1. Trang chủ
  2. » Cao đẳng - Đại học

Ebook Bài tập Toán cao cấp - Tập 3

329 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 329
Dung lượng 1,88 MB

Nội dung

t´ınh dS.. Chuyˆ e’n sang to.a dˆo.. Xem v´ı du.. khˆong tuyˆ e.t dˆo´i.. khi v`a chı’ khi t´ıch phˆan suy rˆo.ng.. nhu.ng chuˆo˜i phˆan k`y.. nhˆa´t cu’a chuˆo˜i du.. ’ du.ng dˆa´u hiˆe[r]

(1)

B `AI T ˆA P

TO ´AN CAO C ˆA´P

Tˆa.p 3

Ph´ep t´ınh t´ıch phˆan L´y thuyˆe´t chuˆo˜i. Phu.o.ng tr`ınh vi phˆan

(2)

10 T´ıch phˆan bˆa´t di.nh 4 10.1 C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan 10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa´t di.nh 10.1.2 Phu.o.ng ph´ap dˆo’i biˆe´n 12 10.1.3 Phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n a 21 10.2 C´ac l´o.p h`am kha’ t´ıch l´o.p c´ac h`am so cˆa´p 30 10.2.1 T´ıch phˆan c´ac h`am h˜u.u ty’ 30 10.2.2 T´ıch phˆan mˆo.t sˆo´ h`am vˆo ty’ do.n gia’n 37 10.2.3 T´ıch phˆan c´ac h`am lu.o ng gi´ac 48

11 T´ıch phˆan x´ac di.nh Riemann 57

(3)

12 T´ıch phˆan h`am nhiˆ`u biˆe e´n 117

12.1 T´ıch phˆan 2-l´o.p 118

12.1.1 Tru.`o.ng ho p miˆe`n ch˜u nhˆa.t 118

12.1.2 Tru.`o.ng ho p miˆe`n cong 118

12.1.3 Mˆo.t v`ai ´u.ng du.ng h`ınh ho.c 121

12.2 T´ıch phˆan 3-l´o.p 133

12.2.1 Tru.`o.ng ho p miˆe`n h`ınh hˆo.p 133

12.2.2 Tru.`o.ng ho p miˆe`n cong 134

12.2.3 136

12.2.4 Nhˆa.n x´et chung 136

12.3 T´ıch phˆan d u.`o.ng 144

12.3.1 C´ac di.nh ngh˜ıa co ba’n 144

12.3.2 T´ınh t´ıch phˆan du.`o.ng 146

12.4 T´ıch phˆan m˘a.t 158

12.4.1 C´ac di.nh ngh˜ıa co ba’n 158

12.4.2 Phu.o.ng ph´ap t´ınh t´ıch phˆan m˘a.t 160

12.4.3 Cˆong th´u.c Gauss-Ostrogradski 162

12.4.4 Cˆong th´u.c Stokes 162

13 L´y thuyˆe´t chuˆo˜i 177 13.1 Chuˆo˜i sˆo´ du.o.ng 178

13.1.1 C´ac di.nh ngh˜ıa co ba’n 178

13.1.2 Chuˆo˜i sˆo´ du.o.ng 179

13.2 Chuˆo˜i hˆo.i tu tuyˆe.t dˆo´i v`a hˆo.i tu khˆong tuyˆe.t dˆo´i 191

13.2.1 C´ac di.nh ngh˜ıa co ba’n 191

13.2.2 Chuˆo˜i dan dˆa´u v`a dˆa´u hiˆe.u Leibnitz 192

13.3 Chuˆo˜i l˜uy th`u.a 199

13.3.1 C´ac di.nh ngh˜ıa co ba’n 199

13.3.2 D- iˆe`u kiˆe.n khai triˆe’n v`a phu.o.ng ph´ap khai triˆe’n 201 13.4 Chuˆo˜i Fourier 211

(4)

13.4.2 Dˆa´u hiˆe.u du’ vˆe` su hˆo.i tu cu’a chuˆo˜i Fourier 212

14 Phu.o.ng tr`ınh vi phˆan 224 14.1 Phu.o.ng tr`ınh vi phˆan cˆa´p 225

14.1.1 Phu.o.ng tr`ınh t´ach biˆe´n 226

14.1.2 Phu.o.ng tr`ınh d ˘a’ng cˆa´p 231

14.1.3 Phu.o.ng tr`ınh tuyˆe´n t´ınh 237

14.1.4 Phu.o.ng tr`ınh Bernoulli 244

14.1.5 Phu.o.ng tr`ınh vi phˆan to`an phˆ` n 247a 14.1.6 Phu.o.ng tr`ınh Lagrange v`a phu.o.ng tr`ınh Clairaut255 14.2 Phu.o.ng tr`ınh vi phˆan cˆa´p cao 259

14.2.1 C´ac phu.o.ng tr`ınh cho ph´ep thˆa´p cˆa´p 260

14.2.2 Phu.o.ng tr`ınh vi phˆan tuyˆe´n t´ınh cˆa´p v´o.i hˆe. sˆo´ h˘a`ng 264

14.2.3 Phu.o.ng tr`ınh vi phˆan tuyˆe´n t´ınh thuˆ` n nhˆa´ta cˆa´p nnn (ptvptn cˆa´pnnn) v´o.i hˆe sˆo´ h˘a`ng 273

14.3 Hˆe phu.o.ng tr`ınh vi phˆan tuyˆe´n t´ınh cˆa´p v´o.i hˆe sˆo´ h˘a`ng290 15 Kh´ai niˆe.m vˆe` phu.o.ng tr`ınh vi phˆan da.o h`am riˆeng 304 15.1 Phu.o.ng tr`ınh vi phˆan cˆa´p tuyˆe´n t´ınh dˆo´i v´o.i c´ac da.o h`am riˆeng 306

15.2 Gia’i phu.o.ng tr`ınh d a.o h`am riˆeng cˆa´p d o.n gia’n nhˆa´t 310 15.3 C´ac phu.o.ng tr`ınh vˆa.t l´y to´an co ba’n 313

15.3.1 Phu.o.ng tr`ınh truyˆ`n s´ong 314e 15.3.2 Phu.o.ng tr`ınh truyˆ`n nhiˆe.t 317e 15.3.3 Phu.o.ng tr`ınh Laplace 320

(5)

T´ıch phˆan bˆa´t di.nh

10.1 C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan 4

10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa´t di.nh 10.1.2 Phu.o.ng ph´ap dˆo’i biˆe´n 12 10.1.3 Phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n 21a

10.2 C´ac l´o.p h`am kha’ t´ıch l´o.p c´ac h`am so cˆa´p 30

10.2.1 T´ıch phˆan c´ac h`am h˜u.u ty’ 30 10.2.2 T´ıch phˆan mˆo.t sˆo´ h`am vˆo ty’ do.n gia’n 37 10.2.3 T´ıch phˆan c´ac h`am lu.o ng gi´ac 48

10.1 ac phu.o.ng ph´ap t´ınh t´ıch phˆan

10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa´t di.nh

(6)

ta.i mˆo˜i diˆe’m cu’a khoa’ng v`a F0(x) =f(x)

D- i.nh l´y 10.1.1. (vˆ` su tˆoe ` n ta.i nguyˆen h`am) Mo i h`am liˆen tu c trˆen doa n [a, b] dˆ`u c´e o nguyˆen h`am trˆen khoa’ng (a, b).

D- i.nh l´y 10.1.2. C´ac nguyˆen h`am bˆa´t k`y cu’a c`ung mˆo t h`am l`a chı’ kh´ac bo.’ i mˆo t h˘a`ng sˆo´ cˆo ng.

Kh´ac v´o.i da.o h`am, nguyˆen h`am cu’a h`am so cˆa´p khˆong pha’i bao gi`o c˜ung l`a h`am so cˆa´p Ch˘a’ng ha.n, nguyˆen h`am cu’a c´ac h`am ex2, cos(x2), sin(x2),

lnx, cosx

x , sinx

x , l`a nh˜u.ng h`am khˆong so cˆa´p D- i.nh ngh˜ıa 10.1.2. Tˆa.p ho p mo.i nguyˆen h`am cu’a h`am f(x) trˆen khoa’ng (a, b) du.o c go.i l`a t´ıch phˆan bˆa´t di.nh cu’a h`amf(x) trˆen khoa’ng (a, b) v`a du.o..c k´y hiˆe.u l`a

Z

f(x)dx.

Nˆe´uF(x) l`a mˆo.t c´ac nguyˆen h`am cu’a h`amf(x) trˆen khoa’ng (a, b) th`ı theo di.nh l´y 10.1.2

Z

f(x)dx=F(x) +C, C ∈R

trong d´oC l`a h˘a`ng sˆo´ t`uy ´y v`a d˘a’ng th´u.c cˆ` n hiˆe’u l`a d˘a’ng th´a u.c gi˜u.a hai tˆa.p ho p.

C´ac t´ınh chˆa´t co ba’n cu’a t´ıch phˆan bˆa´t di.nh: 1) d

Z

f(x)dx

=f(x)dx. 2)

Z

f(x)dx

0

=f(x). 3)

Z

df(x) =

Z

f0(x)dx=f(x) +C.

(7)

I

Z

0.dx=C. II

Z

1dx=x+C.

III

Z

xαdx = x α+1

α+ +C, α6=−1 IV

Z

dx

x = ln|x|+C, x6= V

Z

axdx= a x

lna +C (0 < a6= 1);

Z

exdx=ex+C. VI

Z

sinxdx=−cosx+C. VII

Z

cosxdx = sinx+C VIII

Z

dx

cos2x = tgx+C,x6=

π

2 +nπ,n ∈Z IX

Z dx

sin2x =−cotgx+C,x6=nπ, n∈Z X

Z

dx

1−x2 =

  

arc sinx+C,

−arc cosx+C

−1< x <1 XI

Z

dx +x2 =

  

arctgx+C,

−arccotgx+C. XII

Z

dx

x2±1 = ln|x+

x2±1|+C

(trong tru.`o.ng ho p dˆa´u tr`u th`ıx < −1 ho˘a.cx >1) XIII

Z

dx 1−x2 =

1 2ln

+1−xx

(8)

1)

Z

kf(x)dx=k

Z

f(x)dx, k6= 2)

Z

[f(x)±g(x)]dx=

Z

f(x)dx±

Z

g(x)dx.

3) Nˆe´u

Z

f(x)dx = F(x) +C v`a u = ϕ(x) kha’ vi liˆen tu.c th`ı

Z

f(u)du =F(u) +C.

C ´AC V´I DU.

