Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 7 pps
... y 1/2 exp − 2y 3/ 2 3 x exp − 2y 3/ 2 3 = −exp − 2y 3/ 2 3 + c 1 x = −1 + c 1 exp 2y 3/ 2 3 x + 1 c 1 = exp 2y 3/ 2 3 log x + 1 c 1 = 2 3 y 3/ 2 y = 3 2 log x + 1 c 1 2 /3 y = c + 3 2 log(x ... 3p )u exp − 1 3 p(x) dx y = u − pu + 1 3 (p 2 − 3p )u + 1 27 (9p − 9p − p 3 )u exp − 1 3 p(x) dx ...
Ngày tải lên: 06/08/2014, 01:21
... x = dx dy . dy dx = 1 y 3 − xy 2 dx dy = y 3 − xy 2 x + y 2 x = y 3 Now we have a first order equation for x. d dy e y 3 /3 x = y 3 e y 3 /3 x = e −y 3 /3 y 3 e y 3 /3 dy + c e −y 3 /3 Example 18 .3. 2 Consider ... equation of order n − 1 for u . Writing the derivatives of e u(x) , d dx e u = u e u d 2 dx 2 e u = (u + (u ) 2 ) e u d 3 dx 3 e...
Ngày tải lên: 06/08/2014, 01:21
... 1) 1 3 x 3 + x 1 3 − 1 2 − 1 3 x 3 + 1 2 x 2 y = 1 6 (x 3 − x). Example 21 .7. 4 Find the solution to the differential equation y − y = sin x, that is bounded for all x. The Green function for ... the homogeneous solutions to y p and it will still be a particular solution. For example, η p = − 1 3 sin(2x) − 1 3 sin x = − 2 3 sin 3x 2 cos x 2 is a partic...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 6 pps
... ı 2 n by successive squaring. √ 3 + ı 2 = 2 + ı2 √ 3 √ 3 + ı 4 = −8 + ı8 √ 3 √ 3 + ı 8 = −128 − ı128 √ 3 √ 3 + ı 16 = 32 76 8 + 32 76 8 √ 3 Next we multiply √ 3 + ı 4 and √ 3 + ı 16 to obtain ... answer. √ 3 + ı 20 = 32 76 8 + 32 76 8 √ 3 −8 + ı8 √ 3 = −524288 − ı524288 √ 3 Since we know that arctan √ 3, 1 = π/6, it...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 7 ppt
... ı2 √ 3 −2 + ı2 √ 3 4 −1 = −2 + ı2 √ 3 −8 − ı8 √ 3 2 −1 = −2 + ı2 √ 3 −128 + ı128 √ 3 −1 = −512 − ı512 √ 3 −1 = 1 512 −1 1 + ı √ 3 = 1 512 −1 1 + ı √ 3 1 − ı √ 3 1 ... u 2 3 v = (u 0 w 0 + u 1 w 1 + u 2 w 2 + u 3 w 3 ) + ı (−u 1 w 0 + u 0 w 1 + u 3 w 2 − u 2 w 3 ) + (−u 2 w 0 − u 3 w 1 + u 0 w 2 + u 1 w 3 ) + k (−u 3 w 0 +...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 1 pps
... ∆r cos θ and y = ∆r sin θ. f (0) = lim ∆r→0 f ∆r e ıθ ∆r e ıθ = lim ∆r→0 ∆r 4 /3 cos 4 /3 θ∆r 5 /3 sin 5 /3 θ+ı∆r 5 /3 cos 5 /3 θ∆r 4 /3 sin 4 /3 θ ∆r 2 ∆r e ıθ = lim ∆r→0 cos 4 /3 θ sin 5 /3 θ + ı ... function f(z) = u + ıv = x 3 (1+ı)−y 3 (1−ı) x 2 +y 2 for z = 0, 0 for z = 0. Show that the partial derivatives of u and v with respect to x and y exist at z =...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 4 ppsx
... integrand to s ee that there are singularities at the cube roots of 9. z z 3 − 9 = z z − 3 √ 9 z − 3 √ 9 e ı2π /3 z − 3 √ 9 e −ı2π /3 Let C 1 , C 2 and C 3 be contours around z = 3 √ 9, ... Integral Formula to evaluate the integrals along C 1 and C 2 . C (z 3 + z + ı) sin z z 4 + ız 3 dz = C 1 (z 3 + z + ı) sin z z 3 (z + ı) dz + C 2 (z 3 + z + ı) s...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 5 pps
... , converges for α > 1 and diverges for α ≤ 1. Hint, Solution 564 Example 12 .3. 2 Convergence and Uniform Convergence. Consider the series log(1 − z) = − ∞ n=1 z n n . This series converges for |z| ... expansions of 1/(1 + z). For |z| < 1, 1 1 + z = 1 + −1 1 z + −1 2 z 2 + −1 3 z 3 + ··· = 1 + (−1) 1 z + (−1) 2 z 2 + (−1) 3 z 3 + ··· = 1 − z + z 2 − z...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 7 pdf
... 1)) z n + d, for 2 < |z| Solution 12.29 The radius of convergence of the series for f(z) is R = lim n→∞ k 3 /3 k (k + 1) 3 /3 k+1 = 3 lim n→∞ k 3 (k + 1) 3 = 3. 622 The ... 13. 1 .3 Evaluate the integral C cot z coth z z 3 dz where C is the unit circle about the origin in the positive direction. The integrand is cot z coth z z 3 =...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 1 potx
... x n F 1, y x . (Just formally substitute 1/x for λ.) For example, xy 2 , x 2 y + 2y 3 x + y , x cos(y/x) are homogeneous functions of orders 3, 2 and 1, respectively. Euler’s theorem for a homogeneous ... 0 y − − y − = 0, y − (0) = y + (0), for x < 0, and define the solution, y, to be y(x) = y + (x), for x ≥ 0, y − (x), for x ≤ 0. The initial condition for y − d...
Ngày tải lên: 06/08/2014, 01:21