... bound on the number of blue edges ensures that at least one edge f ∈ F is blue (under c(x 1 , x 2 )): |F| > (1 − 2ρ ∗ ) r−2 N r−2 (r − 2)! = (1 − µ)N r−2 (r − 2)! > (1 − µ) N r − 2 ≥ |E(T ∗ R )| where ... C r n ) is asymptotic to (2r−1)n 2r−2 . To see that this is about best, set n = (2r−2)k and consider the 2-coloring of a complete graph with (2r−1)k−2 = (...
Ngày tải lên: 07/08/2014, 21:20
Báo cáo toán học: "The Ramsey number r(K5 − P3, K5)" pptx
... R(K m − P 3 , K n ; k) and v ∈ V (F ) then F [N F (v)] ∈ R(K m−1 −P 3 , K n ; d F (v)) and F[N F (v)] ∈ R(K m −P 3 , K n−1 ; k−1 −d F (v)). Thus ∆(F ) ≤ r(K m−1 − P 3 , K n ) − 1 and δ(F ) ≥ k − ... d(u 3 ) − d G[A i ] (u 1 ) − d G[A i ] (u 2 ) − d G[A i ] (u 3 ) ≤ d(u) + 11 + 11 − 2 − 2 − 2 = d(u) + 16, hence d(u) = 11. On the other hand, 27 = 39 −...
Ngày tải lên: 08/08/2014, 14:23
... i − 1 i − 1 = d k+1,j−1 . Also, d j,j − c j,j = d j,j − c j,j−1 = d j,j − d j,j−1 = 2j−3 j−1 − 2j−4 j−2 − 2j−4 j−3 = 2j−3 j−1 − 2j−4 j−2 − 2j−4 j−1 = 0. Thus, by induction ... 1 i and k−4 i=0 k + i − 1 i = 2k − 4 k − 4 so that d k,k−1 / 2k− 4 k−2 = 1− 2k− 4 k−4 / 2k− 4 k−2 = 1−( k−2)(k−3)/k...
Ngày tải lên: 07/08/2014, 07:21
Báo cáo toán học: "The independence number of graphs with large odd girth" ppt
... least n − (k−1)n 4(k−1) = 3n 4 vertices remain uncoloured, thus V (G (k−1) ) ≥ 3n/4, and for any uncoloured vertex v ∈ G (k−1) sm i=(s−1)m+1 |N s i (v)|≥m (k−s) |Γ G k−1 (v)| ... G (k−1) we have sm i=(s−1)m+1 |N s i (v)|≥m (k−s) |Γ G k−1 (v)| 1 ≤ s ≤ (k − 1) . Now since, |V (G (k−1) )|≥n/k, by definition of ∆ 0 we must be able to choose a v so that |Γ G (k...
Ngày tải lên: 07/08/2014, 06:20
Báo cáo toán học: "THE INDEPENDENCE NUMBER OF DENSE GRAPHS WITH LARGE ODD GIRTH" ppsx
... d k (v). Hence α(G) ≥ v∈G d 1 (v) 2 k−1 α(G) 1 k−1 or α(G) k k−1 ≥ 1 2 v∈G d 1 (v) 1 k−1 or α(G) ≥ 2 −( k−1 k ) v∈G d 1 (v) 1 k−1 k−1 k as claimed. Corollary 1: Let G be regular ... d k−1 (v) 1+d 1 (v)+···+ d k (v) /(k − 1). Since the arithmetic mean is greater than the geometric mean, we can conclude that α(G) ≥ v∈G d 1 (v)2 −( k−2) 1+d 1 (v)+···+ d k (v)...
Ngày tải lên: 07/08/2014, 06:20
Báo cáo toán học: "The asymptotic number of set partitions with unequal block sizes" pot
... follows: ∞ j=1 1 1 − e −cjs −1 /2 · M s j=1 1 − e −cjs −1 /2 1 −e −cjs −1 /2 +βs −3 /2 j 2 =exp π 2 6z + 1 2 log z 2π + O(z) z=cs −1 /2 exp 2 M s j=1 e βs −3 /2 j 2 −1 e cjs −1 /2 −1 . ... m =(m−k+t+3/2) log(m −k + t +1)−t −( m−k+3/2) log(m − k +1)−tlog m + o(1) =(m−k)log 1+ t m−k −t+tlog 1 − k −t m + o(1) =(m−k...
Ngày tải lên: 07/08/2014, 06:20
Báo cáo toán học: "The maximum number of perfect matchings in graphs with a given degree sequence" docx
... matrix. Proof of Theorem 1.1: The square of the number of perfect matchings of G counts ordered pairs of such matchings. We claim that this is the number of spanning 2-regular subgraphs H of G ... counts the number of spanning 2-regular subgraphs H of G, where now we allow odd cycles and cycles of length 2 as well. Here, too, each such H is counted 2 s times, where s is the number...
Ngày tải lên: 07/08/2014, 15:22
Báo cáo toán học: "The crossing number of a projective graph is quadratic in the face–width" doc
... counted exactly k−2 M g −1 -times since we have a free choice of selecting the remaining M g −1 cycles from C to form C ⊇ {e, f} of size M g + 1. Hence the counting argument yields that the total number ... j ) iff |i − i | + |j − j | = 2. The projective diamond grid P r of size r is obtained from D r by identifying the opposite pairs of its “boundary” vertices, th...
Ngày tải lên: 07/08/2014, 15:23
Báo cáo toán học: "The Neighborhood Characteristic Parameter for Graphs" pptx
... (9), j≥0 (−1 ) j β N j = β N 0 + j≥1 (−1 ) j [dim(B j ) − rank(∂ j ) − rank(∂ j+1 )] = β N 0 +rank(∂ 1 )+ j≥1 (−1 ) j dim(B j ) = β N 0 +(n − β N 0 ) − m + k 2,2 + j≥3 (−1 ) j dim(B j ) = n − m + ... − k 1,2 −2 k 2,2 +k 3,2 −k 4,2 . . . + k 1,3 −k 2,3 +2k 3,3 −k 4,3 . . . − ··· = n + ...
Ngày tải lên: 07/08/2014, 07:21
Báo cáo toán học: "The Number of Solutions of X 2 = 0 in Triangular Matrices Over GF" pdf
... C n (q), where, C 2n (q)= j 2n n − 3j − 2n n − 3j − 1 · q n 2 −3 j 2 −j , C 2n+1 (q)= j 2n +1 n − 3j − 2n +1 n − 3j − 1 · q n 2 +n−3j 2 −2 j . Proof. In [K] it was shown that the ... by m n q := (1 − q m )(1 − q m−1 ) ···(1 − q m−n+1 ) (1 − q)(1 − q 2 ) ···(1 − q n ) , (Carl) whenever 0 ≤ n ≤ m,and0other...
Ngày tải lên: 07/08/2014, 06:20