V´ı du 1. Ch´u.ng minh r˘a`ng h`am y = signx c´o nguyˆen h`am trˆen khoa’ng bˆa´t k`y khˆong ch´u.a diˆe’mx= v`a khˆong c´o nguyˆen h`am trˆen mo.i khoa’ng ch´u.a diˆe’mx =

Gia’i. 1) Trˆen khoa’ng bˆa´t k`y khˆong ch´u.a diˆe’mx= h`amy= signx l`a h˘a`ng sˆo´ Ch˘a’ng ha.n v´o.i mo.i khoa’ng (a, b), 0< a < bta c´o signx = v`a d´o mo.i nguyˆen h`am cu’a n´o trˆen (a, b) c´o da.ng

F(x) =x+C, C ∈R

2) Ta x´et khoa’ng (a, b) m`a a < < b Trˆen khoa’ng (a,0) mo.i nguyˆen h`am cu’a signxc´o da.ngF(x) =−x+C1 c`on trˆen khoa’ng (0, b)

nguyˆen h`am c´o da.ng F(x) =x+C2 V´o.i mo.i c´ach cho.n h˘a`ng sˆo´C1

v`aC2 ta thu du.o c h`am [trˆen (a, b)] khˆong c´o da.o h`am ta.i diˆe’mx=

Nˆe´u ta cho.n C = C1 = C2 th`ı thu du.o c h`am liˆen tu.c y = |x| +C

nhu.ng khˆong kha’ vi ta.i diˆe’m x = T`u d´o, theo di.nh ngh˜ıa h`am signx khˆong c´o nguyˆen h`am trˆen (a, b),a <0< b. N

V´ı du 2. T`ım nguyˆen h`am cu’a h`am f(x) =e|x|trˆen to`

an tru.c sˆo´

Gia’i. V´o.i x > ta c´o e|x| = ex v`a d´o miˆ`ne x > mˆo.t c´ac nguyˆen h`am l`a ex Khi x < 0 ta c´o e|x| = ex v`a vˆ

a.y miˆ`ne x < mˆo.t c´ac nguyˆen h`am l`a −ex+C v´o.i h˘a`ng sˆo´C bˆa´t k`y

Theo di.nh ngh˜ıa, nguyˆen h`am cu’a h`am e|x| pha’i liˆ

(9)

pha’i tho’a m˜an diˆ`u kiˆe.ne lim x→0+0e

x

= lim x→0−0(

ex+C) t´u.c l`a =−1 +CC =

Nhu vˆa.y

F(x) =

        

ex nˆe´u x > 0, nˆe´u x= 0,

ex+ nˆe´u x <

l`a h`am liˆen tu.c trˆen to`an tru.c sˆo´ Ta ch´u.ng minh r˘a`ngF(x) l`a nguyˆen h`am cu’a h`am e|x| trˆen to`an tru.c sˆo´ Thˆa.t vˆa.y, v´o.i x > ta c´o F0(x) = ex = e|x|, v´o.i x <0 th`ıF0(x) = ex = e|x| Ta c`on cˆ` n pha’ia ch´u.ng minh r˘a`ng F0(0) =e0 = Ta c´o

F+0(0) = lim

x→0+0

F(x)−F(0)

x = limx→0+0

ex−1 x = 1, F−0(0) = lim

x→0−0

F(x)−F(0)

x = limx→0−0

ex+ 2−1 x = Nhu vˆa.y F+0(0) =F

0

−(0) =F

(0) = = e|x| T`u d´o c´o thˆe’ viˆe´t:

Z

e|x|dx=F(x) +C =

  

ex+C, x <0

ex+ +C, x <0. N

V´ı du 3. T`ım nguyˆen h`am c´o dˆ` thi qua diˆe’m (o −2,2) dˆo´i v´o.i h`am f(x) =

x, x∈(−∞,0)

Gia’i. V`ı (ln|x|)0 =

x nˆen ln|x| l`a mˆo.t c´ac nguyˆen h`am cu’a h`am f(x) =

x Do vˆa.y, nguyˆen h`am cu’a f l`a h`am F(x) = ln|x|+C, C ∈ R H˘a`ng sˆo´ C du.o c x´ac di.nh t`u diˆe`u kiˆe.n F(−2) = 2, t´u.c l`a ln2 +C = 2⇒C = 2−ln2 Nhu vˆa.y

F(x) = ln|x|+ 2−ln2 = ln

(10)

V´ı du 4. T´ınh c´ac t´ıch phˆan sau dˆay: 1)

Z 2x+1−5x−1

10x dx, 2)

Z 2x+ 3

3x+ 2dx.

Gia’i. 1) Ta c´o I =

Z

2 x

10x − 5x 5·10x

dx=

Z h

21 x − 1 xi dx =

Z 1

5

x

dx−1

5

Z 1

2 x dx = 1 x ln1

5 − 1 x ln1 +C

=−

5xln5 +

5·2xln2 +C. 2)

I =

Z 2x+

2

3x+

dx=

3

h

x+2 +5 i

x+2

dx

= 3x+

5 9ln

x+2

3

+C.N

V´ı du 5. T´ınh c´ac t´ıch phˆan sau dˆay: 1)

Z

tg2xdx, 2)

Z

1 + cos2x

1 + cos 2xdx, 3)

Z √

1−sin 2xdx

Gia’i. 1)

Z

tg2xdx=

Z

sin2x cos2xdx=

Z

1−cos2x cos2x dx

=

Z

dx cos2x

Z

(11)

2)

Z 1 + cos2x

1 + cos 2xdx=

Z 1 + cos2x

2 cos2x dx =

1

Z dx

cos2x+

Z

dx

=

2(tgx+x) +C. 3)

Z √

1−sin 2xdx =Z psin2x−2 sinxcosx+ cos2xdx

=Z p(sinx−cosx)2dx=

Z

|sinx−cosx|dx = (sinx+ cosx)sign(cosx−sinx) +C. N

B `AI T ˆA P

B˘a`ng c´ac ph´ep biˆe´n dˆo’i dˆo` ng nhˆa´t, h˜ay du.a c´ac t´ıch phˆan d˜a cho vˆ` t´ıch phˆan ba’ng v`a t´ınh c´ac t´ıch phˆan d´oe

1.

Z dx

x4−1 (DS

1 4ln

xx−+ 11−

2arctgx) 2.

Z 1 + 2x2

x2(1 +x2)dx. (DS arctgx−

1 x) 3.

Z √

x2+ +√1−x2

1−x4 dx. (DS arc sinx+ ln|x+

1 +x2|)

4.

Z √

x2+ 1−√1−x2

x4−1 dx (DS ln|x+

x2−1| −ln|x+√x2+ 1|)

5.

Z √

x4+x−4+ 2

x3 dx. (DS ln|x| −

1 4x4)

6.

Z

23x−1

ex−1 dx. (DS e2x

2 +e x+ 1)

1Dˆ

(12)

7.

Z

22x−1

2x dx. (DS ln2

h23x

2

3 + −x i ) 8. Z dx

x(2 + ln2x) (DS √ 2arctg lnx √ 2) 9.

Z √3

ln2x

x dx. (DS 5ln

5/3

x)

10.

Z

ex+e2x

1−ex dx. (DS −e x

2ln|ex−1|) 11.

Z

exdx

1 +ex (DS ln(1 +e x))

12.

Z

sin2x

2dx. (DS 2x

sinx ) 13.

Z

cotg2xdx. (DS −x−cotgx) 14.

Z √

1 + sin 2xdx,x

0,π

(DS −cosx+ sinx) 15.

Z

ecosxsinxdx. (DS −ecosx) 16.

Z

excosexdx. (DS sinex) 17.

Z

1

1 + cosxdx. (DS tg x 2) 18.

Z

dx

sinx+ cosx (DS √ 2ln tg x + π ) 19. Z

1 + cosx

(x+ sinx)3dx. (DS −

2

2(x+ sinx)2)

20.

Z

sin 2x

p

1−4 sin2x

dx. (DS −1

2

p

1−4 sin2x) 21.

Z

sinx

p

2−sin2x

dx. (DS −ln|cosx+

(13)

22.

Z sinxcosx p

3−sin4x

dx. (DS 2arc sin

sin2 x √ ) 23. Z arccotg3x

1 + 9x2 dx. (DS −

1 6arccotg 3x) 24. Z

x+√arctg2x

1 + 4x2 dx. (DS

1

8ln(1 + 4x

2) +

3arctg

3/22x)

25.

Z

arc sinx−arc cosx

1−x2 dx. (DS

1

2(arc sin

2

x+ arc cos2x))

26.

Z

x+ arc sin32x

1−4x2 dx. (DS −

1

1−4x2+1

8arc sin

4

2x)

27.

Z

x+ arc cos3/2x

1−x2 dx. (DS −

1−x2 −2

5arc cos

5/2

x)

28.

Z

x|x|dx. (DS |x|

3

3 ) 29.

Z

(2x−3)|x−2|dx. (DS F(x) =

     −2 3x

3+

2x

2 −6x+C, x < 2

2 3x

3−

2x

2+ 6x+C, x>2

)

30.

Z

f(x)dx, f(x) =

  

1−x2, |x|61, 1− |x|, |x|>1 (DS F(x) =

    

xx

3

3 +C nˆe´u|x|61 xx|x|

2 +

6signx+C nˆe´u|x|>1 )

(14)

1) H`am x=ϕ(t) x´ac di.nh v`a kha’ vi trˆen khoa’ngT v´o.i tˆa p ho..p gi´a tri l`a khoa’ng X.

2) H`am y=f(x)x´ac di.nh v`a c´o nguyˆen h`am F(x)trˆen khoa’ng X. Khi d´o h`am F(ϕ(t)) l`a nguyˆen h`am cu’a h`am f(ϕ(t))ϕ0(t) trˆen

khoa’ng T.

T`u di.nh l´y 10.1.1 suy r˘a`ng

Z

f(ϕ(t))ϕ0(t)dt=F(ϕ(t)) +C. (10.1) V`ı

F(ϕ(t)) +C = (F(x) +C)x=ϕ(t) =

Z

f(x)dxx=ϕ(t) cho nˆen d˘a’ng th´u.c (10.1) c´o thˆe’ viˆe´t du.´o.i da.ng

Z

f(x)dxx=ϕ(t)=

Z

f(ϕ(t))ϕ0(t)dt (10.2) D˘a’ng th´u.c (10.2) du.o c go.i l`a cˆong th´u.c dˆo’i biˆe´n t´ıch phˆan bˆa´t di.nh.

Nˆe´u h`am x = ϕ(t) c´o h`am ngu.o..c t = ϕ−1(x) th`ı t`u (10.2) thu

du.o c

Z

f(x)dx=

Z

f(ϕ(t))ϕ0(t)dtt=ϕ−1(x). (10.3)

Ta nˆeu mˆo.t v`ai v´ı du vˆe` ph´ep dˆo’i biˆe´n

i) Nˆe´u biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan c´o ch´u.a c˘an

a2−x2,a >0

th`ı su.’ du.ng ph´ep dˆo’i biˆe´nx=asint, t∈−π

2, π

ii) Nˆe´u biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan c´o ch´u.a c˘an

x2−a2,a >0

th`ı d`ung ph´ep dˆo’i biˆe´nx= a

cost, < t < π

2 ho˘a.cx=acht. iii) Nˆe´u h`am du.´o.i dˆa´u t´ıch phˆan ch´u.a c˘an th´u.c

a2+x2, a > 0

th`ı c´o thˆe’ d˘a.tx=atgt, t∈− π

2, π

ho˘a.cx =asht.

