50 ).Inthesurfacelayeroftheocean,ultraviolet-Bradiationcanbeimportant,mainlythroughphotochemicaldegradationoftheextracellularenzymes (51 ,52 ).Withrespecttophosphataseactivity,theabundanceofinorganicPisregardedasaregulatingfactor,particularlyfortheP-limitedregionsintheoceans (53 55 ).However,dissolvedorganicphosphorus(DOP)andparticulateorganicPalsoshouldbeconsidered (56 ).Furthermore,mechanismsofphosphataseregulationaredifferentforbacteriaandphytoplankton.WhilethephosphatasesofphytoplanktonseemtoberegulatedstrictlybyinorganicPconcentrations(49 ,57 59 ),thismechanismisnotsoclearforbacterialphosphatases.ThelattermaytargetCandNratherthanPsupply,aspointedoutforthelimneticenvironmentbySiudaandGu¨de(60)andforthedeepandC-limited,butphos-phate-replete,oceanbyHoppeandUllrich(61).Inanycase,regardlessofenvironmentalfactors,variationofspeciescompositionwithinthebacterialcommunitycansignificantly in uencethedistributionofenzymeactivitiesinthesea(62,63).Theeffectsofenvironmentalfactorsonenzymeregulationarereflectedbythediver-sityofextracellularenzymes,asexpressedinthepossiblerangesofKmandthepatternsofindividualcell-specificenzymepotentials(Table2,Table3).InformationontheKmvalues ... forchitin-hydrolyzing activity by using MUF-β-d-N, N′-diacetylchitobioside, and chitobiaseactivity was then assayed in protein extracts prepared from the positive clones. The chi-tinases of marine bacteria ... Inc.Investigationsofextracellularenzymesfrommarineanimalsandenzymesisolatedfromprokaryotesareconsideredonlyifaclearconnectiontomarineecologyisestablished.Thetermextracellularenzymesisusedthroughoutthischapter,whereasChro´st (5) distin-guishesbetweenectoenzymesandextracellularenzymes.EctoenzymesaredefinedbyChro´st (5) andinChapter2asenzymeslocatedintheperiplasmicspaceorattachedtotheoutermembraneofthebacterialcell.Extracellularenzymesareenzymesfreelydis-solvedinthewaterorattachedtoparticlesotherthantheenzyme-synthesizingcell .In thischapter,however,thetermextracellularenzymesreferstobothectoenzymesandextracellularenzymes,unlessotherwisestated.EarlystudiesonthefateoforganicaggregatesanddissolvedpolymersintheseawerepresentedbyRiley(6),Walsh(7),andKhailovandFinenko(8).Overbeck(9)re-viewedtheearlystudiesonextracellularenzymeactivityintheaquaticenvironment.II.ECOLOGICALPRINCIPLESOFENZYMATICPATTERNSINTHESEAA.TheConceptoftheMicrobialLoopandtheRoleofExtracellular Enzymes Themicrobialloop(10)encompassesthecombinedactivitiesofautotrophicandheterotro-phic—eukaryoticaswellasprokaryotic—organismssmallerthan20µm.Theseorgan-isms,representedbybacteria,nanoflagellates,ciliates,andphototrophicprochlorophytes,aswellascyanobacteria,formafoodweboftheirown,looselyconnectedtothefoodwebofthelargergrazers.Ingeneral,thenutritionalbasisofthemicrobialfoodwebisprovidedbythepoolofdissolvedorganicmatter(DOM)andparticulateorganicmatter(POM).TheDOMpoolisapriorireservedforbacterialutilization,whereascompetitionwithmetazoansoccursforPOM.ThiscompetitionisdeterminedbythebacterialpotentialforenzymaticdissolutionofPOMontheonehandandthefeedingactivityofthemetazo-ansontheotherhand.Thebulkofboththedissolvedandparticulateresources,however,requiresenzymatichydrolysispriortouptakebybacteria(Fig.1).Thustheenzymaticactivitiesofbacteriainitiateorganiccarbon(C)remineralizationanddefinethetypeandquantityofsubstrateavailabletothetotalmicrobialfoodweband,tocertainextent,alsotothetoppredatorsinthesystem.B.FreeandAttachedEnzymeActivityGenerally,extracellularenzymesmaybeboundtothecell(definedasectoenzymesbyChro´st [5] )orinthefreeandadsorbedstate(11,12).Mostofthetotalenzymeactivityinseawaterhasbeenfoundtobeassociatedwiththeparticlesizeclassdominatedbybacteria(Ͼ0.2µm–3µm)(13,14)(Table1).Dissolvedenzymes( 15) andlargeparticlesϾ8...
