Xột tam giỏc vuụng HON cú:

Một phần của tài liệu Tai_lieu_on_mon_Toan (Trang 119)

HN2 = NO2 – OH2 ⇒HN = 3 15 (cm) Vỡ MN = 2 HN vậy MN = 6 15 (cm) H I M O N D C

Bài 2. Cho đường thẳng a và một điểm O cỏch a là 6 cm. Vẽ đường trũn tõm O bỏn kớnh 10cm.

a. Đường thẳng a cú vị trớ như thế nào đối với đường trũn tõm O ? Vỡ sao ?b. Gọi B và C là giao điểm của đường thẳng a và đường trũn O. Tớnh độ dài BC. b. Gọi B và C là giao điểm của đường thẳng a và đường trũn O. Tớnh độ dài BC.

Hướng dẫn

a) Đường thẳng a cắt đường trũn (O) vỡ OH = 6 cm, OB = 10 cm; OH < OB hay d < R hay d < R

b) HC = OB2 −OH2 = 102 −62 = 8 (cm) BC = 16 cm

Tiết 24: VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRềN I. KIẾN THỨC CƠ BẢN B C Hỡnh.2 5 10 O6 H

Ba vị trớ tương đối của đường trũn. * Hai đường trũn cắt nhau:

+ Hai đường trũn cú 2 điểm chung A và B

+ Hai điểm chung A và B được gọi là 2 giao điểm. + Đoạn thẳng nối 2 giao điểm AB gọi là dõy chung.

+ OO’ gọi là đoạn nối tõm. + R - R’ < OO' < R + R’ * Hai đường trũn tiếp xỳc nhau:

+ Hai đường trũn cú 1 điểm chung A + Điểm chung A được gọi là giao điểm. a) Hai đường trũn tiếp xỳc ngoài:

OO' = R + R’

b) Hai đường trũn tiếp xỳc trong: OO' = R – R’ OO' = R – R’

* Hai đường trũn khụng giao nhau:

+ Hai đường trũn khụng cú điểm chung.

a) Nếu (O) và (O’) ở ngoài nhau thỡ: OO’ > R + R’

b) Nếu (O) đựng (O’) thỡ: OO’ < R + R’

c) (O) và (O’) đồng tõm thỡ: OO’ = 0

* Tiếp tuyến chung của hai đường trũn.

+ d1, d2 là hai tiếp tuyến chung ngoài của 2 đường trũn (O) và (O’)

+ m1 và m2 là 2 tiếp tuyến chung trong của 2 đường trũn (O) và (O’) 120 Hỡnh.2 6 Hỡnh.2 9 Hỡnh.3 0 Hỡnh.2 7 Hỡnh.2 8

S u t m v gi i thi u ư ầ à ớ ệ http://gianghi.com

II. BÀI TẬP ÁP DỤNG

Bài 1:

Cho hỡnh vẽ, hai đường trũn (O) và (O’) tiếp xỳc nhau tại điểm A.

Chứng minh rằng OC // OD

Chứng minh:

Xột ∆OAC cú OA = OC (cựng là bỏn kớnh của (O))

Suy ra ∆OAC cõn tại O do đú Cà = à 1

A (1)

Chứng minh tương tự ta cú: ∆O’AD cõn tại O’.

Do đú ả 2

A = Dà (2)

Mặt khỏc: Â1 = Â2 (đối đỉnh) (3) Từ (1); (2); (3) suy ra: Cà

= Dà

Vậy OC // O’D vỡ cú hai gúc so le trong bằng nhau. 3. BÀI TẬP ĐỀ NGHỊ:

Bài 2:

Cho đường trũn tõm O bỏn kớnh OA và đường trũn đường kớnh OA.

a) Hóy xỏc định vị trớ tương đối của 2 đường trũn.

b) Dõy AD của đường trũn lớn cắt đường trũn nhỏ ở C.Chứng minh rằng AD = CD. Chứng minh rằng AD = CD.

Chứng mớnh:

a) Gọi (O’) là đường trũn đường kớnh OA.

Vỡ OO’ = OA – O’A nờn hai đường trũn (O) và (O’) tiếp xỳc trong.

b) Cỏc tam giỏc cõn AO’C và AOD cú chung gúc ở đỉnh A nờn ãACO' = àD, suy ra O’C // OD.Tam giỏc AOD cú AO’ = O’O và O’C // OD nờn AC = CD. Tam giỏc AOD cú AO’ = O’O và O’C // OD nờn AC = CD.

Tiết 25: GểC Ở TÂM, SỐ ĐO CUNG LIấN HỆ GIỮA CUNG VÀ DÂY

I. KIẾN THỨC CƠ BẢN

1. Gúc ở tõm , số đo cung 1.Gúc ở tõm :

+ Định nghĩa : Gúc cú đỉnh trựng với tõm đường trũn được gọi là gúc ở tõm.

VD: ãAOB( hỡnh 32)là gúc ở tõm - Cung AB được ký hiệu là:ằAB,

AmBlà cung nhỏ, ẳAnBlà cung lớn. - Cung nằm trong gúc gọi là cung bị chắn VD: ẳAmB là cung bị chắn bởi ãAOB

A B B O m n 2. Số đo cung: + Định nghĩa :

Số đo của cung nhỏ bằng số đo của gúc ở tõm chắn cung đú

Hỡnh.3 1

Hỡnh.3 2

100o

Số đo của cung lớn bằng hiệu giữa 3600 và số đo của cung nhỏ Số đo của nửa đường trũn bằng 1800

+ Kớ hiệu : Số đo của cung AB được kớ hiệu Sđ ằAB VD: Hỡnh 39 cung nhỏ ẳAmB cú Sđ là 1000 cung lớn SđẳAnB = 3600 - 1000 SđẳAnB = 2600 A B O m n 100 3. So sỏnh hai cung

+Khỏi niệm : Hai cung được gọi là bằng nhau nếu chỳng cú số đo bằng nhau. Trong hai cung, cung nào cú số đo lớn hơn được gọi là cung lớn hơn. + VD: - Hai cung AB và CD bằng nhau được kớ hiệu là ằAB= CD

Một phần của tài liệu Tai_lieu_on_mon_Toan (Trang 119)

Tải bản đầy đủ (DOC)

(144 trang)
w