(15)

C ´AC V´I DU. V´ı du 1. T´ınh

Z

dx cosx

Gia’i. Ta c´o

Z

dx cosx =

Z

cosxdx

1−sin2x (d˘a.t t = sinx, dt= cosxdx) =

Z

dt 1−t2 =

1 2ln

+1−tt

+C = ln

tg x + π

+C. N

V´ı du 2. T´ınh I =

Z

x3dx

x8−2

Gia’i. ta c´o

I =

Z

4d(x

4

) x8−2 =

Z √ d x4 √

−2h1−x

4

2

2i

D˘a.t t= x

4

2 ta thu du.o c I =−

√ ln √

2 +x4

2−x4

+C. N

V´ı du 3. T´ınh I =

Z

x2dx

p

(x2+a2)3 ·

Gia’i. D˘a.t x(t) =atgtdx= adt

cos2t Do d´o

I =

Z

a3tg2t·cos3tdt a3cos2t =

Z

sin2t costdt =

Z

dt cost

Z

costdt = ln

tgt

2 + π

−sint+C.

V`ıt= arctgx a nˆen I = ln

tg 1 2arctg x a + π −sin arctgx a +C =−√ x

x2+a2 + ln|x+

(16)

Thˆa.t vˆa.y, v`ı sinα = cosα·tgα nˆen dˆ˜ d`ang thˆa´y r˘a`nge sin arctgx a

= √ x

x2+a2 ·

Tiˆe´p theo ta c´o sin1

2arctg x a + π

cos1 2arctg x a + π =

1−cosarctgx a + π sin arctgx a + π =

1 + sinarctgx a −cos arctgx a

= x+

a2+x2

a

v`a t`u d´o suy diˆ`u pha’i ch´e u.ng minh N

V´ı du 4. T´ınh I =

Z √

a2+x2dx.

Gia’i. D˘a.t x=asht Khi d´o I =

Z q

a2(1 + sh2

t)achtdt=a2

Z

ch2tdt =a2

Z

ch2t+ dt=

a2

2

1

2sh2t+t

+C = a

2

2(sht·cht+t) +C. V`ı cht = p1 + sh2t =

r

1 +x

2

a2 e

t

= sht+ cht = x+

a2+x2

a nˆen t= ln

x+

a2+x2

a

v`a d´o

Z √

a2+x2dx= x

2

a2+x2+a

2 ln|x+

a2+x2|+C. N

V´ı du 5. T´ınh 1) I1 =

Z

x2+

x6−7x4+x2dx, 2) I2 =

Z

3x+

(17)

Gia’i. 1) Ta c´o

I1 =

Z +

x2

r

x2 −7 +

x2

dx=

Z d

x

x

r

x

x −5 = Z dt

t2−5

= ln|t+

t2−5|+C = ln

x

x +

r

x2−7 +

x2

+C.

2) Ta viˆe´t biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan du.´o.i da.ng f(x) =−3

−2x+

x2+ 6x−8 + 13·

1

x2+ 6x−8

v`a thu du.o..c I2 =

Z

f(x)dx =−3

2

Z

(−x2+ 6x−8)−12d(x2+ 6x−8) + 13

Z d(x−3)

p

1−(x−3)2

=−3

x2+ 6x−8 + 13 arc sin(x−3) +C. N

V´ı du 6. T´ınh 1)

Z dx

sinx, 2) I2 =

Z sinxcos3x

1 + cos2xdx.

Gia’i

1) C´ach I Ta c´o

Z

dx sinx =

Z

sinx sin2xdx=

Z

d(cosx) cos2x−1 =

1 2ln

1−cosx + cosx +C.

C´ach II

Z

dx sinx =

Z d x sinx 2cos x = Z d x tgx ·cos

(18)

2) Ta c´o

I2 =

Z

sinxcosx[(cos2x+ 1)−1]

1 + cos2x dx.

Ta d˘a.t t= + cos2x T`u d´o dt=−2 cosxsinxdx Do d´o

I2 =−

1

Z

t−1

t dt =− t

2 + ln|t|+C, d´o t= + cos2x. N

V´ı du 7. T´ınh 1) I1 =

Z

exdx

e2x+ 5 , 2) I2 =

Z

ex+ 1 ex−1dx.

Gia’i

1) D˘a.tex =t Ta c´oexdx =dt v`a I1 =

Z

dt

t2+ 5 = ln|t+

t2 + 5|+C = ln|ex +

e2x+ 5|+C. 2) Tu.o.ng tu , d˘a.t ex =t, exdx=dt,dx = dt

t v`a thu du.o c I2 =

Z t+ 1

t−1 dt

t =

Z 2dt

t−1−

Z dt

t = 2ln|t−1| −ln|t|+C = 2ln|ex−1| −lnex+c

= ln(ex−1)2 −x+C. N

B `AI T ˆA P

T´ınh c´ac t´ıch phˆan: 1.

Z

e2x

4

ex+ 1dx. (DS 21(3e

x− 4)p4

(ex+ 1)3)

(19)

2.

Z

dx

ex+ 1 (DS ln

1 +ex−1

1 +ex+ 1

)

3.

Z

e2x

ex−1dx. (DS e x

+ ln|ex−1|) 4.

Z √

1 + lnx

x dx. (DS

p

(1 + lnx)3)

5.

Z √

1 + lnx xlnx dx. (DS

1 + lnx−ln|lnx|+ 2ln| √

1 + lnx−1|) 6.

Z

dx

ex/2+ex (DS −x−2e

x2 + 2ln(1 +ex2)) 7.

Z

arctg√x

x

dx

1 +x (DS (arctg

x)2) 8.

Z √

e3x+e2xdx. (DS. 3(e

x+ 1)3/2)

9.

Z

e2x2+2x−1(2x+ 1)dx (DS 2e

2x2+2x−1

) 10.

Z

dx

ex−1 (DS 2arctg

ex−1) 11.

Z

e2xdx

e4x+ 1 (DS 2ln(e

2x+√e4x+ 1)) 12.

Z 2xdx

1−4x (DS

arc sin 2x ln2 ) 13.

Z

dx

1 +√x+ (DS 2[

x+ 1−ln(1 +√x+ 1)])

Chı’ dˆa˜n. D˘a.t x+ =t2 14.

Z

x+

xx−2dx. (DS

x−2 +

2arctg

r

x−2 ) 15.

Z

dx

ax+b+m (DS a

ax+bmln| √

(20)

16.

Z

dx

3

x(√3x−1) (DS 3

x+ 3ln|√3x−1|)

17.

Z

dx

(1−x2)3/2 (DS tg(arc sinx))

Chı’ dˆa˜n. D˘a.t x= sint, t∈− π

2, π ) 18. Z dx

(x2+a2)3/2 (DS

1 a2 sin

arctgx a

)

Chı’ dˆa˜n. D˘a.t x=atgt, t∈− π

2, π 19. Z dx

(x2−1)3/2 (DS.−

1

cost, t= arc sin x)

Chı’ dˆa˜n. D˘a.t x= sint,−

π

2 < t <0, 0< t < π 20.

Z √

a2−x2dx. (DS. a

2arc sin x a +

xa2−x2

2 )

Chı’ dˆa˜n. D˘a.t x=asint. 21.

Z √

a2+x2dx. (DS. x

2

a2+x2+a

2ln|x+

a2+x2|)

Chı’ dˆa˜n. D˘a.t x=asht. 22.

Z

x2

a2+x2dx. (DS

1

x

a2+x2−a2

ln(x+

a2+x2))

23.

Z

dx

x2√x2+a2 (DS −

x2+a2

a2x )

Chı’ dˆa˜n. D˘a.t x=

t ho˘a.c x=atgt, ho˘a.c x=asht. 24.

Z x2dx

a2−x2 (DS

a2

2arc sin x a

x a

a2−x2)

Chı’ dˆa˜n. D˘a.t x=asint. 25.

Z

dx x

x2−a2 (DS −

1 aarc sin

(21)

Chı’ dˆa˜n. D˘a.t x=

t, ho˘a.c x= a

cost ho˘a.c x=acht. 26.

Z √

1−x2

x2 dx. (DS −

1−x2

x −arc sinx) 27.

Z

dx

p

(a2+x2)3 (DS

x a2√x2+a2)

28.

Z dx

x2√x2−9 (DS

x2−9

9x ) 29.

Z

dx

p

(x2−a2)3 (DS −

x a2√x2−a2)

30.

Z

x2

a2 −x2dx.

(DS − x

4(a

2−

x2)3/2+a

2

8x

x2−a2+a

8arc sin x a)

31.

Z r

a+x

axdx. (DS −

a2−x2+ arc sinx

a)

Chı’ dˆa˜n. D˘a.t x=acos 2t 32.

Z r

xa x+adx. (DS

x2−a2−2aln(√xa+√x+a) nˆe´u x > a,

− √

x2−a2+ 2aln(√−x+a+√−xa) nˆe´u x <a)

Chı’ dˆa˜n. D˘a.t x= a cos 2t 33.

Z r

x−1 x+

dx

x2 (DS arc cos

1 x

x2−1

x )

Chı’ dˆa˜n. D˘a.t x= t 34.

Z

dx

xx2 (DS 2arc sin

(22)

Chı’ dˆa˜n. D˘a.t x= sin2t. 35.

Z √

x2+ 1

x dx. (DS

x2+ 1−ln

+

x2+ 1

x

) 36.

Z

x3dx

2−x2 (DS −

x2

3

2−x2−

3

2−x2)

37.

Z p

(9−x2)2

x6 dx. (DS −

p

(9−x2)5

45x5 )

38.

Z

x2dx

x2−a2 (DS

x

x2−a2+a

2ln|x+

x2−a2|)

39.

Z

(x+ 1)dx

x(1 +xex) (DS ln

xex

1 +xex

)

Chı’ dˆa˜n. Nhˆan tu.’ sˆo´ v`a mˆ˜u sˆo´ v´o.ia ex rˆ` i d˘a.to xex=t. 40.

Z

dx

(x2+a2)2 (DS

1 2a3

h

arctgx a +

ax x2+a2

i

)

Chı’ dˆa˜n. D˘a.t x=atgt.

