1. Trang chủ
  2. » Luận Văn - Báo Cáo

Về môđun với epi dcc

62 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 62
Dung lượng 1,69 MB

Nội dung

✣❸■ ❍➴❈ ✣⑨ ◆➂◆● ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ✖✖✖✖✖✖✕♦✵♦✖✖✖✖✖✖✕ P❍❆◆ ❆◆❍ ❚❯❻◆ ❱➋ ▼➷✣❯◆ ❱❰■ ❊P■✕❉❈❈ ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❑❍❖❆ ❍➴❈ ❈❍❯❨➊◆ ◆●⑨◆❍ ✣❸■ ❙➮ ❱⑨ ▲Þ ❚❍❯❨➌❚ ❙➮ ✣⑨ ◆➂◆● ✕ ✷✵✷✵ ✣❸■ ❍➴❈ ✣⑨ ◆➂◆● ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ✖✖✖✖✖✖✕♦✵♦✖✖✖✖✖✖✕ P❍❆◆ ❆◆❍ ❚❯❻◆ ❱➋ ▼➷✣❯◆ ❱❰■ ❊P■✕❉❈❈ ❈❍❯❨➊◆ ◆●⑨◆❍✿ ✣❸■ ❙➮ ❱⑨ ▲Þ ❚❍❯❨➌❚ ❙➮ ▼❶ ❙➮✿ ✻✵✳✹✻✳✵✶✳✵✹ ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❑❍❖❆ ❍➴❈ ●✐→♦ ữợ t ✕ ✷✵✷✵ ▲❮■ ❈❆▼ ✣❖❆◆ ❚æ✐ ①✐♥ ❝❛♠ ✤♦❛♥ ✤➙② ❧➔ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ r✐➯♥❣ tæ✐✳ ❈→❝ sè ❧✐➺✉✱ ❦➳t q✉↔ ♥➯✉ tr♦♥❣ ❧✉➟♥ ✈➠♥ ❧➔ tr✉♥❣ t❤ü❝ ✈➔ ❝❤÷❛ tø♥❣ ✤÷đ❝ ❛✐ ❝ỉ♥❣ ❜è tr♦♥❣ ❜➜t ❦➻ ❝æ♥❣ tr➻♥❤ ♥➔♦ ❦❤→❝✳ ❚→❝ ❣✐↔ P❤❛♥ ❆♥❤ ❚✉➜♥ INFORMATION PAGE OF MAS TER THESIS Name of thesis: On 1nodules with epi-DCC :Major: Algrebra and N u1nber theory Full name of rviaster student: Phai Anh uan Suppervisor: Prof Dr Le Van Thuyet Training institution: The University of Da Nang, University of Ed­ ucation Abstract: Modular theory has an important role when studying Algebra and there a.re many new issues to be investigated Vie say that a set O of submodules of If satisfies the descending chain condition (often abbreviated as DCC) if in eYery descending cha.in of submodules of r t there exists n EN such that Ln+i = Ln (for all i = 1, 2, ) The family of mod­ ules satisfying the descending chain condition and its related problems are the basis for studying other issues In a paper by R Dastanpour and A Ghorbani named "Mod­ ules with epimorphism on chains of submodules", an R-module is said to be satisfied epi-DCC on submodules if in every descending cha.in of submodules of 11, except prob­ ably a finite number, each module in chain is a homomorphic image of the preceding Artinian modules, semisimple modules and free modules over commutative principal ideal domains are examples of such modules A semiprime right Goldie ring satisfies epi-DCC on right ide.ls if and only if it is a finite product of full matrix rings over principal right ideal domains Based on this article ) our thesis gives