Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 10 ppt
... principal value exists. 766 π 2 lim z→0 (z −1) 2 (z −3 + 2 √ 2) (z −3 2 √ 2) + lim z→3 2 √ 2 (z −1) 2 z(z − 3 − 2 √ 2) . 1 0 x 2 (1 + x 2 ) √ 1 − x 2 dx = (2 − √ 2) π 4 Infinite Sums Solution ... z (z + 1) 2 , −1 . 2 ∞ 0 x 1 /2 log x (x + 1) 2 dx + 2 ∞ 0 x 1 /2 (x + 1) 2 dx = 2 lim z→−1 d dz (z 1 /2 log z) 2 ∞ 0 x 1 /2 log x (x +...
Ngày tải lên: 06/08/2014, 01:21
... = 2 0 e ınθ ı e ıθ dθ = e ı(n+1)θ n+1 2 0 for n = −1 [ıθ] 2 0 for n = −1 = 0 for n = −1 2 for n = −1 2. We parameterize the contour and do the integration. z − z 0 = 2 + e ıθ , θ ∈ [0 . . . 2 ) C (z − z 0 ) n dz = 2 0 2 ... axis and is defined continuously on the real axis.) Hint, Solution 481 C Log z dz ≤ C |Log z||dz| = π...
Ngày tải lên: 06/08/2014, 01:21
... = 2 Res z 2 (z 2 + 1) 2 , z = ı Res z 2 (z 2 + 1) 2 , z = ı = lim z→ı d dz (z − ı) 2 z 2 (z 2 + 1) 2 = lim z→ı d dz z 2 (z + ı) 2 = lim z→ı (z + ı) 2 2z − z 2 2(z + ı) (z + ... be 696 2. − 1 −1 1 x 3 dx = lim →0 + − −1 1 x 3 dx + 1 1 x 3 dx = lim →0 + − 1 2x 2 − −1 + − 1 2x 2 1 = lim →0 + − 1 2( −) 2 + 1...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 10 ppt
... p 2 (u 1 y 1 + u 2 y 2 + u 3 y 3 ) + p 1 (u 1 y 1 + u 2 y 2 + u 3 y 3 ) + p 0 (u 1 y 1 + u 2 y 2 + u 3 y 3 ) = f(x) u 1 y 1 + u 2 y 2 + u 3 y 3 + u 1 L[y 1 ] + u 2 L[y 2 ] ... u 2 y 2 + u 3 y 3 y p = u 1 y 1 + u 1 y 1 + u 2 y 2 + u 2 y 2 + u 3 y 3 + u 3 y 3 = u 1 y 1 + u 2 y 2 + u 3 y 3 y...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 3 pptx
... y ) − (2x − y)(1 + 2y ) (x + 2y) 2 = 5(y −xy ) (x + 2y) 2 Substitute in the expression for y . = − 10( x 2 − xy −y 2 ) (x + 2y) 2 Use the original implicit equation. = − 10 (x + 2y) 2 3.5 ... = x 20 20 ! cos ξ ≤ |x| 20 20 ! . x 20 /20 ! is plotted in Figure 3.13. 2 4 6 8 10 0 .2 0.4 0.6 0.8 1 Figure 3.13: Plot of x 20 /20 !. Note that th...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 4 pptx
... cos x = 0 2 = 0 lim x→0 csc x − 1 x = 0 109 Solution 3.15 a. f (x) = ( 12 −2x) 2 + 2x( 12 − 2x)( 2) = 4(x −6) 2 + 8x(x − 6) = 12( x 2) (x − 6) There are critical points at x = 2 and x = 6. f (x) ... derivative exists and is nonzero for x = 2. At x = 2, the derivative does not exist and thus x = 2 is a critical point. For x < 2, f (x) < 0 and...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 7 ppt
... mapping. 24 3 2. z + 2 2 − ız = x + ıy + 2 2 − ı(x − ıy) = x + ı(y + 2) 2 − y −ıx = x + ı(y + 2) 2 − y −ıx 2 − y + ıx 2 − y + ıx = x (2 − y) − (y + 2) x (2 − y) 2 + x 2 + ı x 2 + (y + 2) (2 − y) (2 − ... of z 2 is |z 2 | = z 2 z 2 = zz = (x + ıy)(x −ıy) = x 2 + y 2 . 25 0 -2 -1 0 1 2 x -2 -1 0 1 2 y -5 0 5 -2 -1 0 1 2 x -2 -1 0 1 2 y...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 8 ppt
... cut. 29 2 -2 0 2 x -2 -1 0 1 2 y 2 4 -2 0 2 x -2 0 2 x -2 -1 0 1 2 y 0 2 4 -2 0 2 x Figure 7 .20 : Plots of |cos(z)| and |sin(z)|. Result 7.6.1 e z = e x (cos y + ı sin y) cos z = e ız + e −ız 2 sin ... form. Denote any multi-valuedness explicitly. 2 2/5 , 3 1+ı , √ 3 − ı 1/4 , 1 ı/4 . Hint, Solution 28 7 -2 -1 0 1 2 x -2 -1 0 1 2 y 0 0.5 1 -2...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 9 ppt
... Hint 7.19 Hint 7 .20 Hint 7 .21 Hint 7 .22 Hint 7 .23 Hint 7 .24 Hint 7 .25 1. (z 2 + 1) 1 /2 = (z − ı) 1 /2 (z + ı) 1 /2 2. (z 3 − z) 1 /2 = z 1 /2 (z − 1) 1 /2 (z + 1) 1 /2 3. log (z 2 − 1) = log(z − 1) ... ı47 ( e ız + e −ız ) /2 ( e ız − e −ız ) /( 2) = ı47 e ız + e −ız = 47 e ız − e −ız 46 e ı2z −48 = 0 ı2z = log 24 23 z = − ı 2 log 24 23 z = − ı 2 ln...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 10 doc
... A branch of ((z 2 − 2) (z + 2) ) 1/3 . Now we determine w (2) . w (2) = 2 − √ 2 1/3 2 + √ 2 1/3 (2 + 2) 1/3 = 3 2 − √ 2 e ı0 3 2 + √ 2 e ı0 3 √ 4 e ı0 = 3 √ 2 3 √ 4 = 2. Note that we ... = (6)(3) (2) e ı (2 n +2 n+π) /2 = ı6 We see that our choice of angles gives us the desired branch. 334 Since −ı log(ı) = −ı ı π 2 + 2 n = π 2 + 2 n and...
Ngày tải lên: 06/08/2014, 01:21