10.1.3 Phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` na Phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n du a trˆen di.nh l´y sau dˆay.a

D- i.nh l´y. Gia’ su.’ trˆen khoa’ngD c´ac h`am u(x)v`a v(x)kha’ vi v`a h`am

v(x)u0(x) c´o nguyˆen h`am Khi d´o h`am u(x)v0(x) c´o nguyˆen h`am trˆen D v`a

Z

u(x)v0(x)dx=u(x)v(x)

Z

v(x)u0(x)dx (10.4) Cˆong th´u.c (10.4) du.o c go.i l`a cˆong th´u.c t´ınh t´ıch phˆan t`u.ng phˆa` n V`ıu0(x)dx=du v`a v0(x)dx=dv nˆen (10.4) c´o thˆe’ viˆe´t du.´

o.i da.ng

Z

udv=uv

Z

vdu. (10.4*)

(23)

Nh´om Igˆ` m nh˜o u.ng t´ıch phˆan m`a h`am du.´o.i dˆa´u t´ıch phˆan c´o ch´u.a th`u.a sˆo´ l`a mˆo.t c´ac h`am sau dˆay: lnx, arc sinx, arc cosx, arctgx, (arctgx)2, (arc cosx)2, lnϕ(x), arc sinϕ(x),

Dˆe’ t´ınh c´ac t´ıch phˆan n`ay ta ´ap du.ng cˆong th´u.c (10.4*) b˘a`ng c´ach d˘a.tu(x) b˘a`ng mˆo.t c´ac h`am d˜a chı’ c`ondv l`a phˆ` n c`on la.i cu’aa biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan

Nh´om II gˆ` m nh˜o u.ng t´ıch phˆan m`a biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan c´o da.ng P(x)eax, P(x) cosbx,P(x) sinbxtrong d´o P(x) l`a da th´u.c, a, bl`a h˘a`ng sˆo´

Dˆe’ t´ınh c´ac t´ıch phˆan n`ay ta ´ap du.ng (10.4*) b˘a`ng c´ach d˘a.tu(x) = P(x), dv l`a phˆ` n c`on la.i cu’a biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan Sau mˆo˜ia lˆ` n t´ıch phˆan t`a u.ng phˆ` n bˆa.c cu’a da th´u.c s˜e gia’m mˆo.t do.n vi a

Nh´om III gˆ` m nh˜o u.ng t´ıch phˆan m`a h`am du.´o.i dˆa´u t´ıch phˆan c´o da.ng: eaxsinbx, eaxcosbx, sin(lnx), cos(lnx), Sau hai lˆ` n t´ıch phˆana t`u.ng phˆ` n ta la.i thu du.o c t´ıch phˆan ban dˆaa ` u v´o.i hˆe sˆo´ n`ao d´o D´o l`a phu.o.ng tr`ınh tuyˆe´n t´ınh v´o.i ˆa’n l`a t´ıch phˆan cˆ` n t´ınh.a

Du.o.ng nhiˆen l`a ba nh´om v`u.a nˆeu khˆong v´et hˆe´t mo.i t´ıch phˆan t´ınh du.o c b˘a`ng t´ıch phˆan t`u.ng phˆa` n (xem v´ı du 6)

Nhˆa n x´et. Nh`o c´ac phu.o.ng ph´ap dˆo’i biˆe´n v`a t´ıch phˆan t`u.ng phˆ` na ta ch´u.ng minh du.o c c´ac cˆong th´u.c thu.`o.ng hay su.’ du.ng sau dˆay:

1)

Z

dx x2+a2 =

1 aarctg

x

a +C, a6= 2)

Z

dx a2−x2 =

1 2aln

a+x

ax

+C, a6= 3)

Z

dx

a2−x2 = arc sin

x

a +C, a 6= 4)

Z

dx

xa2 = ln|x+

(24)

C ´AC V´I DU. V´ı du 1. T´ınh t´ıch phˆan I =

Z √

xarctgxdx.

Gia’i. T´ıch phˆan d˜a cho thuˆo.c nh´om I Ta d˘a.t u(x) = arctgx,

dv =√xdx. Khi d´o du=

1 +x · dx 2√x, v=

2 3x

3

2 Do d´o

I = 3x

3 2arctg

x

3

Z x

1 +xdx =

3x

3 2arctg

x

3

Z h

1−

1 +x

i

dx =

3x

3 arctg

x

3(x−ln|1 +x|) +C. N V´ı du 2. T´ınh I =

Z

arc cos2xdx.

Gia’i. Gia’ su.’ u= arc cos2x, dv=dx Khi d´o

du=−2arc cos√ x

1−x2 dx, v=x.

Theo (10.4*) ta c´o

I =xarc cos2x+

Z xarc cosx

1−x2 dx.

Dˆe’ t´ınh t´ıch phˆan o.’ vˆe´ pha’i d˘a’ng th´u.c thu du.o..c ta d˘a.t u = arc cosx,dv= √xdx

1−x2 Khi d´o

du=−√ dx

1−x2 , v=−

Z

d(

1−x2) =−

1−x2+C

v`a ta chı’ cˆ` n lˆa´ya v =− √

1−x2:

Z

xarc cosx

21−x2dx=−

1−x2arc cosx

Z

dx =−

(25)

Cuˆo´i c`ung ta thu du.o..c I =xarc cos2x−2

1−x2arc cosx−2x+C. N

V´ı du 3. T´ınh I =

Z

x2sin 3xdx

Gia’i. T´ıch phˆan d˜a cho thuˆo.c nh´om II Ta d˘a.t u(x) = x2,

dv = sin 3xdx Khi d´o du= 2xdx, v=−1

3cos 3x v`a I =−1

3x

2

cos 3x+2

Z

xcos 3xdx =−1

3x

2

cos 3x+ 3I1.

Ta cˆ` n t´ınha I1 D˘a.t u = x, dv = cos 3xdx Khi d´o du = 1dx,

v=

3sin 3x T`u d´o I =−1

3x

2

cos 3x+

h1

3xsin 3x−

Z

sin 3xdx

i

=−1

3x

2

cos 3x+

9xsin 3x+

27cos 3x+C. N

Nhˆa n x´et. Nˆe´u d˘a.t u = sin 3x, dv = x2dx th`ı lˆ` n t´ıch phˆan t`a u.ng phˆ` n th´a u nhˆa´t khˆong du.a dˆe´n t´ıch phˆan do.n gia’n ho.n

V´ı du 4. T´ınh I =

Z

eaxcosbx; a, b6=

Gia’i. Dˆay l`a t´ıch phˆan thuˆo.c nh´om III Ta d˘a.t u = eax, dv = cosbxdx Khi d´o du=aeaxdx,v =

bsinbx v`a I =

be ax

sinbxa

b

Z

eaxsinbxdx= be

ax

sinbxa

bI1.

Dˆe’ t´ınh I1 ta d˘a.t u = eax, dv = sinbxdx Khi d´o du = aeaxdx,

v=−1

bcosbxv`a I1 =−

1 be

ax

cosbx+a b

Z

(26)

Thˆe´I1 v`ao biˆe’u th´u.c dˆo´i v´o.i I ta thu du.o c

Z

eaxcosbxdx= be

ax

sinbx+ a

b2 cosbx

a2

b2

Z

eaxcosbxdx. Nhu vˆa.y sau hai lˆa` n t´ıch phˆan t`u.ng phˆ` n ta thu du.o c phu.o.nga tr`ınh tuyˆe´n t´ınh v´o.i ˆa’n l`aI Gia’i phu.o.ng tr`ınh thu du.o c ta c´o

Z

eaxcosbxdx=eaxacosbx+bsinbx

a2+b2 +C. N

V´ı du 5. T´ınh I =R sin(ln x)dx

Gia’i. D˘a.t u = sin(lnx), dv = dx Khi d´o du =

xcos(lnx)dx, v=x Ta thu du.o c

I =xsin(lnx)−

Z

cos(lnx)dx=xsin(lnx)−I1.

Dˆe’ t´ınh I1 ta la.i d˘a.t u = cos(lnx), dv = dx. Khi d´o du =

−1

xsin(lnx)dx,v =x v`a

I1 =xcos(lnx) +

Z

sin(lnx)dx

Thay I1 v`ao biˆe’u th´u.c dˆo´i v´o.i I thu du.o c phu.o.ng tr`ınh

I =x(sin lnx−cos lnx)−I v`a t`u d´o

I = x

2(sin lnx−cos lnx) +C. N

(27)

V´ı du 6. T´ınh 1) I =

Z

xdx

sin2x; 2) In =

Z

dx

(x2+a2)n, n ∈N

Gia’i. 1) R˜o r`ang t´ıch phˆan n`ay khˆong thuˆo.c bˆa´t c´u nh´om n`ao ba nh´om d˜a nˆeu Thˆe´ nhu.ng b˘a`ng c´ach d˘a.tu =x,dv = dx

sin2x v`a ´ap du.ng cˆong th´u.c t´ıch phˆan t`u.ng phˆa` n ta c´o

I =−xcotgx+

Z

cotgxdx =−xcotgx+

Z

cosx sinxdx =−xcotgx+

Z

d(sinx)

sinx =−xcotgx+ ln|sinx|+C. 2) T´ıch phˆan In du.o..c biˆe’u diˆe˜n du.´o.i da.ng

In= a2

Z

x2+a2−x2

(x2+a2)n dx= a2

h Z dx

(x2+a2)n−1 −

Z

x2dx

(x2 +a2)n

i

=

a2In−1−

1 2a2

Z

x 2xdx (x2+a2)n·

Ta t´ınh t´ıch phˆan o.’ vˆe´ pha’i b˘a`ng phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n D˘a.ta u = x, dv = 2xdx

(x2+a2)n =

d(x2+a2)

(x2+a2)n Khi d´o du = dx, v =−

(n−1)(x2+a2)n−1 v`a

1 2a2

Z

x 2xdx (x2+a2)n =

x

2a2(n−1)(x2+a2)n−1 +

1

2a2(n−1)In−1

T`u d´o suy r˘a`ng In=

a2In−1+

x

2a2(n−1)(x2 +a2)n−1 −

1

2a2(n−1)In−1

hay l`a

In= x

2a2(n−1)(x2+a2)n−1 +

2n−3

(28)

Ta nhˆa.n x´et r˘a`ng t´ıch phˆanInkhˆong thuˆo.c bˆa´t c´u nh´om n`ao ba nh´om d˜a chı’

Khi n = ta c´o I1 =

Z

dx x2+a2 =

1 aarctg

x a +C. ´

Ap du.ng cˆong th´u.c truy hˆo` i (*) ta c´o thˆe’ t´ınhI2 qua I1 rˆ` io I3 qua

I2, N

V´ı du 7. T´ınh I =

Z

xeaxcosbxdx.

Gia’i. D˘a.t u=x, dv=eaxcosbxdx Khi d´o du=dx, v=eaxacosbx+bsinbx

a2+b2

(xem v´ı du 4) Nhu vˆa.y I =xeaxacosbx+bsinbx

a2+b2 −

1 a2+b2

Z

eax(acosbx+bsinbx)dx =xeaxacosbx+bsinbx

a2+b2 −

a a2+b2

Z

eaxcosbxdx

b

a2+b2

Z

eaxsinbxdx.

T´ıch phˆan th´u nhˆa´t o.’ vˆe´ pha’i du.o c t´ınh v´ı du 4, t´ıch phˆan th´u hai du.o c t´ınh tu.o.ng tu v`a b˘a`ng

Z

eaxsinbxdx=eaxasinbxbcosbx a2+b2 ·

Thay c´ac kˆe´t qua’ thu du.o..c v`ao biˆe’u th´u.c dˆo´i v´o.i I ta c´o I = e

ax

a2+b2

h

xa

a2+b2

(acosbx+bsinbx)

b

a2+b2(asinbxbcosbx)

i

+C N

(29)

1.

Z

x2xdx. (DS

x(xln 2−1) ln22 ) 2.

Z

x2exdx. (DS −x2ex−2xe−x−2e−x) 3.