an overview of some results on the properties of modules with epi-DCC, studies other special properties and relationships with related rings Key words: epi-DCC, epi-DCC modules, epi-DCC decreasing sequences, descending cha.in condition, epi-DCC on submodules Student Prof Dr Le Van Thuyet Phan Anh Tuan ▲❮■ ❈❷▼ ❒◆ ❱ỵ✐ t➻♥❤ ❝↔♠ ❝❤➙♥ t❤➔♥❤✱ t→❝ ❣✐↔ ①✐♥ ✤÷đ❝ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ✤➳♥ tr÷í♥❣ ✣↕✐ ❤å❝ ❙÷ P❤↕♠ ✕ ✣↕✐ ❤å❝ ✣➔ ◆➤♥❣✱ P❤á♥❣ t qỵ t ổ ợ số ỵ tt số t t ữợ t ✤✐➲✉ ❦✐➺♥ ❝❤♦ t→❝ ❣✐↔ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣✱ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥✳ ✣➦❝ ❜✐➺t✱ t→❝ ❣✐↔ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ ✤➳♥ ●❙✳ ❚❙✳ ▲➯ ❱➠♥ ❚❤✉②➳t✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠ ✕ ✣↕✐ ❤å❝ ❍✉➳✱ ♥❣÷í✐ ❚❤➛② trü❝ t✐➳♣ ❣✐↔♥❣ ữợ ợ ỳ tự qỵ ú ✤ï t→❝ ❣✐↔ tü t✐♥✱ ✈÷đt q✉❛ ♥❤ú♥❣ ❦❤â ❦❤➠♥✱ trð ♥❣↕✐ tr♦♥❣ q✉→ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ✤➸ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥✳ ❚→❝ ❣✐↔ ①✐♥ ✤÷đ❝ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ✤➳♥ P●❙✳ ❚❙✳ ❚r÷ì♥❣ ❈ỉ♥❣ ◗✉ý♥❤ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠ ✕ ✣↕✐ ❤å❝ ✣➔ ◆➤♥❣✱ ❚❤➛② ✤➣ ❧✉ỉ♥ t st ợ số ỵ tt số ữợ t ợ ❝â ✤÷đ❝ ❦➳t q✉↔ ❤å❝ tèt ♥❤➜t✳ ❳✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❝→❝ ❜↕♥ ❤å❝ ✈✐➯♥ ❧ỵ♣ ❈❛♦ ❤å❝ ✣↕✐ số ỵ tt số ❜➧ ♥❣÷í✐ t❤➙♥ ✤➣ ✤ë♥❣ ✈✐➯♥✱ ❣✐ó♣ ✤ï✱ t↕♦ ✤✐➲✉ ❦✐➺♥ ✤➸ t→❝ ❣✐↔ ❤♦➔♥ t❤➔♥❤ ❦❤â❛ ❤å❝✳ ❉ò t→❝ ❣✐↔ ✤➣ r➜t ❝è ❣➢♥❣✱ s♦♥❣ ❧✉➟♥ ✈➠♥ ❦❤æ♥❣ t❤➸ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ t❤✐➳✉ sât✱ ❦➼♥❤ ♠♦♥❣ ♥❤➟♥ ✤÷đ❝ sü õ ỵ qỵ t ổ ỗ ỳ ữớ q t t➔✐ ♥❣❤✐➯♥ ❝ù✉✳ ❳✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ✦ ❚→❝ ❣✐↔ P❤❛♥ ❆♥❤ ❚✉➜♥ ✐✐✐ ▼Ö❈ ▲Ö❈ ❉❆◆❍ ▼Ö❈ ❈⑩❈ ❑Þ ❍■➏❯ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐✈ ▼Ð ✣❺❯ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ❈❍×❒◆● ✶✳ ❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✶✳✶✳ ▼æ✤✉♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✶✳✷✳ ▼æ✤✉♥ tü ❞♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✶✳✸✳ ▼æ✤✉♥ ♥ë✐ ①↕ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳✻ ✶✳✹✳ ▼ỉ✤✉♥ ✤ì♥✱ ♠ỉ✤✉♥ ♥û❛ ✤ì♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽ ✶✳✺✳ ❈➠♥ ✈➔ ✤➳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✶✳✻✳ ❱➔♥❤ ❝❤➼♥❤ q✉② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ỵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳✶✼ ❈❍×❒◆● ✷✳ ✣■➋❯ ❑■➏◆ ❉❈❈ ❱⑨ ❊P■✲❉❈❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶ ✷✳✶✳ ✣✐➲✉ ❦✐➺♥ ❞➣② ❣✐↔♠ ✭❉❈❈✮✭♠æ✤✉♥ ✈➔ ✈➔♥❤ ❆rt✐♥✮ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶ ✷✳✷✳ ▼ỉ✤✉♥ ✈ỵ✐ t♦➔♥ ❝➜✉ ❡♣✐✲❝♦ tr➯♥ ❞➣② ❣✐↔♠ ❝→❝ ♠æ✤✉♥ ❝♦♥ ✳ ✳ ✳ ✷✼ ✷✳✸✳ ❱➔♥❤ ●♦❧❞✐❡ ♣❤↔✐ ♥û❛ ♥❣✉②➯♥ tè ✈ỵ✐ ❡♣✐✲❝♦ tr➯♥ ❞➣② ✐✤➯❛♥ ♣❤↔✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✸ ✷✳✹✳ ❱➔♥❤ tr♦♥❣ ✤â ♠å✐ ♠æ✤✉♥ t❤ä❛ ♠➣♥ ❡♣✐✲❝♦ tr➯♥ ❝→❝ ❞➣② ❣✐↔♠ ✸✽ ❑➌❚ ▲❯❾◆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✹ ❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✺ ✐✈ ❉❆◆❍ ▼Ư❈ ❈⑩❈ ❑Þ ❍■➏❯ ∼ = N N M ess M A⊕B n Mi i=1 R MR Rad(M ) J(R) Soc(M ) End(M ) HomR (A, B) ❛♥♥R(x) ✣➥♥❣ ❝➜✉ N ❧➔ ♠æ✤✉♥ ❝♦♥ ❝õ❛ ♠æ✤✉♥ M N ❧➔ ♠æ✤✉♥ ❝♦♥ ❝èt ②➳✉ ❝õ❛ ♠æ✤✉♥ M ❚ê♥❣ trü❝ t✐➳♣ ❝õ❛ ❤❛✐ ♠æ✤✉♥ A ✈➔ B ❚ê♥❣ trü❝ t✐➳♣ ❝õ❛ ❝→❝ ♠æ✤✉♥ Mi, ≤ i ≤ n ❱➔♥❤ ❝â ✤ì♥ ✈à = ▼æ✤✉♥ ♣❤↔✐ tr➯♥ ✈➔♥❤ R ❈➠♥ ❏❛❝♦❜s♦♥ ❝õ❛ ♠æ✤✉♥ M ❈➠♥ ❏❛❝♦❜s♦♥ ❝õ❛ ✈➔♥❤ R ✣➳ ❝õ❛ ♠æ✤✉♥ M ❱➔♥❤ tỹ ỗ M ổ ỗ ❣✐ú❛ ❝→❝ R✲♠æ✤✉♥ A ✈➔ B ▲✐♥❤ tû ❤â❛ ❝õ❛ x tr♦♥❣ R ❑➳t t❤ó❝ ❝❤ù♥❣ ♠✐♥❤ ✶ ▼Ð ✣❺❯ ỵ t ỵ tt ổ õ ✈❛✐ trá q✉❛♥ trå♥❣ ❦❤✐ ♥❣❤✐➯♥ ❝ù✉ ✣↕✐ sè ❦➳t ủ ỏ ợ ữủ q t➙♠ ♥❣❤✐➯♥ ❝ù✉✳ ❳➨t ✤➳♥ t➟♣ ❤đ♣ ❝→❝ ♠ỉ✤✉♥ ❝♦♥ ❝õ❛ ♠ët ♠ỉ✤✉♥ ❝â ❝ị♥❣ t➼♥❤ ❝❤➜t ❤❛② t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❤ú✉ ❤↕♥ ♥➔♦ ✤â ✤➸ ❝❤ó♥❣ t❛ s➢♣ ①➳♣ ❝❤ó♥❣✱ ♣❤➙♥ ❧♦↕✐ ❝❤ó♥❣ ❧➔ ♠ët ✈➜♥ ✤➲ t❤÷í♥❣ ❣➦♣ ♣❤↔✐ tr♦♥❣ q✉→ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ♠ỉ✤✉♥✳ ❈❤ó♥❣ t❛ ✤➣ ❜✐➳t✱ t➟♣ Ω ❝→❝ ♠æ✤✉♥ ❝♦♥ ♥➔♦ ✤â ❝õ❛ M ✤÷đ❝ ❣å✐ ❧➔ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❞➣② tữớ ữủ t tt tr trữớ ủ ợ ♠å✐ ❞➣② L1 ≥ L2 ≥ ≥ Ln tr tỗ t nN ✤➸ ❝❤♦ Ln+i = Ln ✭✈ỵ✐ ♠å✐ i = 1, 2, ✮✳ ▲ỵ♣ ❝→❝ ♠ỉ✤✉♥ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❞➣② ❣✐↔♠ ✭❉❈❈✮ ✈➔ ❝→❝ ✈➜♥ ✤➲ ❧✐➯♥ q✉❛♥ tỵ✐ ♥â ❧➔ ♥➲♥ t↔♥❣ ✤➸ ❝❤ó♥❣ t❛ ♥❣❤✐➯♥ ❝ù✉ ♥❤ú♥❣ ✈➜♥ ✤➲ ❦❤→❝✳ ▼ỉ✤✉♥ ♥❤÷ ✈➟② ✤÷đ❝ ❣å✐ ❧➔ ❆rt✐♥ ✈➔ ✈➔♥❤ t÷ì♥❣ ù♥❣ ✤÷đ❝ ❣å✐ ❧➔ ✈➔♥❤ ❆rt✐♥ ♣❤↔✐ ✈➔ tr→✐✳ ▲ỵ♣ ✈➔♥❤ ❆rt✐♥ ♥➔② ✤â♥❣ ✈❛✐ trá q trồ tr ỵ tt ởt ỷ ✤ì♥ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ ♥â ❧➔ ✈➔♥❤ ❆rt✐♥ ♣❤↔✐ ❤❛② tr→✐ ❝ị♥❣ ✈ỵ✐ ❝➠♥ ❏❛❝♦❜s♦♥ ❜➡♥❣ ✵✳ ❚r♦♥❣ ❜➔✐ ❜→♦ ❝õ❛ ❘✳ ❉❛st❛♥♣♦✉r ❛♥❞ ❆✳ ●❤♦r❜❛♥✐ ✏ ▼♦❞✉❧❡s ✇✐t❤ ❡♣✐♠♦r♣❤✐s♠ ♦♥ ❝❤❛✐♥s ♦❢ s✉❜♠♦❞✉❧❡s ✑✱ ♠ët R✲♠æ✤✉♥ M t❤ä❛ ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥ ♥➳✉ tr♦♥❣ ♠å✐ ❞➣② ❣✐↔♠ ❝→❝ ♠æ✤✉♥ ❝♦♥ ❝õ❛ M✱ trø ♠ët sè ❤ú✉ ❤↕♥✱ ộ ổ tr ởt ỗ ♠æ✤✉♥ ❦➳ t✐➳♣✳ ▲✐➺✉ ❝→❝ t➼♥❤ ❝❤➜t ❝õ❛ ♠æ✤✉♥ ❆rt✐♥ ❝â ✤ó♥❣ ✈ỵ✐ ♠ỉ✤✉♥ ✈ỵ✐ ❡♣✐✕❉❈❈ ❤❛② ❦❤ỉ♥❣❄ ◆❣♦➔✐ r❛✱ ♥â ❝á♥ ♥❤ú♥❣ t➼♥❤ ❝❤➜t ✤➦❝ ❜✐➺t ♥➔♦ ❦❤→❝❄ ▼è✐ ợ q õ ữ t❤➳ ♥➔♦❄ ◆❤➡♠ t➻♠ ❤✐➸✉ ✈➲ ♥❤ú♥❣ ✈➜♥ ✤➲ ♥➔②✱ tæ✐ ❝❤å♥ ✤➲ t➔✐ ❝❤♦ ❧✉➟♥ ✈➠♥ t❤↕❝ s➽ ❝õ❛ ♠➻♥❤ ❧➔ ✏ ❱➋ ▼➷✣❯◆ ❱❰■ ❡♣✐✕❉❈❈ ✑✳ ✷✳ ▼ö❝ t✐➯✉ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ✤➲ t➔✐ ✷ + ◆❣❤✐➯♥ ❝ù✉ ♠ỉ✤✉♥ ✈ỵ✐ ❉❈❈ ✈➔ ❡♣✐✕❉❈❈ ❝ị♥❣ ❝→❝ ✈➜♥ ✤➲ ❧✐➯♥ q✉❛♥✳ + ❉ü❛ ❝❤➼♥❤ tr➯♥ ❜➔✐ ❜→♦ ❝õ❛ ❘✳ ❉❛st❛♥♣♦✉r ❛♥❞ ❆✳ ●❤♦r❜❛♥✐ ✏ ✇✐t❤ ❡♣✐♠♦r♣❤✐s♠ ♦♥ ❝❤❛✐♥s ♦❢ s✉❜♠♦❞✉❧❡s s ú tổ trữợ t tờ q ❦➳t q✉↔ tø ❜➔✐ ❜→♦ ♥➔② ✈➔ ❝→❝ ❜➔✐ ❜→♦ ❦❤→❝✱ tr♦♥❣ s→❝❤ ❜➡♥❣ ❝→❝❤ ❧➔♠ t÷í♥❣ ♠✐♥❤ ❝→❝ ❝❤ù♥❣ ♠✐♥❤✱ tr➻♥❤ ❜➔② ❧↕✐ ♠ët ❝→❝❤ ❝â ❤➺ t❤è♥❣✳ ✸✳ ✣è✐ t÷đ♥❣ ♥❣❤✐➯♥ ❝ù✉ + ◆❣❤✐➯♥ ❝ù✉ ✈➲ ♠ỉ✤✉♥ ✈➔ rt ỵ t t ❝→❝ ✈➼ ❞ư✳ + ◆❣❤✐➯♥ ❝ù✉ ✈➲ ♠ỉ✤✉♥ ✈➔ ✈➔♥❤ ✈ỵ✐ ❡♣✐✕❉❈❈✳ ✹✳ P❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉ + ❉ü❛ tr➯♥ ❝ì sð ✤➣ ❜✐➳t ✈➲ ♠ỉ✤✉♥✱ ✈➲ ✈➔♥❤ ❆rt✐♥✱ ✳✳✳ ❝ị♥❣ ✈ỵ✐ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ t➔✐ ❧✐➺✉ ✤➦❝ ❜✐➺t ❧➔ ❝→❝ ❜➔✐ ❜→♦ ❦❤♦❛ ❤å❝ ❧✐➯♥ q✉❛♥ ✤➳♥ ♠æ✤✉♥ ✈➔ ✈➔♥❤ ❆rt✐♥✱ ♠ỉ✤✉♥ ✈➔ ✈➔♥❤ ✈ỵ✐ ❡♣✐✕❉❈❈✳ +❚r❛♦ ✤ê✐✱ t❤↔♦ ợ ữớ ữợ r q õ ✺✳ ❈➜✉ tró❝ ❧✉➟♥ ✈➠♥ ❇è ❝ư❝ ❝õ❛ ❧✉➟♥ ✈➠♥ ỗ ử t ❧✉➟♥ ✈➔ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦✳ ◆ë✐ ❞✉♥❣ ❝❤➼♥❤ ❝õ❛ ❧✉➟♥ ✈➠♥ ✤÷đ❝ ❝❤✐❛ t❤➔♥❤ ✷ ❝❤÷ì♥❣✿ ❈❤÷ì♥❣ ✶ tr➻♥❤ ❜➔② ♠ët sè ❦❤→✐ ♥✐➺♠ ✈➔ ❦➳t q✉↔ ❧✐➯♥ q✉❛♥ ✤➳♥ ♠ỉ✤✉♥ ✤➸ ❧➔♠ ❝ì sð ❝❤♦ ❝→❝ ❝❤÷ì♥❣ s❛✉✳ ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔② t→❝ ❣✐↔ ♥❤➢❝ ❧↕✐ ♠ët sè ❦❤→✐ ♥✐➺♠ ❝ì ❜↔♥ ✈➲ ♠ỉ✤✉♥✱ ♠ỉ✤✉♥ tü ❞♦✱ ♠ỉ✤✉♥ ♥ë✐ ①↕✱ ♠ỉ✤✉♥ ✤ì♥✱ ♠ỉ✤✉♥ ♥û❛ ✤ì♥✱ ❝➠♥ ✈➔ ✤➳✱ ✈➔♥❤ ❝❤➼♥❤ q✉✐✱ ✈➔♥❤ ●♦❧❞✐❡✳ ❈❤÷ì♥❣ ✷ tr➻♥❤ ❜➔② ✈➲ ✤✐➲✉ ❦✐➺♥ ❞➣② ❣✐↔♠ ✭❉❈❈✮ ✤è✐ ✈ỵ✐ ❝→❝ ♠ỉ✤✉♥ ❝♦♥✱ ✤â ❝❤➼♥❤ ❧➔ ♠æ✤✉♥ ✈➔ ✈➔♥❤ ❆rt✐♥✱ ♠æ✤✉♥ t❤ä❛ ♠➣♥ t➼♥❤ ❝❤➜t ❡♣✐✕ ❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥✱ t➻♠ ❤✐➸✉ ✈➔ ✤÷❛ r❛ ♠ët sè ❦➳t q✉↔ ✈➲ ❡♣✐✕❉❈❈ ♣❤↔✐ ✤è✐ ✈ỵ✐ ✈➔♥❤ ●♦❧❞✐❡ ♣❤↔✐ ♥û❛ ♥❣✉②➯♥ tè ✈➔ t➻♠ ❤✐➸✉✱ tr➻♥❤ ❜➔② ✈➲ ✈➔♥❤ ♠➔ tr♦♥❣ ✤â t➜t ❝↔ ❝→❝ ♠æ✤✉♥ t❤ä❛ ♠➣♥ ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥✳ ✹✵ ∞ i=1 E(P )✳ ❝õ❛ ❝→❝ ♠æ✤✉♥ ❝♦♥ ❝õ❛ ❱➻ ∞ i=1 E(P ) ❝â ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥ ♥➯♥ tỗ t k N tỗ t t ∞ ∞ E(P ) → P ⊕ ϕk : i=k E(P ) i=k+1 ◆❤÷♥❣ P ❧➔ ❤ú✉ ❤↕♥ s✐♥❤ tỗ t ởt t k : E(P )(n) → P ✈ỵ✐ n ∈ N✳ ❚ø t➼♥❤ ①↕ ↔♥❤ ❝õ❛ P ♥➯♥ ψk t→❝❤ ✤÷đ❝ ✈➔ P ✤➥♥❣ ❝➜✉ ✈ỵ✐ tê♥❣ trü❝ t✐➳♣ ❝→❝ sè ❤↕♥❣ ❝õ❛ E(P )(n) ✳ ❉♦ ✤â✱ P ❧➔ ♥ë✐ ①↕✳ ▼➺♥❤ ✤➲ ✷✳✹✳✹✳ ❈❤♦ M ❧➔ R✲♠æ✤✉♥✳ ◆➳✉ M (N) t❤ä❛ ♠➣♥ ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥ t❤➻ M (N) ❧➔ ❡♣✐✲❝♦✳ ❈❤ù♥❣ L = M (N) ú ỵ r L(N) ∼ = L t❤ä❛ ♠➣♥ ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥✳ ❈❤♦ N ❧➔ ♠ët ♠æ✤✉♥ ❝♦♥ ❝õ❛ L✳ ❳➨t ❞➣② ∞ ∞ L≥N⊕ L i=2 ( N) i=1 ❝õ❛ ❝→❝ ♠æ✤✉♥ ❝♦♥ ❝õ❛ L ∞ ∞ L≥L⊕ ≥ ✳ ❱➻ L L ≥ i=3 i=2 ( N) ❝â tr ổ tỗ t k N tỗ t ởt t LN k : i=k L i=k+1 tỗ t t ❝➜✉ ∞ ∞ L ( N) L→N⊕ → i=k L → N i=k+1 ❉♦ ✤â✱ L ❧➔ ❡♣✐✲❝♦✳ ❚❤❡♦ ❬✶✺❪✱ t❛ ❣å✐ R✲♠ỉ✤✉♥ M ❧✐➯♥ tư❝ ♥➳✉ M t❤ä❛ ♠➣♥ ữợ ổ M ❧➔ ❝èt ②➳✉ tr♦♥❣ ❤↕♥❣ tû trü❝ t✐➳♣ ❝õ❛ M ✳ ❈✷✿ ▼å✐ ♠æ✤✉♥ ❝♦♥ ❝õ❛ M ✤➥♥❣ ❝➜✉ ✈ỵ✐ ❤↕♥❣ tû trü❝ t✐➳♣ ❝õ❛ M ❝ơ♥❣ ❧➔ ❤↕♥❣ tû trü❝ t✐➳♣ ❝õ❛ M ✳ ✹✶ ❱➔♥❤ R ❧➔ ❧✐➯♥ tö❝ ♣❤↔✐ ♥➳✉ RR ❧➔ ❧✐➯♥ tö❝✳ ❘ã r➔♥❣✱ ♠ỉ✤✉♥ ♥ë✐ ①↕ ❧➔ ❧✐➯♥ tư❝✳ ❱➔♥❤ tü ♥ë✐ ①↕ ♣❤↔✐ ❧➔ ❧✐➯♥ tư❝ ♣❤↔✐✳ ❱ỵ✐ ✈➔♥❤ ❧✐➯♥ tư❝ ♣❤↔✐✱ t❛ ❝â t➼♥❤ ❝❤➜t s❛✉ ✤➙②✿ ❇ê ✤➲ ✷✳✹✳✺✳ ❈❤♦ R ❧➔ ✈➔♥❤ ❧✐➯♥ tö❝ ♣❤↔✐ s❛♦ ❝❤♦ ♠å✐ ✐✤➯❛♥ ♣❤↔✐ ❝õ❛ R ❧➔ ❤ú✉ ❤↕♥ s✐♥❤ ✤➳♠ ✤÷đ❝✳ ❑❤✐ ✤â✱ R ❧➔ ✈➔♥❤ ♥û❛ ❤♦➔♥ ❝❤➾♥❤✳ ▼➺♥❤ ✤➲ ✷✳✹✳✻✳ ❈❤♦ R ❧➔ ✈➔♥❤ s❛♦ ❝❤♦ E(RR )(N) t❤ä❛ ♠➣♥ ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥✳ ❑❤✐ ✤â✱ R ❧➔ ✈➔♥❤ ♥û❛ ❤♦➔♥ ❝❤➾♥❤✱ tü ♥ë✐ ①↕ ♣❤↔✐✳ ❈❤ù♥❣ ♠✐♥❤✳ ❚❤❡♦ ▼➺♥❤ ✤➲ ✷✳✹✳✸✱ R ❧➔ tü ♥ë✐ ①↕ ♣❤↔✐✳ ❱➻ E(RR )(N) t❤ä❛ ♠➣♥ ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ♥➯♥ R(N) ❝ô♥❣ t❤ä❛ ♠➣♥ ❡♣✐✕❉❈❈✳ ❉♦ R(N) ❧➔ ❡♣✐✲❝♦ ✭t❤❡♦ ▼➺♥❤ ✤➲ ✷✳✹✳✹✮✳ ❈❤♦ I ❧➔ ✐✤➯❛♥ ♣❤↔✐ ❝õ❛ R✳ ❳➨t I ố ữ ổ R(N) tỗ t ởt ỗ tứ R(N) I õ I ❧➔ ✤➳♠ ✤÷đ❝ s✐♥❤✳ ❚ø ❇ê ✤➲ ✷✳✹✳✺✱ R ❧➔ ♥û❛ ❤♦➔♥ ❝❤➾♥❤✳ ▼➺♥❤ ✤➲ ✷✳✹✳✼✳ ❈❤♦ R ❧➔ ✈➔♥❤ ❤♦➔♥ ❝❤➾♥❤ ♣❤↔✐✱ tü ♥ë✐ ①↕ ♣❤↔✐ ✈ỵ✐ ❡♣✐✕ ❉❈❈ ♣❤↔✐✳ ❑❤✐ ✤â✱ J(R) ❧➔ ❧ô② ❧✐♥❤✳ ❈❤ù♥❣ ♠✐♥❤✳ ✣➦t J = J(R)✳ ❑❤✐ ✤â✱ J ❧➔ ❚✲❧ô② ❧✐♥❤ ♣❤↔✐✳ ●å✐ e ❧➔ ❧ơ② ✤➥♥❣ ✤à❛ ♣❤÷ì♥❣ tr♦♥❣ R✳ ❑❤✐ õ eRR ổ ữỡ ợ ổ ỹ t eJ s ự tỗ t↕✐ m ∈ N s❛♦ ❝❤♦ eJ m = 0✳ ❘ã r➔♥❣✱ eRR ❝â t➼♥❤ ❝❤➜t ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥✳ ❳➨t ❞➣② eR ≥ eJ ≥ eJ ≥ õ tỗ t k N s ộ i k tỗ t ♠ët t♦➔♥ ❝➜✉ ϕi : eJ i → eJ i+1 ◆❤÷♥❣ eRR ❧➔ ♥ë✐ ①↕ ✈➔ EndR (eR) ∼ = eRe ữ ợ i k ✱ ϕi ♠ð rë♥❣ t❤➔♥❤ ♠ët t♦➔♥ ❝➜✉ ♥➔♦ ✤â eRR õ tỗ t xi R s❛♦ ❝❤♦ exi eRJ i = eJ i+1 ✹✷ ●✐↔ sû r➡♥❣ eJ m = ✈ỵ✐ ♠å✐ m ∈ N✳ ❚❛ s➩ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ ✈ỵ✐ ♠å✐ i ≥ k ✱ exi e ∈ J ✳ ❚❤➟t ✈➟②✱ ❧➜② i ≥ k ✈➔ ❣✐↔ sû r➡♥❣ exi eR = eR ❑❤✐ ✤â✱ eJ i+1 = exi e(eJ i ) = exi eRJ i = eRJ i = eJ i ❚❤❡♦ ❇ê ✤➲ ✷✳✹✳✷✱ eJ i = 0✱ ♠➙✉ t❤✉➝♥✳ ❉♦ ✤â✱ exieR eR ✈➔ exieR ≤ eJ ≤ J ✳ ❉♦ ✤â✱ exi e ∈ J ✳ ❇➙② ❣✐í✱ ✈➻ = eJ k+1 = exk e(k ) ♥➯♥ exk e = 0✳ ✣✐➲✉ ♥➔② ❝ô♥❣ ❝❤ù♥❣ tä r➡♥❣ = eJ k+2 = exk+1 e(eJ k+1 ) = (exk+1 e)(exk e)(eJ k ) ✈➻ (exk+1 e)(exk e) = ▲➦♣ ❧↕✐ q✉→ tr➻♥❤ ♥➔②✱ t❛ ✤✐ ✤➳♥ ❦➳t ❧✉➟♥ (exk+m e) (exk+1 e)(exk e) = ✈ỵ✐ ♠å✐ m ∈ N✱ ♠➙✉ t❤✉➝♥ ✈ỵ✐ ❦❤➥♥❣ ✤à♥❤ J ❧➔ ❚✲❧ơ② ❧✐♥❤ ♣❤↔✐✳ ❉♦ ✤â✱ eJ m = ✈ỵ✐ m ♥➔♦ ✤â t❤✉ë❝ N✳ R ỷ tỗ t ❧ơ② ✤➥♥❣ ✤à❛ ♣❤÷ì♥❣ trü❝ ❣✐❛♦ rí✐ ♥❤❛✉ e1, e2, , en tr♦♥❣ R s❛♦ ❝❤♦ e1 + e2 + · · · + en = ỳ ỵ tr ợ ộ i {1, 2, , n} tỗ t mi ∈ N s❛♦ ❝❤♦ eiJ m = 0✳ ✣➦t i m = max{m1 , m2 , , mn } ❑❤✐ ✤â✱ eiJ m = ✈ỵ✐ ♠å✐ i ∈ {1, 2, , n} ❉♦ ✤â✱ J m = (e1 + · · · + en)J m = ỵ R ✈➔♥❤ s❛♦ ❝❤♦ ♠å✐ R✲♠æ✤✉♥ ♣❤↔✐ t❤ä❛ ♠➣♥ ❡♣✐✕ ❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥✳ ❑❤✐ ✤â✱ R ❧➔ ✈➔♥❤ ✐✤➯❛♥ ❝❤➼♥❤ ❆rt✐♥✳ ✹✸ ❈❤ù♥❣ ♠✐♥❤✳ ●✐↔ sû R ❧➔ ✈➔♥❤ t❤÷ì♥❣ ❝õ❛ ✈➔♥❤ R✳ ❑❤✐ ✤â✱ ♠å✐ R✲♠ỉ✤✉♥ t❤ä❛ ♠➣♥ ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥✳ ❚❛ s➩ ❝❤ù♥❣ ♠✐♥❤ ♠å✐ R✲♠æ✤✉♥ ❧➔ ❝♦✳ ●å✐ M ❧➔ ♠ët R✲♠æ✤✉♥✳ ❑❤✐ ✤â✱ M (N) ❝â t➼♥❤ ❝❤➜t ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥✳ ❚ø ▼➺♥❤ ✤➲ ✷✳✹✳✹ s✉② r❛ M (N) ❧➔ ❡♣✐✲❝♦✳ ●å✐ N ❧➔ ♠æ✤✉♥ ❝♦♥ ❦❤→❝ ✵ ❝õ❛ M ✳ ❳➨t N ❧➔ ♠ët ♠æ✤✉♥ ❝♦♥ ❝õ❛ M (N) t❤➻ tỗ t ởt t : M ( N) N õ ởt ỗ tø M ❧➯♥ N ✳ ✣✐➲✉ ♥➔② ❝❤ù♥❣ tä M rtrtt ữ t ỵ ♠➔ ♠å✐ ♠æ✤✉♥ ❧➔ ❝♦ ❧➔ ✈➔♥❤ ❝ü❝ ✤↕✐ ♣❤↔✐ ✭♠å✐ ♠æ✤✉♥ ❝â ♠æ✤✉♥ ❝♦♥ ❝ü❝ ✤↕✐✮✳ ❚ø ✤â s✉② r❛ R ❧➔ ✈➔♥❤ ❝ü❝ ✤↕✐ ♣❤↔✐✳ ❚✐➳♣ t❤❡♦✱ tø ▼➺♥❤ ✤➲ ✷✳✹✳✻ t❛ ❝â R ❧➔ ♠ët ✈➔♥❤ ♥û❛ ❤♦➔♥ ❝❤➾♥❤ tü ♥ë✐ ①↕ ♣❤↔✐✳ ❉♦ ✤â✱ R/J(R) ❧➔ ❆rt✐♥✐❛♥ ♥û❛ ✤ì♥✳ ❱➻ R ❧➔ ✈➔♥❤ ❝ü❝ ✤↕✐ ♣❤↔✐ ♥➯♥ s✉② r❛ R ❧➔ ✈➔♥❤ ❤♦➔♥ ❝❤➾♥❤ ♣❤↔✐✳ ❚❤❡♦ ▼➺♥❤ ✤➲ ✷✳✹✳✼ t❤➻ J(R) ❧➔ ❧ô② ❧✐♥❤ ♥➯♥ R ❝ơ♥❣ ❧➔ ♥û❛ ❤♦➔♥ ❝❤➾♥❤ tr→✐✳ ❚÷ì♥❣ tü✱ R/J(R)2 ❧➔ ♠ët ✈➔♥❤ ❤♦➔♥ ❝❤➾♥❤ tr→✐ ✈➔ tü ♥ë✐ ①↕ ♣❤↔✐✳ ❚❤❡♦ ❬✻✱ ❍➺ q✉↔ ✷✳✺❪✱ ♠ët ✈➔♥❤ ♥û❛ ✤à❛ ♣❤÷ì♥❣ tỹ ợ r s ữỡ tü❛ ❋r♦❜❡♥✐✉s✳ ❉♦ ✤â✱ R/J(R)2 ❧➔ tü❛ ❋r♦❜❡♥✐✉s✳ ❉♦ ✤â✱ J(R)/J(R)2 ❧➔ R/J(R)2 ✲♠æ✤✉♥ ❤ú✉ ❤↕♥ s✐♥❤ tø ♠ët R✲♠æ✤✉♥ ❤ú✉ ❤↕♥ s✐♥❤✳ ❚❤❡♦ ❬✶✻✱ ❇ê ✤➲ ✶✶❪✱ ✈➔♥❤ ❤♦➔♥ ❝❤➾♥❤ tr→✐ tü ♥ë✐ ①↕ ♣❤↔✐ S tr♦♥❣ ✤â J(S)/J(S)2 ❧➔ S ✲♠æ✤✉♥ ♣❤↔✐ ❤ú✉ ❤↕♥ s✐♥❤ ❧➔ tü❛ ❋r♦❜❡♥✐✉s✳ ❉♦ ✤â✱ R ❧➔ tü❛ ❋r♦❜❡♥✐✉s✳ ❙✉② r❛ R ❧➔ ✈➔♥❤ ✐✤➯❛♥ ❝❤➼♥❤ ❆rt✐♥✳ ✹✹ ❑➌❚ ▲❯❾◆ ❉ü❛ ✈➔♦ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦✱ t→❝ ❣✐↔ ✤➣ ♥❣❤✐➯♥ ❝ù✉ t➻♠ ❤✐➸✉ ✈➔ tê♥❣ ❤đ♣ ✤➸ ✤↕t ✤÷đ❝ ❝→❝ ❦➳t q✉↔ s❛✉✿ rữợ t tờ ủ ổ rt ❝→❝ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ♥â✳ ✣➦❝ ❜✐➺t tr♦♥❣ ú tổ tr ỵ t➼❝❤ ♠ỉ✤✉♥ ♥ë✐ ①↕ tr➯♥ ✈➔♥❤ ❆rt✐♥✳ ❚✐➳♣ t❤❡♦ ❝❤ó♥❣ tỉ✐ ❣✐ỵ✐ t❤✐➺✉ ❝→❝ ♠ỉ✤✉♥ t❤ä❛ ♠➣♥ t➼♥❤ ❝❤➜t ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥ ✈➔ t❤➸ ❤✐➺♥ ❝→❝ ❦➳t q✉↔ ❝ì ❜↔♥ ✈ỵ✐ ❝❤ó♥❣✳ ❚r♦♥❣ ♣❤➛♥ ♥➔② ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ✣à♥❤ ♥❣❤➽❛ ✷✳✷✳✶✳ ❚ø ▼➺♥❤ ✤➲ ✷✳✷✳✽ s✉② r❛ sỹ tỗ t ổ t tr ổ ổ s✉② ❜✐➳♥ ❦❤→❝ ✵ ✈ỵ✐ ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠ỉ✤✉♥ ❝♦♥✳ ❈❤ó♥❣ tỉ✐ t✐➳♣ tư❝ sû ❞ư♥❣ ♠ët sè ❦➳t q✉↔ q✉❛♥ trå♥❣ ✈➲ ✈➔♥❤ ✤➸ t➻♠ ❤✐➸✉ ✈➲ ✈➔♥❤ ●♦❧❞✐❡ ♣❤↔✐ ♥û❛ ♥❣✉②➯♥ tè ✈ỵ✐ ❡♣✐✲❝♦ tr➯♥ ❞➣② ✐✤➯❛♥ ♣❤↔✐✳ ỵ t R ✈➔♥❤ ●♦❧❞✐❡ ♥û❛ ♥❣✉②➯♥ tè t❤ä❛ ♠➣♥ ❡♣✐✲❉❈❈ ❦❤✐ R ✤➥♥❣ ❝➜✉ ✈ỵ✐ t➼❝❤ ❤ú✉ ❤↕♥ ❝→❝ ✈➔♥❤ ♠❛ tr➟♥ ✤➛② ✤õ tr➯♥ ♠✐➲♥ ♥❣✉②➯♥ ✐✤➯❛♥ ♣❤↔✐ ❝❤➼♥❤ t❤➻ R ❧➔ ♠ët ✈➔♥❤ ✐✤➯❛♥ ♣❤↔✐ ❝❤➼♥❤✳ ❚r➻♥❤ ❜➔② ✈➲ ✈➔♥❤ ♠➔ tr♦♥❣ ✤â t➜t ❝↔ ❝→❝ ♠æ✤✉♥ t❤ä❛ ♠➣♥ ❡♣✐✕❉❈❈ tr➯♥ ❝→❝ ♠ỉ✤✉♥ ❝♦♥✳ ❙û ❞ư♥❣ ♠ët sè ❦➳t q✉↔ t ỵ t ♠è✐ q✉❛♥ ❤➺ ❝õ❛ ✈➔♥❤ R ❝â ♠å✐ R✲♠æ✤✉♥ ♣❤↔✐ t❤ä❛ ♠➣♥ ❡♣✐✲❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥ t❤➻ ❝❤➼♥❤ ❧➔ rt sỹ tờ ủ ỗ tớ tt õ ự ỵ ✤➲✱ ❤➺ q✉↔ ✈➔ t❤➸ ❤✐➺♥ ♠ët sè ✈➼ ❞ö ✈➲ ♠ỉ✤✉♥ ✈ỵ✐ ❡♣✐✲❉❈❈✳ ❚r♦♥❣ t❤í✐ ❣✐❛♥ tỵ✐ tỉ✐ s➩ t tử t ữủ ỵ ✷✳✹✳✽ r➡♥❣ ♥➳✉ R ❧➔ ✈➔♥❤ ✐✤➯❛♥ ❝❤➼♥❤ ❆rt✐♥ t❤➻ ♠å✐ R✲♠æ✤✉♥ ♣❤↔✐ ❝â t❤ä❛ ♠➣♥ ❡♣✐✲❉❈❈ tr➯♥ ❝→❝ ♠æ✤✉♥ ❝♦♥ ❤❛② ❦❤æ♥❣❄ tæ✐ s➩ t➻♠ ❤✐➸✉ t❤➯♠ ❝→❝ t➼♥❤ ❝❤➜t ❦❤→❝ ❧✐➯♥ q✉❛♥ ✤➳♥ ♠æ✤✉♥ ✈➔ ✈➔♥❤ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❡♣✐✲❉❈❈✳ ❚→❝ ❣✐↔ ✹✺ ❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ t ỵ tt ổ ◗✉ý♥❤✱ ▲✳ ❱✳ ❚❤✉②➳t ✭✷✵✶✸✮✱ ◆❳❇ ✣↕✐ ❤å❝ ❍✉➳✳ ❬✷❪ ▲✳ ❱✳ ❚❤✉②➳t✱ ▲✳ ✣✳ ❚❤♦❛♥❣ ✭✷✵✶✼✮✱ ❱➔♥❤ ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ ❤ú✉ ❤↕♥✱ ◆❳❇ ✣↕✐ ❤å❝ ❍✉➳✳ ❬✸❪ ❚✳ ❈✳ ◗✉ý♥❤✱ ▲✳ ❱✳ ❚❤✉②➳t ✭✷✵✶✾✮✱ ▼æ✤✉♥ ✈➔ ✈➔♥❤✱ ◆❳❇ ✣↕✐ ❤å❝ ❍✉➳✳ ❚✐➳♥❣ ❆♥❤ ❬✹❪ ❋✳ ❲✳ ❆♥❞❡rs♦♥✱ ❑✳ ❘✳ ❋✉❧❧❡r ✭✶✾✾✷✮✱ ❘✐♥❣s ❛♥❞ ❈❛t❡❣♦r✐❡s ♦❢ ▼♦❞✉❧❡s✱ ◆❡✇ ❨♦r❦✱ ❙♣r✐♥❣❡r ✲ ❱❡r❧❛❣✳ ❬✺❪ ❘✳ ❉❛st❛♥♣♦✉r ❛♥❞ ❆✳ ●❤♦r❜❛♥✐ ✭✷✵✶✼✮✱ ✏▼♦❞✉❧❡s ✇✐t❤ ❡♣✐♠♦r♣❤✐s♠ ♦♥ ❝❤❛✐♥s ♦❢ s✉❜♠♦❞✉❧❡s✑✱ ❏♦✉r♥❛❧ ♦❢ ❆❧❣❡❜r❛ ❛♥❞ ■ts ❆♣♣❧✐❝❛t✐♦♥✱ ❱♦❧✳ ✶✻✱ ◆♦✳ ✻✱ ✶✽ ♣❛❣❡s✳ ❬✻❪ ❈✳ ❋❛✐t❤ ❛♥❞ ❉✳ ❱✳ ❍✉②♥❤ ✭✷✵✵✷✮✱ ✏❲❤❡♥ s❡❧❢✲✐♥❥❡❝t✐✈❡ r✐♥❣s ❛r❡ ◗❋✿ ❆ r❡♣♦rt ♦♥ ❛ ♣r♦❜❧❡♠✑✱ ❏✳ ❆❧❣❡❜r❛ ❆♣♣❧✳✱ ❱♦❧✳ ✶ ✭✶✮✱ ♣♣✳ ✼✺✲✶✵✺✳ ❬✼❪ ❆✳ ●❤♦r❜❛♥✐ ❛♥❞ ▼✳ ❘✳ ❱❡❞❛❞✐ ✭✷✵✵✾✮✱ ✏❊♣✐✲r❡tr❛❝t❛❜❧❡ ♠♦❞✉❧❡s ❛♥❞ s♦♠❡ ❛♣♣❧✐❝❛t✐♦♥s✑✱ ❇✉❧❧❡t✐♥ ♦❢ t❤❡ ■r❛♥✐❛♥ ▼❛t❤❡♠❛t✐❝❛❧ ❙♦❝✐❡t②✱ ❱♦❧✳ ✸✺ ◆♦✳ ✶✱ ♣♣ ✶✺✺✲✶✻✻✳ ❬✽❪ ❑✳ ❘✳ ●♦♦❞❡❛r❧ ✭✶✾✼✻✮✱ ✏❘✐♥❣ ❚❤❡♦r②✿ ◆♦♥s✐♥❣✉❧❛r ❘✐♥❣s ❛♥❞ ▼♦❞✲ ✉❧❡s✑✱ P✉r❡ ❛♥❞ ❆♣♣❧✐❡❞ ▼❛t❤❡♠❛t✐❝s✱ ❱♦❧✳ ✸✸✱ ▼❛r❝❡❧ ❉❡❦❦❡r✱ ◆❡✇ ❨♦r❦✳ ❬✾❪ ❑✳ ❘✳ ●♦♦❞❡❛r❧ ❛♥❞ ❘✳ ❇✳ ❲❛r❢✐❡❧❞ ✭✷✵✵✹✮✱ ❝♦♠♠✉t❛t✐✈❡ ◆♦❡t❤❡r✐❛♥ ❘✐♥❣s✱ ❆♥ ■♥tr♦❞✉❝t✐♦♥ t♦ ◆♦♥✲ ✷♥❞ ❡❞♥✳✱ ▲♦♥❞♦♥ ▼❛t❤❡♠❛t✐❝❛❧ ❙♦✲ ❝✐❡t② ❙t✉❞❡♥t ❚❡①ts✱ ❱♦❧✳ ✻✶✱ ❈❛♠❜r✐❞❣❡ ❯♥✐✈❡rs✐t② Pr❡ss✳ ✹✻ ❬✶✵❪ ▼✳ ❚✳ ❑♦s❛♥ ❛♥❞ ❏✳ ❩❡♠❧✐❝❦❛ ✭✷✵✶✹✮✱ ✏▼♦❞✲r❡tr❛❝t❛❜❧❡ r✐♥❣s✑✱ ❈♦♠♠✳ ❆❧❣❡❜r❛✱ ❱♦❧✳ ✹✷ ✭✸✮✱ ♣♣✳ ✾✾✽✲✶✵✶✵✳ ❬✶✶❪ ❚✳ ❨✳ ▲❛♠ ✭✶✾✾✾✮✱ ❆ ❋✐rst ❈♦✉rs❡ ✐♥ ◆♦♥❝♦♠♠✉t❛t✐✈❡ ❘✐♥❣s✱ ●r❛❞✉✲ ❛t❡ ❚❡①ts ✐♥ ▼❛t❤❡♠❛t✐❝s✱ ❱♦❧✳ ✶✸✶✱ ❙♣r✐♥❣❡r✲❱❡r❧❛❣✱ ◆❡✇ ❨♦r❦✳ ❬✶✷❪ ❚✳ ❨✳ ▲❛♠ ✭✶✾✾✽✮✱ ▲❡❝t✉r❡s ♦♥ ▼♦❞✉❧❡s ❛♥❞ ❘✐♥❣s✱ ●r❛❞✉❛t❡ ❚❡①ts ✐♥ ▼❛t❤❡♠❛t✐❝s✱ ❱♦❧✳ ✶✽✾✱ ◆❡✇ ❨♦r❦✱ ❙♣r✐♥❣❡r ✲ ❱❡r❧❛❣✳ ❬✶✸❪ ❏✳ ❈✳ ▼❝❈♦♥♥❡❧❧ ❛♥❞ ❏✳ ❈✳ ❘♦❜s♦♥ ✭✶✾✽✼✮✱ ◆♦♥❝♦♠♠✉t❛t✐✈❡ ◆♦❡t❤❡✲ r✐❛♥ ❘✐♥❣s✱ P✉r❡ ❛♥❞ ❆♣♣❧✐❡❞ ▼❛t❤❡♠❛t✐❝s✱ ❏♦❤♥ ❲✐❧❡② ✫ ❙♦♥s✱ ❈❤✐❝❤❡st❡r✳ ❬✶✹❪ ❍✳ ▼♦st❛❢❛♥❛s❛❜ ✭✷✵✶✸✮✱ ✏❆♣♣❧✐❝❛t✐♦♥ ♦❢ ❡♣✐✲r❡tr❛❝t❛❜❧❡ ❛♥❞ ❝♦✲❡♣✐✲ r❡tr❛❝t❛❜❧❡ ♠♦❞✉❧❡s✑✱ ❇✉❧❧❡t✐♥ ♦❢ t❤❡ ■r❛♥✐❛♥ ▼❛t❤❡♠❛t✐❝❛❧ ❙♦❝✐❡t②✱ ❱♦❧✳ ✸✾ ◆♦✳ ✶✱ ♣♣ ✾✵✸✲✾✶✼✳ ❬✶✺❪ ❲✳ ❑✳ ◆✐❝❤♦❧s♦♥ ❛♥❞ ▼✳ ❋✳ ❨♦✉s✐❢ ✭✷✵✵✸✮✱ ◗✉❛s✐✲❋r♦❜❡♥✐✉s ❘✐♥❣s✱ ❈❛♠❜r✐❞❣❡ ❚r❛❝ts ✐♥ ▼❛t❤❡♠❛t✐❝s✱ ❱♦❧✳ ✶✺✽✱ ❈❛♠❜r✐❞❣❡ ❯♥✐✈❡rs✐t② Pr❡ss✱ ❈❛♠❜r✐❞❣❡✳ ❬✶✻❪ ❇✳ ▲✳ ❖s♦❢s❦② ✭✶✾✻✻✮✱ ✏❆ ❣❡♥❡r❛❧✐③❛t✐♦♥ ♦❢ q✉❛s✐✲❋r♦❜❡♥✐✉s r✐♥❣s✑✱ ❏✳ ❆❧❣❡❜r❛✱ ❱♦❧✳ ✹✱ ♣♣✳ ✸✼✸✕✸✽✼✳ ❬✶✼❪ ❑✳ ❱❛r❛❞❛r❛❥❛♥ ✭✷✵✵✽✮✱ ✏❆♥t✐ ❍♦♣❢✐❛♥ ❛♥❞ ❛♥t✐ ❝♦✲❍♦♣❢✐❛♥ ♠♦❞✉❧❡s✑✱ ❆▼❙ ❈♦♥t❡♠♣✳ ▼❛t❤✳ ❙❡r✳✱ ❱♦❧✳ ✹✺✻✱ ♣♣✳ ✷✵✺✕✷✶✽✳ ... modules with epi- DCC, studies other special properties and relationships with related rings Key words: epi- DCC, epi- DCC modules, epi- DCC decreasing sequences, descending cha.in condition, epi- DCC on... paper by R Dastanpour and A Ghorbani named "Mod­ ules with epimorphism on chains of submodules", an R-module is said to be satisfied epi- DCC on submodules if in every descending cha.in of submodules... principal ideal domains are examples of such modules A semiprime right Goldie ring satisfies epi- DCC on right ide.ls if and only if it is a finite product of full matrix rings over principal

Ngày đăng: 26/04/2021, 15:25

w