5. K蔭T LU一P"XÉ"J姶閏NG PHÁT TRI韻N
5.2 H逢噂ng phát tri吋n
R医t nhi隠u nghiên c泳w"vtqpi"v逢挨pi"nck"u胤 ti院p t映e"8逢嬰c th詠c hi羽n0"姶w"vk‒p"ecq"pj医t s胤 là vjw"8逢嬰c t壱p d英 li羽u l噂p"j挨p"pjk隠w"e pi"pj逢"v pj"pj医v"swƒp"j挨p"x "n o"xk羽c v噂i các tham s嘘 m衣pi"8吋 t嘘k"8c"j„c"8瓜 chính xác và lo衣i b臼 các ph栄 8鵜pj"uck0"A嘘i v噂i m瓜t s嘘 c違i ti院n khác, có nhi隠u chi院p"n逢嬰c nhúng khác nhau có th吋 8逢嬰c th穎 e pi"pj逢"eƒe quy trình g瓜p t嘘k"8c.
46
TÀI LI烏U THAM KH謂O
[1] Swathi et al.. ÐA Survey on Breast Cancer Diagnosis Methods and Modalities.Ñ in IEEE International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), India, 2019, pp. 287-292.
[2] DeSantis et al.. ÐInternational variation in female breast cancer incidence and mortality rates.Ñ Cancer Epidemiology and Prevention Biomarkers, vol0"46 , pp. 1495-1506, 2015. [3] Ginsburg et al.. ÐBreast cancer early detection: A phased approach to
implementation.Ñ Cancer, vol0"348. pp. 2379-2393, 2020.
[4] Rositch et al.. ÐThe role of dissemination and implementation science in global breast cancer control programs: framewotmu." ogvjqfu." cpf" gzcorngu.Ñ Cancer, von0" 348. pp. 2394-2404, 2020.
[5] Interncvkqpcn"Cigpe{"hqt"Tgugctej"qp"Ecpegt0"ÐEcpegt"Vqfc{0"Fcvc"xkuwcnk¦cvkqp"vqqnu"hqt" exploring the global cancer burden kp" 423:Ñ. Internet: https://gco.iarc.fr/today/home,
2019.
[6] Singh et al.. ÐA Study on Convolution Neural Network for Breast Cancer Detection.Ñ in IEEE Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), India, 2019, pp. 1-7.
[7] Omonigho et al.. ÐBreast Cancer: Tumor Detection in Mammogram Images Using Modified AlexNet Deep Convolution Neural Network.Ñ"in IEEE International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), Nigeria, 2020, pp. 1-6.
[8] Yamlome et al.. ÐConvolutional Neural Network Based Breast Cancer Histopathology Image Classification.Ñ in 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Canada, 2020, pp. 1144-1147.
[9] Roy et al.. ÐDeep convolutional neural networks for breast cancer detection.Ñ in IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), USA, 2019, pp. 0169-0171.
[10] Narayanan et al.. ÐConvolutional Neural Network for Classification of Histopathology Images for Breast Cancer Detection.Ñ in IEEE National Aerospace and Electronics Conference (NAECON), USA, 2019, pp. 291-295.
[11] Shahidi et al.. ÐBreast Cancer Classification Using Deep Learning Approaches and Histopathology Image: A Comparison Study.Ñ IEEE Access, vol. 8, pp. 187531-187552, 2020.
47 [12] Kieffer et al.. ÐConvolutional neural networks for histopathology image classification:
Training vs. using pre-trained networks.Ñ in IEEE Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Canada, 2017, pp. 1-6.
[13] Adeshina et al..ÐBreast cancer histopathology image classification with deep convolutional neural networks.Ñ in IEEE 14th international conference on electronics computer and computation (ICECCO), Kazakhstan, 2018, pp. 206-212.
[14] Patil et al.. ÐBreast Cancer Histopathology Image Classification and Localization using Multiple Instance Learning.Ñ in IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), India, 2019, pp. 1-4.
[15] Angara et al.. ÐConvolutional neural networks for breast cancer histopathological image classification.Ñ in IEEE 4th International Conference on Big Data and Information Analytics (BigDIA), USA, 2018, pp. 1-6.
[16] Xiang et al.. ÐBreast cancer diagnosis from histopathological image based on deep learning.Ñ in IEEE Chinese Control And Decision Conference (CCDC), China, 2019, pp. 4616-4619.
[17] Ding et al..ÐHardware Implementation of Convolutional Neural Network for Face Feature Extraction.Ñ in IEEE 13th International Conference on ASIC (ASICON), China, 2019, pp. 1-4.
[18] Farrukh et al.. ÐOptimization for efficient hardware implementation of CNN on FPGA.Ñ in IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), China, 2018, pp. 88-89.