Z

x3ex2dx. (DS −1

2(x

2 + 1)e−x2

) 4.

Z

(x3+x)e5xdx. (DS 5e

5x x3−

5x

2

+31 25x

31 125 ) 5. Z

arc sinxdx. (DS xarc sinx+√1−x2)

6.

Z

xarc sinxdx. (DS 4(2x

2−

1)arc sinx+ 4x

1−x2)

7.

Z

x2arc sin 2xdx (DS x

3

3arc sin 2x+

2x2+ 1

36

1−4x2)

8.

Z

arctgxdx (DS xarctgx

2ln(1 +x

2))

9.

Z

arctg√xdx. (DS (1 +x)arctgx−√x) 10.

Z

x3arctgxdx (DS x

4−

1

4 arctgx− x3 12 + x 4) 11. Z

(arctgx)2xdx (DS. x

2+ 1

2 (arctgx)

2−xarctgx+

2ln(1 +x

2))

12.

Z

(arc sinx)2dx. (DS x(arc sinx)2+ 2arc sinx

1−x2−2x)

13.

Z

arc sinx

x+ 1dx. (DS

x+ 1arc sinx+ 4√1−x) 14.

Z

arc sinx

x2 dx. (DS −

arc sinx x −ln

+

1−x2

x ) 15. Z xarctgx

1 +x2dx. (DS

(30)

16.

Z

arc sin√x

1−x dx. (DS 2(

x−√1−xarc sinx)) 17.

Z

lnxdx. (DS x(lnx−1)) 18.

Z √

xln2xdx. (DS 3x

3/2ln2

x

3lnx+

) 19.

Z

ln(x+

16 +x2)dsx (DS. xln(x+√16 +x2)−√16 +x2)

20.

Z

xln(x+

1 +x2)

1 +x2 dx. (DS

1 +x2ln(x+√1 +x2)−x)

21.

Z

sinxln(tgx)dx (DS lntgx

−cosxln(tgx)) 22.

Z

x2ln(1 +x)dx. (DS (x

3+ 1) ln(x+ 1)

3 −

x3

9 + x2

6 − x 3) 23.

Z

x2sin 2xdx (DS 1−2x

2

4 cos 2x+ x

2sin 2x) 24.

Z

x3cos(2x2)dx (DS 8(2x

2

sin 2x2+ cos 2x2)) 25.

Z

exsinxdx. (DS e

x(sinx−cosx)

2 )

26.

Z

3xcosxdx. (DS sinx+ (ln 3) cosx + ln23

x)

27.

Z

e3x(sin 2x−cos 2x)dx (DS e

3x

13(sin 2x−5 cos 2x)) 28.

Z

xe2xsin 5xdx

(DS e

2x 29

h

2x+ 21 29

sin 5x+−5x+20 29

cos 5xi)

29.

Z

x2exsinxdx. (DS

(31)

30.

Z

x2excosxdx. (DS (x−1)

2

sinx+ (x2−1) cosx

2 e

x ) 31.

Z

x2sin(lnx)dx. (DS [3 sinx(lnx)−cos(lnx)]x

3

10 )

32. T`ım cˆong th´u.c truy hˆ` i dˆo´i v´o.i mˆo˜i t´ıch phˆano In du.o c cho du.´o.i dˆay:

1) In =

Z

xneaxdx, a6= (DS In= ax

n

eaxn

aIn−1) 2) In =

Z

lnnxdx. (DS In=xlnnxnIn−1)

3) In=

Z

lnnxdx,α 6=−1 (DS In= x α+1

lnnx α+ −

n

α+ 1In−1) 4)In =

Z

xndx

x2+a,n >2 (DS.In=

xn−1√x2+a

n

n−1 n aIn−2) 5)In=

Z

sinnxdx,n >2 (DS.In=−cosxsin

n−1

x

n +

n−1 n In−2) 6) In =

Z

cosnxdx, n >2 (DS In= sinxcos n−1x

n +

n−1 n In−2) 7) In=

Z

dx

cosnx, n >2 (DS.In =

sinx

(n−1) cosn−1x+

n−2 n−1In−2) 10.2 ac l´o.p h`am kha’ t´ıch l´o.p c´ac

h`am so cˆa´p

10.2.1 T´ıch phˆan c´ac h`am h˜u.u ty 1) Phu.o.ng ph´ap hˆe sˆo´ bˆa´t di.nh H`am da.ng

(32)

trong d´oPm(x) l`a da th´u.c bˆa.cm,Qn(x) l`a da th´u.c bˆa.cn du.o..c go.i l`a h`am h˜u.u ty’ (hay phˆan th´u.c h˜u.u ty’) Nˆe´u m > n th`ıPm(x)/Qn(x) du.o c go.i l`a phˆan th´u.c h˜u.u ty’ khˆong thu c su ; nˆe´u m < n th`ı Pm(x)/Qn(x) du.o c go.i l`a phˆan th´u.c h˜u.u ty’ thu c su

Nˆe´u R(x) l`a phˆan th´u.c h˜u.u ty’ khˆong thu c su th`ı nh`o ph´ep chia da th´u.c ta c´o thˆe’ t´ach phˆ` n nguyˆena W(x) l`a da th´u.c cho

R(x) = Pm(x)

Qn(x) =W(x) + Pk(x)

Qn(x) (10.5) d´o k < nv`aW(x) l`a da th´u.c bˆa.cmn.

T`u (10.5) suy r˘a`ng viˆe.c t´ınh t´ıch phˆan phˆan th´u.c h˜u.u ty’ khˆong thu c su du.o c quy vˆe` t´ınh t´ıch phˆan phˆan th´u.c h˜u.u ty’ thu c su v`a t´ıch phˆan mˆo.t da th´u.c.

D- i.nh l´y 10.2.1. Gia’ su.’ Pm(x)/Qn(x) l`a phˆan th´u.c h˜u.u ty’ thu c su v`a

Q(x) = (xa)α· · ·(x−b)β(x2+px+q)γ· · ·(x2+rx+s)δ

trong d´o a, , b l`a c´ac nghiˆe.m thu c, x2 +px+q, , x2+rx+s l`a nh˜u.ng tam th´u.c bˆa c hai khˆong c´o nghiˆe.m thu..c Khi d´o

P(x) Q(x) =

(x−a)α +· · ·+ A1

xa +· · ·+ (x−b)β +

−1

(x−b)β−1 +· · ·+

+ B1 xb+

Mγx+

(x2 +px+q)γ +· · ·+

M1x+N1

x2+px+q +· · ·+

+ Kδx+

(x2+rx+s)δ +· · ·+

K1x+L1

x2+rx+s, (10.6)

trong d´o Ai, Bi, Mi, Ni, Ki v`a Li l`a c´ac sˆo´ thu..c.

C´ac phˆan th´u.c o.’ vˆe´ pha’i cu’a (10.6) du.o c go.i l`a c´ac phˆan th´u.c do.n gia’n hay c´ac phˆan th´u.c co ba’n v`a d˘a’ng th´u.c (10.6) du.o c go.i l`a khai triˆe’n phˆan th´u.c h˜u.u ty’ thu c su P(x)/Q(x) th`anh tˆo’ng c´ac phˆan th´u.c co ba’n v´o.i hˆe sˆo´ thu..c

(33)

Phu.o.ng ph´ap I. Quy dˆ` ng mˆa˜u sˆo´ d˘a’ng th´o u.c (10.6) v`a sau d´o cˆan b˘a`ng c´ac hˆe sˆo´ cu’a l˜uy th`u.a c`ung bˆa.c cu’a biˆe´nxv`a di dˆe´n hˆe phu.o.ng tr`ınh dˆe’ x´ac di.nh Ai, , Li (phu.o.ng ph´ap hˆe sˆo´ bˆa´t di.nh).

Phu.o.ng ph´ap II. C´ac hˆe sˆo´Ai, , Li c˜ung c´o thˆe’ x´ac di.nh b˘a`ng c´ach thayxtrong (10.6) (ho˘a.c d˘a’ng th´u.c tu.o.ng du.o.ng v´o.i (10.6)) bo.’i c´ac sˆo´ du.o..c cho.n mˆo.t c´ach th´ıch ho p

T`u (10.6) ta c´o

D- i.nh l´y 10.2.2. T´ıch phˆan bˆa´t di.nh cu’a mo.i h`am h˜u.u ty’ dˆe`u biˆe’u diˆ˜n du.o c qua c´ac h`am so cˆa´p m`a cu thˆe’ l`a qua c´ac h`am h˜u.u ty’, h`ame lˆogarit v`a h`am arctang.

C ´AC V´I DU. V´ı du 1. T´ınh I =

Z

xdx (x−1)(x+ 1)2

Gia’i. Ta c´o x

(x−1)(x+ 1)2 =

A x−1 +

B1

x+ + B2

(x+ 1)2

T`u d´o suy r˘a`ng

x=A(x+ 1)2+B1(x−1)(x+ 1) +B2(x−1) (10.7)

Ta x´ac di.nh c´ac hˆe sˆo´A,B1,B2 b˘a`ng c´ac phu.o.ng ph´ap sau dˆay

Phu.o.ng ph´ap I. Viˆe´t d˘a’ng th´u.c (10.7) du.´o.i da.ng x≡(A+B1)x2+ (2A+B2)x+ (A−B1−B2)

Cˆan b˘a`ng c´ac hˆe sˆo´ cu’a l˜uy th`u.a c`ung bˆa.c cu’a x ta thu du.o..c

    

A+B1=

2A+B2 =

AB1−B2 =

T`u d´o A=

4, B1 =−

(34)

Phu.o.ng ph´ap II. Thayx = v`ao (10.7) ta c´o =A·4⇒A= Tiˆe´p theo, thay x = −1 v`ao (10.7) ta thu du.o c: −1 = −B2 ·2 hay

l`a B2 =

1

2 Dˆe’ t`ım B1 ta thˆe´ gi´a tri x = v`ao (10.7) v`a thu du.o c =AB1−B2 hay l`aB1 =AB2 =−

1 Do d´o

I =

Z

dx x−1−

1

Z

dx x+ +

1

Z

dx (x+ 1)2

=−

2(x+ 1) + 4ln

xx−+ 11+C. N

V´ı du 2. T´ınh I =

Z

3x+ x(1 +x2)2dx.

