IMO Shortlist 2008

IMO Shortlist 2008

IMO Shortlist 2008

... least element of S b is b + 1, a contradiction. 49 th International Mathematical Olympiad Spain 2008 Shortlisted Problems with Solutions Geometry G1. In an acute-angled triangle ABC, point H is ... extreme shortage of easy and appr opriate submissions forced the Problem Selection Committee to shortlist a simplified variant. The same one-dimensional Claim is used in both versions. Original

Ngày tải lên: 02/06/2014, 16:37

53 349 4
IMO Shortlist 2012

IMO Shortlist 2012

Ngày tải lên: 02/06/2014, 16:33

2 750 2
IMO Shortlist 2002

IMO Shortlist 2002

Ngày tải lên: 02/06/2014, 16:33

40 521 2
IMO Shortlist 2003

IMO Shortlist 2003

Ngày tải lên: 02/06/2014, 16:33

71 932 8
IMO Shortlist 2004

IMO Shortlist 2004

... ABM. Duˇsan Djuki´c Vladimir Jankovi´c Ivan Mati´c Nikola Petrovi´c IMO Shortlist 2004 From the book The IMO Compendium, www .imo. org.yu Springer Berlin Heidelberg NewYork Hong Kong London Milan ... even. Find all positive integers n such that n has an alternate multiple. 1.1.2 Shortlisted Problems 1. A1 (KOR) IMO4 Let n ≥ 3 be an integer and t 1 , t 2 , . . . , t n positive real nu...

Ngày tải lên: 02/06/2014, 16:34

29 1,1K 5
IMO Shortlist 2006

IMO Shortlist 2006

... by 2 t k , which completes the argument. 47 th International Mathematical Olympiad Slovenia 2006 Shortlisted Problems with Solutions 29 C6. A holey triangle is an upward equilateral triangle of

Ngày tải lên: 02/06/2014, 16:35

65 539 7
IMO Shortlist 2007

IMO Shortlist 2007

... former case we have f 2008 (m) = m, while in the latter one f 2008  f 2008 (n)  = f 2008 (n) = n, providing f 2008 (m) + f 2008  f 2008 (n)  − 1 ≤ (m + n + 1) −1 = f 2008 (m + n). 11 Comment. ... + 1 and hence n + 1 = f 2008 (n + 1) = f 2008  f 2008 (n)  . So, if 2007   m + n, then f 2008 (m + n) = m + n + 1 = (m + 1) + (n + 1) − 1 ≥ f 2008 (m) + f 2008  f...

Ngày tải lên: 02/06/2014, 16:36

65 427 5
IMO Shortlist 2009

IMO Shortlist 2009

... Geometry Problem Shortlist 50th IMO 2009 Geometry G1 BEL (Belgium) Let ABC be a triangle with AB = AC. The angle bisectors ... respectively. Let the triangle XY Z be equilateral. Prove that ABC is equilateral too. 8 50th IMO 2009 Problem Shortlist Geometry G8 BGR (Bulgaria) Let ABCD be a circumscribed quadrilateral. Let g be ... respectively. Show that the orthocenter of I 1 I 2 I 3...

Ngày tải lên: 02/06/2014, 16:41

90 1,1K 10
IMO Shortlist 2010

IMO Shortlist 2010

... 1, j is a TL-block, thus the 51 st International Mathematical Olympiad Astana, Kazakhstan 2010 Shortlisted Problems with Solutions 29 i 1 th row is a n L-row. Now, choosing the ith row to be

Ngày tải lên: 02/06/2014, 16:42

77 960 7
IMO Shortlist 2011

IMO Shortlist 2011

Ngày tải lên: 02/06/2014, 16:45

77 479 5
w