' to dim vio hinh trdn "O" trtf6c d5p 6n do.
1. Gi5 tri c0a bidu thfc la - bl - lal -lbl, vdi a = -5 va b = -6 ld:
3.
On o Oe.zz O c. -ro Oo.rz
2. UCLN(99; 63;72) tit:
On g Oa.rs Q c. zt O o. (m6td6ps6trrac;
Tim x e z, bi6t: 14 - (40 - x) = -27 . Kdt qu6 la:
On.x=-53 Oa.x=-1 OC.x=1 Oo.x=53
rdt qu6 cOa ph6p tfnh (35.1s - s5.5) : (3+.22 + 34) la:
On o On.rz Oc.a Oo.z
56 hoc sinh c0a mot truong lir m6t so c6 bon chrf s6 nh6 hon 1200, khi x6p hang 4, hdng 5, hang 6 ddu thtJa m6t em, nhung khi xdp hang 7 thi
vrJa d0. V0y sd hoc sinh c0a truong d6 ld:
O n. rozt O e. toat Q.c. ttzt Q o. r+tTtr sd 50 ddn s6 80 c6 d0ng: Ttr sd 50 ddn s6 80 c6 d0ng: O n. 6 sd nguy,Sn td O c. 8 sd nguy6n td O a. 7 s6 nguyen td O o. 5 sd nguy,on td
7. Cho doan thtng AB = 7cm. V6 c5c didm C va D thuoc doan AB sao cho AC = 4,5cm vd BD = 6cm. DO dai doqn thtng CD la:
8. Cho Ax vd Ax' ld hai tia ddi nhau. TrOn tia Ax ldy didm M, tr6n tia Ax' ldy didm N. Khtng dinh ndo sau ddy saP
O n. C6c dr.tong thtng AM vdr AN trirng nhau
O g. MA vdr MN ta hai tia chung gdc
O c. MA+AN = MN
O o. A ld trung didm c0a MN
9. Cho P = {xe Z- 136 ixvd -6 < x< 9}. Sdphdn tr}c0a t6p hop p ta:
On.ro Oa.rr Oc.re Oo.rg
10. Dem chia 449 vd 826 cho ctrng m6t sd a + 0 thi duoc sd du tdn ludt la g
vd 7. Sd a l6n nhdt th6a mdn ld:
On.a=49 OB.a=3 OC.a=9 Oo.a=19
?, l*".1 J' ', , l*".1 J' ', , t*'9, j ".:,' 1. 2.
Didn ket qui ttrfctr hop vio ch6 ... trong m5i cau sau.Giritri c0a bidu th0c-4(c+ d) + 5(d - c), v6i c= 3, d = -1 ld Giritri c0a bidu th0c-4(c+ d) + 5(d - c), v6i c= 3, d = -1 ld
Tap hgp c6c sd nguy6n x th6a mdn (x + 7).(x2 + 4) = 0 li {...;
(vidt c6c phdn tr? theo gi5 tri tdng ddn, ngdn c6ch bdi ddu ";").
Cho a.b = -15. Khi d6 a.(-b)
Sd gi6 tri nguy6n c0a x th6a m6n (x + 3)(2 - x) > 0 la ... Tim x e Z, bi6t rlng x.lxl = -1. Kdt qu6 la x = ...
Tim sd nguy6n x, biSt ring x = -7 ld sd nguy6n 6m l6n nndt c6 hai chrf sd. xdt qui la x = ...
3. 4.
5. 6.
7.
8.
Cho sd nguy6n 6m p tho6 mdn -13 - (6 - lp * 1l) = 2q. V?y p
Tep hqp c5c sd nguy6n x th6a min (x2 - q(x2 - 16) < 0 ld {...; .,.. .}
(vidt c5c phdn t0 theo gi6 tri tdng ddn, ngdn c6ch b6i ddu ";").
Tqp hgp c6c sd nguy6n x th6a m6n x(x - 3) . 0 ld {...; ...}(vi5t c6c phdn tfi theo gi5 tri tdng ddn, ngdn c5ch b6i ddu ";"). (vi5t c6c phdn tfi theo gi5 tri tdng ddn, ngdn c5ch b6i ddu ";").
Cho hai sdnguy6n x, yth6a mdn (x- 3Xy +2)= -5. Gi6 tri l6n nhdtc0a
x2 * y2 la ...
Em hdy didu khidn xe vudt qua c6c chu6ng ngai vit dd vd dictrblng c5ch giii c5c bdi to6n & cilc chu6ng ngai vit d6. blng c5ch giii c5c bdi to6n & cilc chu6ng ngai vit d6.
9. 10. c rr.."T'r , i*]i*, t "0. & n"i
ffir{$ $ W W $ W W
Chu6ng ngai vit 1:
Tim x, biSt: 13.(x - 5) = 169. Ket qu6 la 1= Chu6ng ngai vit 2:
Tim x, y e N biet ring 1y + 1)(xy - 1) = 3. Kdt quA la, - ...; y = Chu6ng ngai vdt 3:
Tim x e 2., bi6t 2)4 - xl = l-81. Kdt qu6 td x = Chu6ng ngai vit 4:
TQp hgp c6c sd nguydn x th6a min (x + 1Xx2 - 9) = 0 ta ... (vi$t c5c phdn tfr theo gi6 tri tdng ddn, ngdn ciich bdi ddu ";").
Chu6ng ngai vit 5:
cho bidu thfc p = m2(m2 - nxm3 - n6xm + n2).
Gi5 tri c0a P khi m = -16, n = -4ld
Chu6ng ngai vit 6:
Cho hai sd nguyen c6 tich bhng 4747 vd tdng bing -148. Hai s6 d6 ld ...; ... . (sd b6 vidt tru6c, sd l6n viSt sau).
Chu6ng ngai vit 7:
Cho hai sd nguy6n x, y th6a mdn c6c di6u ki6n sau: xy = 1261; x - y = -84 vd x < 0. Khi d6 x = ...; y = ...
Chu6ng ngai vit 8:
Tim ba sdx, y, zbidt:x + y = 2,y + Z= 3, z + x= -5.K6t qu6 ld x = ...; y = ...; z= ... K6t qu6 ld x = ...; y = ...; z= ...
,*fuflwffi LWffi
muyffimwm mffins ffiffimWBsffi wAw
Trang
4