  • 35
  • 594
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 4 potx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 4 potx

... Inc.Althoughthisstudyinvolvedtheuseofageneticallymodifiedmicrobe,themodi - cationswerenotintendedtohaveafunctionalimpact;theywereinsertedasgeneticmark-ers.Asecondstudycomparingtheeffectofthesamegeneticallymarkedstraintothatofafunctionallymodifiedstrainshowedeffectsthataremoreinteresting(36).Theaimofthisworkwastodeterminetheimpactintherhizosphereofwildtypealongwithfunction-allyandnonfunctionallymodifiedPseudomonasfluorescensstrains.Thewild-typeF113straincarriedageneencodingtheproductionoftheantibiotic2,4-diacetylphloroglucinol(DAPG),usefulinplantdiseasecontrol,andwasmarkedwithalacZYgenecassette .The firstmodifiedstrainwasafunctionalmodificationofstrainF113withrepressedproductionofDAPG,creatingtheDAPGnegativestrainF113G22.Thesecondpairedcomparisonwasanonfunctionalmodificationofwild-type(unmarked)strainSBW 25, constructedtocarrymarkergenesonly,creatingstrainSBW25EeZY-6KX.Significantperturbationswererecordedintheindigenousbacterialpopulationstruc-ture;theF113(DAPGϩ)straincausedashifttowardslower-growingcolonies(Kstrate-gists)comparedwiththenon-antibiotic-producingderivative(F113G22)andSBW 25 strains.TheDAPGϩstrainalsosignificantlyreduced,incomparisonwiththoseoftheotherinocula,thetotalPseudomonassp.populations,butdidnotaffectthetotalmicrobialpopulations.ThesurvivalofF113andF113G22wasanorderofmagnitudelowerthanthatoftheSBW25strains.TheDAPGϩstraincausedasignificantdecreaseintheshoot-to-rootratioincomparisontothatofthecontrolandotherinoculants,indicatingplantstress.F113increasedsoilalkalinephosphatase,phosphodiesterase,andarylsulfataseac-tivities(Table2)comparedtothoseofthecontrols.Theotherinoculareducedthesameenzyme ... would in- crease the microbial P demand.Inverse trends were found with the C and N cycle enzymes in comparison to the general trend found in the P and S cycle enzymes. The F113 (DAPGϩ) strain was ... causinga shift toward slower-growing organisms. The community structure with the GMM inocu-lum, in the presence of kanamycin, showed the only impact of the GMM compared tothat the wild-type inoculum....
  • 15
  • 455
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 8 potx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 8 potx

... transforma-tions include the effect of bonding of β-d-glucosidase to a phenolic copolymer of l-tyro-sine, pyrogallol, or resorcinol (108) and of linking of urease to tannic acid (49 ,52 ). Sarkar and ... ofurease and invertase in the early 1990s. Gianfreda and coworkers (50 ) examined the inter-action of invertase (β-fructosidase) with montmorillonite, aluminum hydroxide, and alu-minum hydroxide–montmorillonite ... soil enzymes, laccase and tyrosinase. The potential role of these enzymes in the humification of anilinic and phenolic compounds and reduction of their bioavilability with the passage of time (aging)...