Gia’i. Khai triˆe’n h`am du.´o.i dˆa´u t´ıch phˆan th`anh tˆo’ng c´ac phˆan th´u.c co ba’n

3x+ x(1 +x2)2 =

A x +

Bx+C +x2 +

Dx+F (1 +x2)2

T`u d´o

3x+ 1≡(A+B)x4+Cx3+ (2A+B+D)x2+ (C+F)x+A. Cˆan b˘a`ng c´ac hˆe sˆo´ cu’a c´ac l˜uy th`u.a c`ung bˆa.c cu’a x ta thu du.o c

              

A+B = C =

2A+B+D = ⇒A = 1, B =−1, C = 0, D =−1, F = C +F =

A= T`u d´o suy r˘a`ng

I =

Z

dx x

Z

xdx +x2 −

Z

xdx

(1 +x2)2 +

Z

dx (1 +x2)2

= ln|x| −1

2ln(1 +x

2

)−1

2(1 +x

2

)−2d(1 +x2) +

Z

dx (1 +x2)2

= ln|x| −1

2ln(1 +x

2

) +

(35)

Ta t´ınh I2 =

Z

dx

(1 +x2)2 b˘a`ng cˆong th´u.c truy hˆ` i thu du.o c trongo

10.1 Ta c´o I2 =

1 2·

x +x2 +

1 2I1 =

x 2(1 +x2)+

1

Z dx

1 +x2

= x

2(1 +x2)+

1

2arctgx+C. Cuˆo´i c`ung ta thu du.o c

I = ln|x| −

2ln(1 +x

2

) + 3x+ 2(1 +x2)+

3

2arctgx+C. N

B `AI T ˆA P T´ınh c´ac t´ıch phˆan (1-12)

1.

Z

xdx

(x+ 1)(x+ 2)(x−3) (DS

4ln|x+ 1| −

5ln|x+ 2|+

20|x−3|) 2.

Z 2x4 + 5x2−2

2x3 −x−1 dx.

DS x

2

2 + ln|x−1|+ ln(2x

2

+ 2x+ 1) + arctg(2x+ 1)) 3.

Z

2x3+x2+ 5x+ (x2+ 3)(x2−x+ 1)dx.

DS √1

3arctg x

3+ ln(x

2

x+ 1) + √2

3arctg

2x−1

3 ) 4.

Z

x4+x2+ x(x−2)(x+ 2)dx.

(DS x

2

2 −

4ln|x|+ 21

8 ln|x−2|+ 21

(36)

5.

Z

dx

x(x−1)(x2−x+ 1)2

(DS ln

x−1

x − 10 √ 3arctg

2x−1

3

3

2x−1 x2−x+ 1)

6.

Z

x4 −x2+ 1

(x2−1)(x2+ 4)(x2−2)dx.

(DS −

10ln

xx−+ 11

+ 20arctg x 2+ √ 2ln x− √ x+ √ ) 7. Z

3x2+ 5x+ 12 (x2+ 3)(x2+ 1)dx.

(DS −

4ln(x

2

+ 3)− √ arctg x √ + 4ln(x

+ 1) +9

2arctgx) 8.

Z

(x4+ 1)dx x5+x4 −x3−x2

(DS ln|x|+ x+

1

2ln|x−1| −

2ln|x+ 1|+ x+ 1) 9.

Z

x3+x+ x4−1 dx.

(DS

4ln|x−1|+

4ln|x+ 1| −

2arctgx) 10.

Z

x4

1−x4dx.

(DS −x+ ln

xx+ 1−1

+1 2arctgx) 11. Z

3x+

(x2+ 2x+ 2)2dx.

(DS 2x−1

(37)

12.

Z

x4−2x2+ (x2−2x+ 2)2dx.

(DS x+ 3−x

x2−2x+ 2 + ln(x

−2x+ 2) + arctg(x−1)) 13.

Z

x2+ 2x+ 7

(x−2)(x2+ 1)3dx.

(DS 5ln|x

2

−2| −

10ln|x

2

+ 1|+ 1−x x2+ 1 −

11

5 arctgx) 14.

Z

x2

(x+ 2)2(x+ 1)dx.

(DS

x+ + ln|x+ 1|) 15.

Z x2+ 1

(x−1)3(x+ 3)dx.

(DS −

4(x−1)2 −

3 8(x−1) +

5 32ln

x−1

x+

)

16.

Z

dx x5−x2

(DS x +

1 6ln

(x−1)2

x2+x+ 1 +

1

3arctg 2x+

3 ) 17.

Z

3x2+ 8

x3+ 4x2 + 4xdx.

(DS ln|x|+ ln|x+ 2|+ 10 x+ 2) 18.

Z

2x5+ 6x3+ 1

x4+ 3x2 dx.

(DS x2−

3x −

3arctg x

(38)

19.

Z

x3+ 4x2−2x+ x4+x dx.

(DS ln|x|(x

2−x+ 1)

(x+ 1)2 +

2

3arctg

2x−1

3 ) 20.

Z

x3−3

x4+ 10x2+ 25dx.

(DS 2ln(x

2

+ 5) + 25−3x 10(x2 + 5)−

3 10

5arctg x

5)

Chı’ dˆa˜n. x4+ 10x2+ 25 = (x2+ 5)2

10.2.2 T´ıch phˆan mˆo t sˆo´ h`am vˆo ty’ do.n gia’n Mˆo.t sˆo´ t´ıch phˆan h`am vˆo ty’ thu.`o.ng g˘a.p c´o thˆe’ t´ınh du.o c b˘a`ng phu.o.ng ph´ap h˜u.u ty’ h´oa h`am du.´o.i dˆa´u t´ıch phˆan Nˆo.i dung cu’a phu.o.ng ph´ap n`ay l`a t`ım mˆo.t ph´ep biˆe´n dˆo’i du.a t´ıch phˆan d˜a cho cu’a h`am vˆo ty’ vˆe` t´ıch phˆan h`am h˜u.u ty’ Trong tiˆe´t n`ay ta tr`ınh b`ay nh˜u.ng ph´ep dˆo’i biˆe´n cho ph´ep h˜u.u ty’ h´oa dˆo´i v´o.i mˆo.t sˆo´ l´o.p h`am vˆo ty’ quan tro.ng nhˆa´t Ta quy u.´o.c k´y hiˆe.u R(x1, x2, ) hay r(x1, x2, ) l`a h`am h˜u.u

ty’ dˆo´i v´o.i mˆo˜i biˆe´nx1, x2, , xn.

I.T´ıch phˆan c´ac h`am vˆo ty’ phˆan tuyˆe´n t´ınh. T´ıch phˆan da.ng

Z

Rx,ax+b cx+d

p1

, ,ax+b cx+d

pn

dx (10.8)

trong d´o n ∈ N; p1, , pn ∈ Q; a, b, c∈ R; adbc 6= du.o c h˜u.u ty’

h´oa nh`o ph´ep dˆo’i biˆe´n

ax+b cx+d =t

m

o.’ dˆay m l`a mˆa˜u sˆo´ chung cu’a c´ac sˆo´ h˜u.u ty’ p1, , pn.

II T´ıch phˆan da ng

Z

R(x,

(39)

c´o thˆe’ h˜u.u ty’ h´oa nh`o ph´ep thˆe´ Euler: (i)

ax2+bx+c=±√ax±t, nˆe´u a >0;

(ii)

ax2+bx+cxt±√c, nˆe´uc >0;

(iii)√ax2+bx+c=±(x−x 1)t

ax2+bx+c=±(x−x 2)t

trong d´ox1 v`ax2 l`a c´ac nghiˆe.m thu c kh´ac cu’a tam th´u.c bˆa.c hai

ax2+nbx+c (Dˆa´u o.’ c´ac vˆe´ pha’i cu’a d˘a’ng th´u.c c´o thˆe’ lˆa´y theo tˆo’ ho p t`uy ´y)

III T´ıch phˆan cu’a vi phˆan nhi th´u.c D´o l`a nh˜u.ng t´ıch phˆan da.ng

Z

xm(axn+b)pdx (10.10) d´o a, b∈R,m, n, p ∈Qv`aa= 0,6 b6= 0, n6= 0,p6= 0; biˆe’u th´u.c xm(zxn+b)p

du.o c go.i l`a vi phˆan nhi th´u.c

T´ıch phˆan vi phˆan nhi th´u.c (10.10) du.a du.o c vˆe` t´ıch phˆan h`am h˜u.u ty’ ba tru.`o.ng ho p sau dˆay:

1) p l`a sˆo´ nguyˆen, 2) m+

n l`a sˆo´ nguyˆen, 3) m+

n +p l`a sˆo´ nguyˆen

D- i.nh l´y (Trebu.s´ep) T´ıch phˆan vi phˆan nhi th´u.c (10.10) biˆe’u diˆ˜ne du.o..c du.´o.i da.ng h˜u.u ha.n nh`o c´ac h`am so cˆa´p (t´u.c l`a du.a du.o c vˆe` t´ıch phˆan h`am h˜u.u ty’ hay h˜u.u ty’ h´oa du.o c) v`a chı’ ´ıt nhˆa´t mˆo.t trong ba sˆo´p, m+

n ,

m+

n +p l`a sˆo´ nguyˆen. 1) Nˆe´up l`a sˆo´ nguyˆen th`ı ph´ep h˜u.u ty’ h´oa s˜e l`a

x=tN

trong d´o N l`a mˆa˜u sˆo´ chung cu’a c´ac phˆan th´u.c m v`a n. 2) Nˆe´u m+

(40)

trong d´o M l`a mˆa˜u sˆo´ cu’ap. 3) Nˆe´u m+

n +pl`a sˆo´ nguyˆen th`ı d˘a.t a+bxn=tM d´o M l`a mˆa˜u sˆo´ cu’ap.

C ´AC V´I DU. V´ı du 1. T´ınh

1) I1 =

Z

x+

x2+√6x

x(1 +√3 x) dx , 2) I2=

Z

dx

3

p

(2 +x)(2x)

Gia’i. 1) T´ıch phˆan d˜a cho c´o da.ng I, d´o p1 = 1, p2 =

1 3, p3 =

1

6 Mˆa˜u sˆo´ chung cu’a p1, p2, p3 l`a m = Do d´o ta d˘a.t x = t

6

Khi d´o:

I =

Z

t6+t4+t t6(1 +t2)t

5

dt=

Z

t5+t3+ 1 +t2 dt

=

Z

t3dt+

Z

dt +t2 =

3

3

x2+ 6arctg√6

x+C. 2) B˘a`ng ph´ep biˆe´n dˆo’i so cˆa´p ta c´o

I2=

Z

3

r

2−x +x

dx (2−x)2 ·

D´o l`a t´ıch phˆan da.ng I Ta d˘a.t 2−x +x =t

3

v`a thu du.o c

x= 21−t

3

1 +t3, dx=−12

t2dt

(41)

T`u d´o I2 =−12

Z

t3(t3+ 1)2dt

16t6(t3+ 1)2 =−

3

Z

dt t3 =

3

3

r2 +x

2−x

2

+C. N

V´ı du 2. T´ınh c´ac t´ıch phˆan 1) I1=

Z dx

x

x2+x+ 1 , 2) I2 =

Z dx

(x−2)

x2+ 4x−3,

3) I3=

Z

dx (x+ 1)

1 +xx2 ,·

Gia’i. 1) T´ıch phˆan I1 l`a t´ıch phˆan da.ng II v`a a= >0 nˆen ta su.’

du.ng ph´ep thˆe´ Euler (i)

x2+x+ =x+t, x2 +x+ =x2+ 2tx+t2

x= t

2−

1 1−2t,

x2+x+ =x+t= −t

+t−1 1−2t dx= 2(−t

2

+t−1) (1−2t)2 dt.

T`u d´o I1 =

Z

dt

t2−1 = ln

11 +−tt

+C = ln

1 +x

x2 +x+ 1

1−x+

x2 +x+ 1

+C.

