Computational Intelligence in Automotive Applications Episode 1 Part 7 pptx
... Automotive Applications 11 7 0 50 10 0 15 0 200 250 300 350 400 1 −0.5 0 0.5 1 0 50 10 0 15 0 200 250 300 350 400 1 −0.5 0 0.5 1 Testing Training Fig. 11 . The RNN results after training. The segment from ... 19 97, pp. 77 3 77 8. 75 . D. Prokhorov, “Toward effective combination of off-line and on-line training in ADP framework,” in Proceedings of the 20 07 IEEE Symp...
Ngày tải lên: 07/08/2014, 09:23
... Networks in Automotive Applications Danil Prokhorov 10 1 1 Models 10 1 2 VirtualSensors 10 3 3 Controllers 10 6 4 TrainingNN 11 1 5 RNN: AMotivatingExample 11 6 6 VerificationandValidation (V &V) 11 8 References ... 11 8 References 11 9 On Learning Machines for Engine Control G´erard Bloch, Fabien Lauer, and Guillaume Colin 12 5 1 Introduction 12 5 1. 1 CommonFeatures...
Ngày tải lên: 07/08/2014, 09:23
... F09-F10) 32 70 Pupil-diameter features only (F09-F10) 2 61 Driving-performance features (F 01- F08) 8 60 PleaserefertoTable2forthefeatureindices 0 2 4 6 8 10 12 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 Feature ... 2.0) F 01 <= -1. 563 F15 <= 0. 0 17 4 -> class High [0 .78 8] Rule 1/ 8: (11 .5/3 .1, lift 1. 8) F15 > 0. 0 17 4 F 21 > 0.0635...
Ngày tải lên: 07/08/2014, 09:23
Computational Intelligence in Automotive Applications Episode 1 Part 3 ppt
... (s) 1 394 (two intervals: 18 0 + 214 ) 516 910 2 90 (one interval) 210 300 3 0 240 240 4 15 5 (one interval) 17 5 330 5 16 0 (one interval) 393 553 6 18 0 (one interval) 370 550 7 310 (two intervals: 15 0 ... 550 7 310 (two intervals: 15 0 + 16 0) 6 31 9 41 8 842 (two intervals: 390 + 452) 76 5 1, 6 07 9 210 (two intervals: 75 + 13 5) 255 465 10 673 (two intervals: 310...
Ngày tải lên: 07/08/2014, 09:23
Computational Intelligence in Automotive Applications Episode 1 Part 4 doc
... controls 74 % Eating a meal/snack 51% Using a cell phone 41% Tending to children 34% Reading a map/publication 19 % Grooming 11 % Prepared for work Activities drivers engage in while driving each. ... on Artificial Intel ligence, Montreal, Canada, 19 95. 11 . I. Guyon and A. Elisseeff. An introduction to feature selection. Journal of Machine Learning Research, 3 :11 57 11 82, 2003. 1...
Ngày tải lên: 07/08/2014, 09:23
Computational Intelligence in Automotive Applications Episode 1 Part 5 docx
... Machine Intelligence, pp. 918 –923, July 2003. 31. D.V. Prokhorov. Neural Networks in Automotive Applications. Computational Intelligence in Automotive Applications, Studies in Computational Intelligence, ... Steinbrecher et al.: Application of Graphical Models in the Automotive Industry, Studies in Computational Intelligence (SCI) 13 2, 79 –88 (2008) www.spri...
Ngày tải lên: 07/08/2014, 09:23
Computational Intelligence in Automotive Applications Episode 1 Part 6 doc
... Tool in (4) 18 2 0. 81 Tool not in (4) and shaft in (2) 18 3 0. 81 Tool not in (1) and location in (right) 210 0.84 Tool in (1, 2) 236 0.85 Tool in (2,4) 240 0. 81 Tool in (1, 4) 244 0. 81 Location in ... 12 NN -1 External input(s) Feedforward connections 12 NN -1 External input(s) Z -1 Z -1 Time delay inputs Z -1 Z -1 Z -1 Z -1 Z -1 Z -1 Time...
Ngày tải lên: 07/08/2014, 09:23
Computational Intelligence in Automotive Applications Episode 1 Part 8 potx
... 0.8 1 0 10 20 30 0.4 0.6 0.8 1 0 10 20 30 0.4 0.6 0.8 1 0 10 20 30 0.4 0.6 0.8 1 0 10 20 30 0.4 0.6 0.8 1 0 10 20 30 0.4 0.6 0.8 1 0 10 20 30 N e = 10 00 rp m OF =0 ◦ CA/m OF =0. 41 ◦ CA/m OF =1. 16 ◦ CA/m N e = ... and Control in Spark Ignition Automotive Engines, Studies in Computational Intelligence (SCI) 13 2, 14 5 16 8 (2008) www.springerlink.com c ...
Ngày tải lên: 07/08/2014, 09:23
Computational Intelligence in Automotive Applications Episode 2 Part 4 pptx
... 2 67. 7 10 0.030 .7 Slope 3 73 .990 .14 5.8 Slope 4 10 0.0 37. 499.8 Bin 1 83.6 31. 376 .2 Bin 2 90. 71 6 .088 .7 Bin 3 89. 614 .5 10 0.0 Bin 4 92 .1 100. 014 .4 Bin 5 98 .12 0.698.6 In order to reduce the dimensionality ... 99. 878 .683.0 Minimum 94. 613 .0 10 0.0 Mean 98. 313 .7 10 0.0 Standard deviation 74 .960. 372 .2 Range 10 0.038. 275 .0 Root mean square (RMS) 92 .11 4....
Ngày tải lên: 07/08/2014, 09:23
Computational Intelligence in Automotive Applications Episode 2 Part 7 potx
... (RBF) kernel, 13 0, 13 9 networks, 10 3, 10 4, 12 6, 12 9, 13 0 Random Forest, 45–48, 54–56 Real-rime recurrent learning (RTRL), 11 1 Recurrent Neural Network (RNN), 10 1, 10 2, 10 5, 10 9, 11 1, 11 6, 14 6, 14 9 15 1, 15 3, ... 206, 2 07 Multilayer perceptron (MLP), 10 2, 10 3, 12 6, 12 8 Near-IR, 21, 22, 24, 33 Neural network, 69, 17 8, 17 9, 18 5 controller, 10 6,...
Ngày tải lên: 07/08/2014, 09:23