  • 22
  • 429
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 9 potx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 9 potx

... Inc.wererepressedbyaddedN;formapleandoak,theseactivitiesincreased.Theresultssuggestedthatwhiterotfungi,whichproduceligninasesinresponsetolowNavailability,weredisplacedbysupplementalN,slowingthedecompositionofrecalcitrantlitter.HenriksenandBreland(27)alsofocusedontheroleofNinthedecompositionprocess.Usingamicrocosmsystemofwheatstrawandsoil,theyfoundthatcarbonminer-alization,fungalbiomass,andactivitiesofcellulolyticandhemicellulolyticenzymesde-creasedwithNavailability.Intheareaofcomparativeecosystemstudies,Sinsabaughetal.(62,63)followedmassloss,NandPimmobilization,andactivityof11typesofextracellularenzymesforbirchsticks(Betulapapyfera)decomposingateightupland,riparian,andloticsitesoverafirst-orderwatershed.Masslossratesamongsitesvariedbyafactorof5andwerecorrelatedwithlignocellulaseactivities.Incontrast,relationshipsbetweenmasslossandactivitiesofacidphosphataseand -1 ,4-N-acetylglucosaminidasevariedwidelyamongsites.TheserelationshipsalongwithanalysesoftheNandPcontentofthestickssuggestedthatdifferencesinmasslossratesamongsitesweretiedtodifferencesinnutrientavail-ability.Inanotherexperiment,litterbagscontainingsenescentleavesofAgeratumconi-zoidesandMallotusphilippinensiswereplacedonthefloorofayoungtropicalforestsiteinnortheastIndia(38).OtherlitterbagscontainingleavesofHolarrhenaantidysentericaandVitexglabratawereplacedatamaturetropicalforestsite.Athigher-elevationsubtrop-icalsites,litterbagscontainingPinuskesiyaandMyricaesculentaleaveswereplacedinayoungforestandbagscontainingPinuskesiyaandAlnusnepalensisleaveswereplacedinamatureforest.Sampleswereanalyzedformassloss,bacterialandfungalnumbers,cellulosecontent,Ncontent,solublesugarcontent,andactivitiesofcellulase,amylase,andinvertase.Cellulaseandamylaseactivitieswerecorrelatedwithmicrobialnumbers.Invertaseactivitycorrelatedwithsolublesugarcontent.Enzymeactivitiesandmasslossrateswerehigheratthelowerelevationsitesbutwerenotrelatedtostandage.Inasimilarstudy,thedecompositionofPinuskesiyaandAlnusnepalensisatadisturbedroadsideforestsitewascomparedwiththatatanundisturbedsite(30).Againcellulaseandamylaseactivitieswerecorrelatedwithmicrobialnumbers,whereasinvertaseactivitywaslinkedtosolublesugars.DillyandMunch(18)studiedenzymeactivitiesandmicrobialrespirationforAlnusglutinosa(blackalder)leavesdecomposingatwetanddrysiteswithinafenforest.Masslossratesweremorethantwiceasfastatthewetsite.Microbialbiomassandrespirationdecreasedovertime(16to2.3µmolgϪ1hϪ1),buttheefficiencyofCutilizationincreased.Thesetrendswereparalleledbydecreasingβ-glucosidaseactivityandincreasingproteaseactivity.III.COMPARATIVEANALYSESInthecontextofthesuccessionalloopmodel(Fig.1),therearethreedimensionsforcomparing ... Microbial Enzymes in Aquatic Environments. New York: Springer-Verlag, 1991, pp 25 59 .10. JS Clein, JP Schimel. Reduction in microbial activity in birch litter due to drying and rewettingevents. ... amendment varied with the lignin content of the litter. Dogwood,a fast-decomposing, low-lignin litter, decomposed up to 25% faster than did the controlplots. Maple, intermediate in lignin content, decomposed...
  • 17
  • 373
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 10 docx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 10 docx

