Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 1 docx
... second equation. c 1 r 2 1 + 1 r 2 (1 − c 1 r 1 )r 2 2 = 1 c 1 (r 2 1 − r 1 r 2 ) = 1 − r 2 11 81 0.2 0 .4 0.6 0.8 1 1.2 0.3 0 .4 0.5 0.6 0.7 0.8 0.9 Figure 23.2: Plot of the solution and approximations. Recall ... that a n = n/2 j=0 − 4j 2 −2j +1 (2j+2)(2j +1) for even n, 0 for odd n. 11 93 c 1 = 1 − r 2 r 2 1 − r 1 r 2 = 1 − 1 √ 5 2...
Ngày tải lên: 06/08/2014, 01:21
... exponential and the logarithm. √ x + 1 exp ı √ 4 − 1 2 ln(x + 1) , √ x + 1 exp −ı √ 4 − 1 2 ln(x + 1) . Note that √ x + 1 exp ı √ 4 − 1 2 ln x + 1 2 , √ x + 1 exp −ı √ 4 − 1 2 ln x ... series. 1 4 = 1 6 − 1 π 2 ∞ n =1 cos(nπ) n 2 ∞ n =1 ( 1) n n 2 = − π 2 12 (c) We substitute x = 1/ 2 into the sine series. 1 4 = 8 π 3 ∞...
Ngày tải lên: 06/08/2014, 01:21
... + ı a = 1 s 4 − 1 s=0 = 1 b = d ds 1 s 4 − 1 s=0 = 0 c = 1 s 2 (s + 1) (s − ı)(s + ı) s =1 = 1 4 d = 1 s 2 (s − 1) (s − ı)(s + ı) s= 1 = − 1 4 e = 1 s 2 (s − 1) (s + 1) (s + ı) s=ı = ... + 1) . We solve for ˆy 1 . ˆy 1 = 6 s 4 (s 3 + s 2 + s + 1) ˆy 1 = 1 s 4 − 1 s 3 + 1 2(s + 1) + 1 − s 2(s 2 + 1) We then take t...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 1 pps
... imaginary part of some analytic function. Solution 8 .11 We write the real and imaginary parts of f(z) = u + ıv. u = x 4/ 3 y 5/3 x 2 +y 2 for z = 0, 0 for z = 0. , v = x 5/3 y 4/ 3 x 2 +y 2 for ... 8 .12 Consider the complex function f(z) = u + ıv = x 3 (1+ ı)−y 3 (1 ı) x 2 +y 2 for z = 0, 0 for z = 0. Show that the partial derivatives of u and v with respect to...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 1 potx
... doubles every hour. For the continuous problem, we assume that this i s true for y(t). We write this as an equation: y (t) = αy(t). 775 1 2 3 4 4 8 12 16 1 2 3 4 4 8 12 16 Figure 14 . 1: The p opulation ... = y(x) x . P (1, u) + Q (1, u) u + x du dx = 0 This equation is separable. P (1, u) + uQ (1, u) + xQ (1, u) du dx = 0 1 x + Q (1, u) P (1, u) + uQ (1, u) du dx =...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 2 pps
... + 1) for n = m. 1 1 P 0 (x)P 0 (x) dx = 1 1 1 dx = 2 1 1 P 1 (x)P 1 (x) dx = 1 1 x 2 dx = x 3 3 1 1 = 2 3 1 1 P 2 (x)P 2 (x) dx = 1 1 1 4 9x 4 − 6x 2 + 1 dx = 1 4 9x 5 5 − ... 1) a n +1 z n 1 + 1 2z ∞ n=0 (n + 1) a n +1 z n + 1 z ∞ n=0 a n z n = 0 ∞ n =1 n(n + 1) a n +1 + 1 2 (n + 1) a n +1 + a n z n 1 +...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 3 pdf
... continuous. -1 -0.5 0.5 1 -1 -0.5 0.5 1 -1 -0.5 0.5 1 -1 -0.5 0.5 1 Figure 25 .1: Polynomial Approximations to cos(πx). 12 86 0 1 2 3 4 5 0.25 0.5 0.75 1 1.25 1. 5 1. 75 2 Figure 24. 1: Plot of K 0 (x) and ... (t ) 2 − 2x 1/ 2 t − 1 2 x 1/ 2 = 0 1 4 x −2 + u + − 1 4 x 1 + u 2 − 2x 1/ 2 − 1 4 x 1 + u − 1 2 x 1/ 2 = 0 u + (u...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 4 docx
... + ∞ n=−∞ n=0 1 in e ınt x −π = 1 2π (x + π) + ∞ n=−∞ n=0 1 ın e ınx −( 1) n = x 2π + 1 2 + 1 2π ∞ n =1 1 ın e ınx − e −ınx −( 1) n + ( 1) n = x 2π + 1 2 + 1 π ∞ n =1 1 n sin(nx) 13 01 Alternatively, ... ( 1) n ın √ 2π 1 √ 2π e ınx = 1 2 + 1 π ∞ n =1 1 − ( 1) n n sin(nx) H(x) ∼ 1 2 + 2 π ∞ n =1 oddn 1 n sin(nx). Int...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 5 pdf
... yields f (x) ∼ 4 ∞ n =1 oddn cos(nx). For x = nπ, this implies 0 = 4 ∞ n =1 oddn cos(nx), 13 61 -1 -0.5 0.5 1 -0.2 -0 .1 0 .1 0.2 1 0.25 0 .1 0 0 .1 1 1 1 0.5 Figure 28.8: Three Term Approximation for a ... expansion. b n = 1/ 2 1 (−x − 1) sin(nπx) dx + 1/ 2 1/ 2 x sin(nπx) dx + 1 1/2 (−x + 1) sin(nπx) dx = 2 1/ 2 0 x sin(nπx) dx + 2 1 1/2...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 6 pps
... = a 0 2 n k =1 a k cos(kx), where a k = 1 + ( 1) n−k 2 1 2 n 1 n (n − k)/2 . 13 88 3. A n + ıB n = n k =1 z k = 1 − z n +1 1 − z = 1 − r n +1 e ı(n +1) x 1 − r e ıx = 1 − r e −ıx −r n +1 e ı(n +1) x +r n+2 e ınx 1 ... n 1 n 2 cos(nx) ≤ 4 π ∞ n=N +1 odd n 1 n 2 = 4 π ∞ n =1 odd n 1 n 2 − 4 π N n =1 odd n 1 n 2 Since ∞ n =1 o...
Ngày tải lên: 06/08/2014, 01:21