[19] Chen et al.. ÐHardware Acceleration Implementation of Three-Dimensional Convolutional Neural Network on Vector Digital Signal Processors.Ñ in 4th International Conference on Robotics and Automation Sciences (ICRAS), China, 2020, pp. 122-129.
[20] Google Developers Ỵ Iqqing" NNE." ÐMachine Learning Glossary0$" Kpvgtpgv<"
https://developers.google.com/machinelearning/glossary/#convolutional_neural_network.
2021.
[21] Abadi et al..ÐTensorflow: A system for large-scale machine learning.Ñ in 12th USENIX symposium on operating systems design and implementation (OSDI 16), Georgia, 2016, pp. 265-283.
[22] XLA Team - Google. ÐXLA-TensorFlow compiled.Ñ presented at Tensorflow Dev Summit, Mountain View, CA, 2017.
48 [23] Bryson et al.. ÐApplied optimal control: optimi¦cvkqp." guvkocvkqp" cpf" eqpvtqn.Đ IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, pp. 366-367, 1979, doi: 10.1109/TSMC.1979.4310229.
[24] Krizhevsky et al.. ÐImagenet classification with deep convolutional neural networks,Ñ Communications of the ACM, vol. 60, pp. 84-90, June 2017.
[25] Janowczyk et al.. ÐDeep learning for digital pathology image analysis: A comprehensive tutorial with selected use casesÑ. Journal of pathology informatics, vol. 7, pp. 29-29, 2016. [26] Cruz-Roa et al.. ÐAutomatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks,Ñ in Medical Imaging 2014: Digital Pathology, USA, 2014, vol. 9041, pp. 904103-1.
[27] Pedregosa et al.. ÐScikit-learn: Machine Learning in Python.Ñ Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
[28] Canis et al.. ÐLegUp: An open-source high-level synthesis tool for FPGA-based processor/accelerator systems.Ñ ACM Transactions on Embedded Computing Systems (TECS), vol. 13, no. 2, pp. 1-27, 2013.
[29] Nane et al.. ÐA survey and evaluation of FPGA high-level synthesis tools.Ñ IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no.10, pp. 1591-1604, 2015.
[30] Noronha et al.. ÐLeFlow: Enabling flexible FPGA high-level synthesis of tensorflow deep neural networks.Ñ in FSP Workshop 2018; Fifth International Workshop on FPGAs for Software Programmers, Ireland, 2018, pp. 1-8.
[31] Lattner et al.. ÐLLVM: A compilation framework for lifelong program analysis & transformation.Ñ in IEEE International Symposium on Code Generation and Optimization (CGO), USA, 2004, pp. 75-86.
[32] Narayanan et al.. ÐConvolutional Neural Network for Classification of Histopathology Images for Breast Cancer Detection.Ñ in IEEE National Aerospace and Electronics Conference (NAECON), USA, 2019, pp. 291-295.
[33] Cruz-Roa et al..ÐAccurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approacj"hqt"swcpvkh{kpi"vwoqt"gzvgpv.Ñ Scientific reports, vol. 7, no. 1, pp. 1-14, 2017.
[34] Kingma et al.. ÐAdam: A method for stochastic optimization.Ñ" rtgugpvgf" cv Third International Conference for Learning Representations (ICLR ), USA, 2015.
[35] Zeiler and M. D. Adadelta.$An adaptive learning rate method.$"ArXiv, vol. abs/1212.5701, 2012.
49 PH井N LÝ L卯CH TRÍCH NGANG
H丑 và tên: Võ T医n Phát
Pi {."vjƒpi."p<o"ukpj<"3813213;;8 P挨k"ukpj<"VR0"J欝 Chí Minh
A鵜a ch雨 liên l衣c: 340 Qu嘘c l瓜 22, xã Tân Phú Trung, huy羽n C栄 Chi, TPHCM
SWè"VTỵPJ"ẮQ"V萎O
T瑛 ngày A院n ngày Công vi羽c A鵜a ch雨 Thành tích
2014 2018 H丑c K悦 thu壱t Ak羽n t穎 - Truy隠n thông AJDM" - AJSI" TPHCM Khá 2018 2022 H丑c Th衣e" u " M悦
thu壱v"Ak羽n t穎 AJDM"TPHCM - AJSI" Gi臼i
QUÁ TRÌNH CƠNG TÁC
T瑛 ngày A院n ngày Công vi羽c A鵜a ch雨 Thành tích
2018 2019 Nghiên c泳u viên Hitek AJDM"VRJEO Lab Ỵ 2019 2022 K悦 u逢"n壱p trình VNPT IT Khu v詠c 2