2) Dˆo´i v´o.i t´ıch phˆan I2 (da.ng II) ta c´o

x2+ 4x−3 =−(x−1)(x−3) v`a d´o ta su.’ du.ng ph´ep thˆe´ Euler (iii):

x2+ 4x−3 =t(x−1).

Khi d´o

−(x−1)(x−3) =t2(x−1)2, −(x−3) =t2(x−1), t =

r

3−x x−1, x= t

2+ 3

t2+ 1,

x2+ 4x−3 =t(x−1) = 2t

t2+ 1

(42)

v`a thu du.o..c I2 =

Z

dt

t2−1 = ln

11 +−tt+C = ln

x−1−√3−x

x−1 +√3−x

+C.

3) Dˆo´i v´o.i t´ıch phˆan I3 (da.ng III) ta c´o C = > Ta su.’ du.ng

ph´ep thˆe´ Euler (ii) v`a

1 +xx2 =tx−1, 1 +xx2

=t2x2−2tx+ 1, x= 2t+

t2+ 1 ,

1 +xx2=tx−1 = t

2+t−1

t2+ 1 ,

t= +

1 +xx2

x , dx =

−2(t2+t−1)

(t2+ 1)2 ·

Do d´o I3 =−2

Z

dt

t2+ 2t+ 2 =−2

Z

d(t+ 1)

1 + (t+ 1)2 =−2arctg(t+ 1) +C

=−2arctg1 +x+

1 +xx2

x +C. N V´ı du 3. T´ınh c´ac t´ıch phˆan

1) I1 =

Z √

x

(1 +√3x)2dx, x>0; 2) I2 =

Z √

x4

s

1−√1

x3

dx; 3) I3 =

Z

dx x2p3

(1 +x3)5 ·

Gia’i. 1) Ta c´o

I1=

Z

x12 +x

3−2dx,

trong d´o m = 2, n =

1

3, p = −2, mˆa˜u sˆo´ chung cu’a m v`a n b˘a`ng V`ıp=−2 l`a sˆo´ nguyˆen, ta ´ap du.ng ph´ep dˆo’i biˆe´nx=t6 v`

a thu du.o c I1 =

Z

t8

(1 +t2)2dt =

Z

t4 −2t2+ 3− 4t

2+ 3

(1 +t2)2

dt =

5t

5

−4t3+ 18t−18

Z

dt +t2 −6

Z

t2

(43)

V`ı

Z

t2dt

(1 +t2)2 =−

1

Z

td 1 +t2

=− t

2(1 +t2) +

1 2arctgt nˆen cuˆo´i c`ung ta thu du.o c

I1 =

6 5x

5/6

−4x1/2+ 18x1/6+ 3x

1/6

1 +x1/3 −21arctgx 1/6

+C. 2) Ta viˆe´tI2 du.´o.i da.ng

I2 =

Z

x12 1−x

2

1

4dx.

O’ dˆay m =

2, n=− 2, p=

1 v`a

m+

n =−1 l`a sˆo´ nguyˆen v`a ta c´o tru.`o.ng ho..p th´u hai Ta su.’ du.ng ph´ep dˆo’i biˆe´n

1− √1

x3 =t

.

Khi d´o x= (1−t4)−23, dx=

8 3(1−t

4

)−53t3dt v`a vˆa.y

I2 =

8

Z

t4

(1−t4)2dt=

2

Z

td 1−t4

=

h t

1−t4 −

Z

dt 1−t2

i

= 2t 3(1−t4) −

1

Z h 1

1−t2 +

1 +t2

i

dt = 2t

3(1−t4) −

1 6ln

1 +1−tt

3arctgt+C, d´o t= 1−x−3/21/4.

3) Ta viˆe´tI3 du.´o.i da.ng

I3 =

Z

x−2(1 +x3)−53dx.

O’ dˆay m =−2, n = 3, p=−5

3 v`a

m+

n +p=−2 l`a sˆo´ nguyˆen Do vˆa.y ta c´o tru.`o.ng ho p th´u ba Ta thu c hiˆe.n ph´ep dˆo’i biˆe´n

(44)

T`u d´o

x3 =

t3−1, +x

= t

3

t3−1, x= (t −

1)−13

dx=−t2(t3−1)−43dt, x−2 = (t3−1)

3.

Do vˆa.y I3 =−

Z

(t3−1)2/3

t3

t3−1

−5/3

t2(t3−1)−43dt=

Z 1−t3

t3 dt

=

Z

t−3dt

Z

dt = t −2

−2−t+C =C

1 + 2t3

2t3

=C− + 3x

3

2xp3

(45)

B `AI T ˆA P

T´ınh c´ac t´ıch phˆan (1-15) 1.

Z

dx

2x−1−√3

2x−1 (DS u3+3

2u

2

+ 3u+ ln|u−1|, u6 = 2x−1) 2.

Z xdx

(3x−1)√3x−1

(DS

3x−2

3x−1) 3.

Z r

1−x +x

dx x

(DS 1−

1−x2

x −arc sinx) 4.

Z

3

r

x+ x−1

dx x+ (DS −1

2ln

(1−t)2

1 +t+t2 +

3arctg2t√+

3 , t=

3

r

x+ x−1) 5.

Z √

x+ 1−√x−1

x+ +√x−1dx. (DS

2(x

2−

x

x2−1 + ln|x+√x2−1|)

6.

Z

xdx

x+ 1−√3

x+ (DS

h1

9u

9

+1 8u

8

+1 7u

7

+1 6u

6

+1 5u

5

+ 4u

4i

(46)

7.

Z

(x−2)

r

1 +x 1−xdx.

(DS 1−1

2x

1−x2−

2arc sinx) 8.

Z

3

r

x+ x−1

dx (x−1)3

(DS 16

3

rx+ 1

x−1

4

28

3

rx+ 1

x−1

3 ) 9. Z dx p

(x−1)3(x−2) (DS

r

x−2 x−1)

Chı’ dˆa˜n. Viˆe´t p(x−1)3(x−2) = (x− 1)(x −2)

r

x−1 x−2, d˘a.t t=

r

x−1 x−2 10.

Z

dx

3

p

(x−1)2(x+ 1)

(DS 2ln

u2+u+ 1

u2−2u+ 1 −

3arctg2u√+

3 , u

3

= x+ x−1) 11.

Z

dx

3

p

(x+ 1)2(x−1)4 (DS

3

3

r

1 +x x−1) 12.

Z

dx

4

p

(x−1)3(x+ 2)5 (DS

4

4

r

x−1 x+ 2) 13.

Z

dx

3

p

(x−1)7(x+ 1)2 (DS

3 16

3x−5 x−1

3

r

x+ x−1) 14.

Z

dx

6

p

(x−7)7(x−5)5 (DS −3

6

r

x−5 x−7) 15.

Z

dx

n

p

(x−a)n+1(x−b)n−1, a 6=b. (DS

n ba

n

r

(47)

16.

Z √

x+ 1−√x−1

x+ +√x−1dx. (DS x

2

3 −

xx2−1

2 +

1

2ln|x+

x2−1|)

Su.’ du.ng c´ac ph´ep thˆe´ Euler dˆe’ t´ınh c´ac t´ıch phˆan sau dˆay (17-22) 17.

Z

dx x

x2+x+ 1 (DS ln

1 +x

x2+x+ 1

1−x+

x2+x+ 1

) 18. Z dx

(x−2)√−x2+ 4x−3 (DS ln

x−1−√3−x

x−1 +√3−x

) 19. Z dx

(x+ 1)√1 +xx2 (DS.−2arctg

1 +x+

1 +xx2

x )

20.

Z

dx

(x−1)√x2+x+ 1

(DS

3 ln

x−1

3 + 3x+ 2p3(x2 +x+ 1)

)

21.

Z

(x−1)dx

(x2+ 2x)√x2+ 2x (DS

1 + 2x

x2+ 2x)

22.

Z

5x+

x2+ 2x+ 5dx.

(DS

x2+ 2x+ 5−lnx+ +

x2+ 2x+ 5)

Chı’ dˆa˜n. C´o thˆe’ dˆo’i biˆe´n t= 2(x

2+ 2x+ 5)0 =x+ 1. T´ınh c´ac t´ıch phˆan cu’a vi phˆan nhi th´u.c

23.

Z

x−13(1−x1/6)−1dx. (DS 6x

6 + 3x

1

3 + 2x

1

2 + lnx

6 −1)

24.

Z

x−23(1 +x

3)−3dx. (DS −3

2(1 +x

1

3)−2)

25.

Z

x−12(1 +x

4)−10dx. (DS

9(1 +x

1

4)−9−

2(1 +x

1

(48)

26.

Z

x

p

1 +

x2

dx. (DS

t5

5 − 2t3

3 +t

, t=

1 +x2/3)

27.

Z

x3(1 + 2x2)−23dx. (DS x

2+ 1

2

2x2+ 1)

28.

Z

dx

x4√1 +x2 (DS

1 3x

−3(2x2−1)√x2+ 1)

29.

Z

dx

x2(1 +x3)5/3 (DS −

1 8x

−1(3x+ 4)(2 +x3)−23) 30.

Z

dx

x3p3 1 +√4

x3

(DS −23

q

(x−3

4 + 1)2)

31.

Z

dx

3

x2(√3 x+ 1)3 (DS −

3 2(√3x+ 1)2)

32.

Z √3x

p

3

x+ 1dx. (DS u7 − 5u

+u3−u2, u2= √3

x+

)

33.

Z

dx x6√x2−1

(DS u

5

5 − 2u3

3 +u, u=

1−x−2)

34.

Z

dx x√3

1 +x5

(DS 10 ln

u

2 −2u+ 1

u2+u+ 1

+ √ arctg

2u+

3 , u

3

= +x5)

35.

Z

x7

1 +x2dx.

(DS u 9 − 3u7 + 3u5 − u3

3 , u

2

(49)

36.

Z

dx

3

1 +x3

(DS 6ln

u

2+u+ 1

u2−2u+ 1

− √1

3arctg 2u+

3 , u

3

= +x−3)

37.

Z

dx

4

1 +x4

(DS 4ln

uu+ 1−1

2arctgu, u

4

= +x−4) 38.

Z

3

xx3dx.

(DS u 2(u3+ 1) −

1 12ln

u2+ 2u+ 1

u2−u+ 1 −

1

3arctg

2u−1

3 , u

3

=x−2−1) 10.2.3 T´ıch phˆan c´ac h`am lu.o..ng gi´ac

I T´ıch phˆan da.ng

Z

R(sinx,cosx)dx (10.11) d´o R(u, v) l`a h`am h˜u.u ty’ cu’a c´ac biˆe´nu b`a v luˆon luˆon c´o thˆe’ h˜u.u ty’ h´oa du.o c nh`o ph´ep dˆo’i biˆe´n t = tgx

2, x∈(−π, π) T`u d´o sinx= 2t

1 +t2, cosx=

1−t2

1 +t2, dx=

2dt +t2 ·

Nhu.o c diˆe’m cu’a ph´ep h˜u.u ty’ h´oa n`ay l`a n´o thu.`o.ng du.a dˆe´n nh˜u.ng t´ınh to´an rˆa´t ph´u.c ta.p.