... the years; these include vanilin, indulin, ferrulic acid, and, most importantly,14C-labeled synthetic lignins. Various fungal enzymes are involved in lignin degradation, including lignin peroxidase, ... strains and the extrac-tion of enzymes, provide complementary information on enzyme production by emphasi-zing the potential of the living hyphae and the sum of past and present activities re-spectively. ... sterilefreshleaves,cellulose,lignin,andphenoldegradationwasinitiatedimmediately.Fourteendayslater,when20%ofthecellulosehadbeendegraded,therateoflignindegradationincreased.Decompositionwasrapidduringthefirstmonthbutvirtuallyceasedafterfourmonths.Lowresourcequalityandadverseenvironmentalconditions(e.g.,lowwateravail-ability)resultinlowdecompositionrates.ThishasbeenexaminedbyincubatingpineneedlesinlitterbagsinasouthernItalianpineforest(49).BoththeC/Nratioandthelignincontentofthelitterwerehigh.MeasurementofbiologicalparameterssuchasCO2evolutionandfungalbiomassoverathree-yearperiodrevealedasignificantpositivecorre-lationbetweenrespirationrateandmoisturecontentofthelitter.Therewasnoobviousrelationshipbetweenfungalbiomassandothermeasuredparameters(i.e.,littermassloss,lignincontent,andnitrogencontent).Itwasconcludedthatsincethelitterwasverydryformostoftheyear,anautochthonousfungalflorahaddevelopedthatwasabletodegradetheselittertypesunderadverseconditionsalbeitatalowrate.Theexamplesofinteractionsbetweensubstratesandfungalgroupsmentionedandtheinfluenceofdifferentconcentrationsofsubstratesillustratethecomplexanddynamicprocessesinvolvedinlitterdecomposition.Inthenextsectionthesuccessionalstagesofdecompositionarediscussedinthecontextofenzymeactivity.IV.FUNGALPOPULATIONSANDENZYMEACTIVITYNumerousstudiesonfungalsuccessionhavebeenpublished,manyofwhichdiscusstheidentificationoffungiatdifferentstagesofdecomposition(1).However,theemphasisisusuallyontaxonomicidentityratherthanonenzymaticdiversity.Thosegeneramostfre-quentlymentionedinconnectionwithearlycolonizationoftheorganicdebrisinthetem-peratezoneareAlternaria,Aureobasidium,Cladosporium,andEpicoccum.Inherreview,Frankland(1)concluded,‘‘Letusecologistsnotneglecttostudyingreaterdepthmoreofthestarperformersinfungalsuccession,onwhichthemaintenanceofentireecosystemsmaydepend.’’Inthiscontext‘‘starperformers’’encompasstheimportantenzymeproduc-ersandhencethekeydecomposers.ThelinkbetweentaxonomicandfunctionaldiversityinthefungalpopulationhasbeendiscussedinreviewsbyMiller (50 )andZakandVisser (51 ),bothofwhichemphasizetheimportanceofsuccessionstudies.Therelationshipbetweenfungalsuccessionandtheenzymaticpotentialofthefungihasbeenobservedduringdecompositionofforestlitter,e.g.,ofalder(2 ,52 57 )andbeech (54 57 )(seeTable2).Onbeechleaves,fungalspeciesofthegeneraAureobasidium,Cladosporium,Epi-coccum,andAlternariaappearfirst,althoughMucor,Phoma,andAcremoniumareoftenearlycolonizers(Table3).Acremoniumspp.isolatesattackcelluloseandchitinaswellas...
  • 18
  • 521
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 11 ppsx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 11 ppsx

... Inc.possibletofindseveralexplanationstointerpretaproteinadsorptionisotherm,withnoexperimentalevidenceavailabletochooseamongthem.TheadvantageoftheNMRmethodisthatitsimultaneouslygivesthequantityofadsorbedprotein,thesurfacecover-ageofthesolidbytheprotein,andthemonolayerormultilayermodeofadsorption(16).Onlyknowledgeofthesethreefactorsallowsapossibleunfoldingoftheproteinsontheclaysurfacestobedetectedandquantified.1.NuclearMagneticResonanceDetectionoftheExchangeofaParamagneticCationonProteinAdsorptiononClaysTheprincipleofthemethod(16)isbasedonthefactthattheadsorptionofproteinsonclayscausesthereleaseofcharge-compensatingcations(7,17).ItalsousesthesensitivityoftherelaxationtimesT1andT2ofnuclearspinstoparamagneticcationsinNMRspectros-copy(18,19).Asmallquantity(between 3and2 0µMdependingonthepH)ofaparamagneticcation,Mn2ϩ,isaddedtoasodium-saturatedmontmorillonitesuspension(1gLϪ1)witha10-mMconcentrationoforthophosphate.Thesuspensionisstudiedby31PNMRspec-troscopy.Aninterestingphenomenonisobserved:(1)theMn2ϩcationsthatareadsorbedontheclaysurfacedonotinteractatallwiththeorthophosphate,asshownbythecompari-sonbetweentheclaysuspensionandsupernatantafterremovaloftheclaybycentrifuga-tion ;and( 2)theMn2ϩcationsinsolutioninteractwiththeorthophosphate,leadingtoalinearincreaseofthelinewidthathalfheight,∆ν1/2,oftheorthophosphatepeakontheNMRspectrum.Thislasteffectistheresultoftheparamagneticcontributiontothede-creaseofthespin–spinrelaxationtime,T2,oftheorthophosphatesignal.Whenagivenquantityofproteinisintroducedintothissuspension,itdisturbstheequilibriumbetweentheparamagneticMn2ϩadsorbedontheclaysurfaceandthatinsolution.Theanalysisoftheresultinglinewidthoftheorthophosphosphatesignalgivesthequantityofcationsexchangedonadsorption.Witha300-MHzNMRspectrometer,themeasurementtakesafewminutes;witha500-MHzspectrometer,1minissufficient(evenlessifhigherconcentrationsofortho-phosphateareused).Asnocentrifugationisrequiredwiththismethod,thisshorttimeofsignalacquisitioniscompatiblewithkineticstudies.Theresultsareexpressedas∆νP,whichisthedifferencebetween∆ν1/2inthesystemwithparamagneticcationsand∆ν1/2inacontrolofthesamecomposition,(butwithoutparamagneticcations)dividedbytheconcentrationofparamagneticcations.ThesurfacecoverageoftheclaybytheproteincanbededucedfromthefractionofMn2ϩreleased.Theknowledgeofboththequantityofproteinadsorbedandthesurfacecoverageofthesolidallowsthecalculationoftheinterfacialareaofcontactbetweenasingleproteinmoleculeandtheclaysurfaceatdiffer-entpHandionicstrengths.2.ConformationalChangesonAdsorptionofaSoftProtein,BovineSerumAlbumina.DescriptionoftheProgressiveSurfaceCoverageoftheClayFigure1shows the ... (2) a possi-ble unfolding of the protein on the surface changing the interfacial area between individualprotein and surface and the quantity of protein adsorbed at saturation; (3) the surfacecoverage ... the α-chymotrypsin catalytic site. This is due to an interaction involving positively chargedHisϩ -4 0 and Hisϩ -5 7 imidazole and Alaϩ -1 49 (alanine) end chain aminium that control the initial specific...
  • 22
  • 424
  • 0

Xem thêm

Từ khóa: the british empire ecology and famines in late 19th century central indiatransport and fate of toxicants in the environment damian shealubricants in the environmentenzymes in the manufacturethe dictionary of ecology and environmental scienceproduction networks in the asiapacific region facts and policy implicationsrules in the formation of plural and possessive nounsunit 6 the environment getting started and listen and readfire in the forests of maine and new hampshireimperialism in the late 19th century and early 20th centurythe role of capital market in the nigerian economic growth and developmentin the minds eye dada and surrealismrole of rotifers in the environmentfill in the blanks with articles and prepositionsfill in the blanks with articles and prepositions pdfNghiên cứu sự hình thành lớp bảo vệ và khả năng chống ăn mòn của thép bền thời tiết trong điều kiện khí hậu nhiệt đới việt namNghiên cứu tổ hợp chất chỉ điểm sinh học vWF, VCAM 1, MCP 1, d dimer trong chẩn đoán và tiên lượng nhồi máu não cấpMột số giải pháp nâng cao chất lượng streaming thích ứng video trên nền giao thức HTTPNghiên cứu vật liệu biến hóa (metamaterials) hấp thụ sóng điện tử ở vùng tần số THzGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitĐỒ ÁN NGHIÊN CỨU CÔNG NGHỆ KẾT NỐI VÔ TUYẾN CỰ LY XA, CÔNG SUẤT THẤP LPWANPhát triển du lịch bền vững trên cơ sở bảo vệ môi trường tự nhiên vịnh hạ longNghiên cứu, xây dựng phần mềm smartscan và ứng dụng trong bảo vệ mạng máy tính chuyên dùngNghiên cứu về mô hình thống kê học sâu và ứng dụng trong nhận dạng chữ viết tay hạn chếĐịnh tội danh từ thực tiễn huyện Cần Giuộc, tỉnh Long An (Luận văn thạc sĩ)Tìm hiểu công cụ đánh giá hệ thống đảm bảo an toàn hệ thống thông tinThiết kế và chế tạo mô hình biến tần (inverter) cho máy điều hòa không khíQuản lý nợ xấu tại Agribank chi nhánh huyện Phù Yên, tỉnh Sơn La (Luận văn thạc sĩ)Tăng trưởng tín dụng hộ sản xuất nông nghiệp tại Ngân hàng Nông nghiệp và Phát triển nông thôn Việt Nam chi nhánh tỉnh Bắc Giang (Luận văn thạc sĩ)Giáo án Sinh học 11 bài 15: Tiêu hóa ở động vậtGiáo án Sinh học 11 bài 14: Thực hành phát hiện hô hấp ở thực vậtQUẢN LÝ VÀ TÁI CHẾ NHỰA Ở HOA KỲ