V`ı vˆa.y, nhiˆe`u tru.`o.ng ho p ph´ep h˜u.u ty’ h´oa c´o thˆe’ thu c hiˆe.n du.o c nh`o nh˜u.ng ph´ep dˆo’i biˆe´n kh´ac

II Nˆe´u R(−sinx,cosx) =R(sinx,cosx) th`ı su.’ du.ng ph´ep dˆo’i biˆe´n

(50)

v`a l´uc d´o

dx =−√ dt

1−t2

III Nˆe´u R(sinx,−cosx) =R(sinx,cosx) th`ı su.’ du.ng ph´ep dˆo’i biˆe´n

t= sinx, dx = √ dt

1−t2, x

π

2, π

.

IV Nˆe´u R(−sinx,−cosx) = R(sinx,cosx) th`ı ph´ep h˜u.u ty’ h´oa s˜e l`a t= tgx, x

π

2, π

: sinx = √ t

1 +t2, cosx=

1

1 +t2, x= arctgt, dx=

dt +t

V Tru.`o.ng ho p riˆeng cu’a t´ıch phˆan da.ng (10.11) l`a t´ıch phˆan

Z

sinmxcosnxdx, m, n∈Z (10.12) (i) Nˆe´u sˆo´m le’ th`ı d˘a.tt = cosx, nˆe´un le’ th`ı d˘a.t sinx=t.

(ii) Nˆe´umv`anl`a nh˜u.ng sˆo´ ch˘a˜n khˆong ˆam th`ı tˆo´t ho.n hˆe´t l`a thay sin2x v`a cos2x theo c´ac cˆong th´u.c

sin2x=

2(1−cos 2x), cos

2

x=

2(1 + cos 2x)

(iii) Nˆe´um v`a n ch˘a˜n, d´o c´o mˆo.t sˆo´ ˆam th`ı ph´ep dˆo’i biˆe´n s˜e l`a tgx =t hay cotgx=t.

(iv) Nˆe´u m+n = −2k, k ∈ N th`ı viˆe´t biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan bo.’ i da.ng phˆan th´u.c v`a t´ach cos2x (ho˘

a.c sin2x) kho’i mˆa˜u sˆo´ Biˆe’u th´u.c dx

cos2x (ho˘a.c

dx

sin2x) du.o c thay bo.’i d(tgx) (ho˘a.c d(cotgx)) v`a ´ap du.ng ph´ep dˆo’i biˆe´n t = tgx (ho˘a.c t= cotgx)

VI T´ıch phˆan da.ng

Z

(51)

B˘a`ng ph´ep dˆo’i biˆe´n sin2x=t ta thu du.o..c I =

2

Z

−21(1−t)

β−1

2 dt

v`a b`ai to´an du.o c quy vˆe` t´ıch phˆan cu’a vi phˆan nhi th´u.c. C ´AC V´I DU.

V´ı du 1. T´ınh t´ıch phˆan I =

Z

dx

3 sinx+ cosx+

Gia’i. D˘a.t t = tgx

2, x∈(−π, π) Khi d´o I =

Z dt

t2 + 6t+ 9 =

Z

(t+ 3)−2dt =−

t+ +C =− + tgx

2

+C. N

V´ı du 2. T´ınh

J =

Z

dx

(3 + cos 5x) sin 5x

Gia’i. D˘a.t 5x=t Ta thu du.o..c J =

5

Z

dt (3 + cost) sint

v`a (tru.`o.ng ho p II) d´o b˘a`ng c´ach d˘a.t ph´ep dˆo’i biˆe´n z = cost ta c´o J =

5

Z

dz

(z+ 3)(z2−1) =

1

Z h A

z−1+ B z−1+

C z+

i

dz =

5

Z h 1

8(z−1) − 4(z+ 1) +

1 8(z+ 3)

i

dz =

5

h1

8ln|z−1| −

4ln|z+ 1|+

8ln|z+ 3|

i

+C =

40 ln

(z−(z1)(z+ 1)+ 3)2

+C

= 40 ln

cos

2x+ cos 5x−3

(cos 5x+ 1)2

(52)

V´ı du 3. T´ınh

J =

Z

2 sinx+ cosx sin2xcosx+ cos3xdx

Gia’i. H`am du.´o.i dˆa´u t´ıch phˆan c´o t´ınh chˆa´t l`a R(−sinx,−cosx) = R(sinx,cosx). Do d´o ta su.’ du.ng ph´ep dˆo’i biˆe´n t = tgx, x

π

2, π

Chia tu.’ sˆo´ v`a mˆa˜u sˆo´ cu’a biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan cho cos3x ta c´o

J =

Z

2tgx+

tg2x+ 9d(tgx) =

Z

2t+ t2+ 9dt

= ln(t2+ 9) + arctgt

+C = ln(tg2x+ 9) + arctg

tgx

3

+C. N

V´ı du 4. T´ınh

J =

Z

dx sin6x+ cos6x

Gia’i. Ap du.ng cˆong th´u´ c

cos2x=

2(1 + cos 2x), sin

2

x=

2(1−sin 2x) ta thu du.o c

cos6x+ sin6x=

4(1 + cos

2

2x) D˘a.t t = tg2x, ta t`ım du.o c

J =

Z

4dx

1 + cos22x =

Z

dt t2+ 4

= arctgt

2+C = arctg tg2x

(53)

V´ı du 5. T´ınh

J =

Z

sin32 xcos

2 xdx.

Gia’i. D˘a.t z = sin2x ta thu du.o c J =

2

Z

z1/4(1−z)−14dx.

D´o l`a t´ıch phˆan cu’a vi phˆan nhi th´u.c v`a m+

n +p= 4+

1 −

1 = Do vˆa.y ta thu..c hiˆe.n ph´ep dˆo’i biˆe´n

1

z −1 =t

4

,dz

z2 = 4t

dt, z2 = (t4+ 1)2

v`a d´o

J =−2

Z

t2

(t4+ 1)2dt.

D˘a.t t =

y ta thu du.o c J =

Z y4

(1 +y4)2dy.

Thu c hiˆe.n ph´ep t´ıch phˆan t`u.ng phˆa`n b˘a`ng c´ach d˘a.t u=y, dv= y

3

(1 +y4)2dydu=dy, v=−

1 4(1 +y2)

ta thu du.o c

J = 2h− y

4(1 +y4) +

1

Z

dy +y4

i

=− y

2(1 +y4)+

(54)

Dˆe’ t´ınh J1 ta biˆe’u diˆ˜n tu.e ’ sˆo´ cu’a biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan

nhu sau:

1 =

(y2+ 1)−(y2−1) v`a d´o

J1 =

1

Z

y2+ 1

y4+ 1dy

1

Z

y2−1

y4+ 1dy

=

Z +

y2

dy y2+

y2

2

Z 1−

y2

dy y2+

y2

=

Z d

y+ y

y

y + −1 Z d

y+ y

y+1 y −2 = √ 2arctg y

y √ − √ 2ln

y+ y

2 yb+1

y +

2

+C.

Cuˆo´i c`ung ta thu du.o..c

J =− y

2(1 +y4) +

1

2arctg y

4 √ − √ 2ln y+ y − √ y+

y +

2

+C

trong d´o

y=

t , t =

4

r

1

z −1, z = sin

2

x. N

B `AI T ˆA P

(55)

1.

Z

sin3xdx. (DS.−cosx+ cos

3

x ) 2.

Z

cos4xdx. (DS 3x + sin 2x + sin 4x 32 ) 3. Z

sin5xdx. (DS 3cos

3x− cos 5x

5 −cosx) 4.

Z

cos7xdx. (DS sinx−sin3x+3 sin

5

x

5 −

sin7x ) 5.

Z

cos2xsin2xdx. (DS x

sin 4x 32 ) 6.

Z

sin3xcos2xdx. (DS cos

5x

5 −

cos3x

3 ) 7.

Z

cos3xsin5xdx. (DS sin

6

x

6 −

sin8x ) 8.

Z

dx

sin 2x (DS

2ln|tgx|) 9.

Z

dx cosx

3

(DS ln

tgπ

4 + x ) 10. Z

sinx+ cosx

sin 2x dx. (DS h ln tgx + ln tgπ

4 + x i ) 11. Z

sin2x

cos6xdx. (DS

tg5x

5 + tg3x

3 )

Chı’ dˆa˜n. D˘a.t t= tgx 12.

Z

sin 3xcosxdx. (DS −1

8(cos 4x+ cos 2x)) 13.

Z

sinx 3cos

2x

3 dx. (DS 2cos

x

1 2cosx) 14.

Z

cos3x

sin2xdx. (DS −

sinx −sinx) 15.

Z

sin3x

cos2xdx. (DS

1

(56)

16.

Z

cos3x

sin5xdx. (DS −

cotg4x ) 17.

Z

sin5x

cos3xdx. (DS

1

2 cos2x + ln|cosx| −

cos2x ) 18.

Z

tg5xdx. (DS tg

4x

4 − tg2x

2 −ln|cosx|)

Trong c´ac b`ai to´an sau dˆay h˜ay ´ap du.ng ph´ep dˆo’i biˆe´n t= tgx

2, sinx= 2t

1 +t2, cosx=

1−t2

1 +t2, x= 2arctgt, dx =

2dt +t2

19.

Z

dx

3 + cosx (DS 4ln

2 + tgx 2−tgx ) 20. Z dx

sinx+ cosx (DS

2ln

tgx

2 + π ) 21. Z

3 sinx+ cosx sinx+ cosxdx.

(DS

13(12x−5 ln|2tgx+ 3| −5 ln|cosx|) 22.

Z

dx

1 + sinx+ cosx (DS ln

1 + tgx ) 23. Z dx

(2−sinx)(3−sinx) (DS √2

3arctg 2tgx

2 −1

3

−√1

2arctg 3tgx

2 −1

2 ) T´ınh c´ac t´ıch phˆan da.ng

Z

sinmxcosnxdx, m, n∈N 24.

Z

sin3xcos5xdx. (DS 8cos

8x−1

6cos

(57)

25.

Z

sin2xcos4xdx. (DS 16 x

1

4sin 4x+ 3sin

2

2x) 26.

Z

sin4xcos6xdx.

(DS

211sin 8x−

1

28 sin 4x+

1 5·26 sin

5

2x+ 28x)

27.

Z

sin4xcos2xdx. (DS x 16 −

sin 4x 64 −

sin22x 48 ) 28.

Z

sin4xcos5xdx. (DS 5sin

5

x

7sin

7

x+1 9sin

9

x) 29.

Z

sin6xcos3xdx. (DS 7sin

7

x

9sin

9

x) T´ınh c´ac t´ıch phˆan da.ng

Z

sinαxcosβxdx, α, β ∈Q 30.

Z

sin3x

cosx√3cosxdx. (DS

3 5cosx

3

cos2x+

3

cosx)

Chı’ dˆa˜n. D˘a.t t= cosx. 31.

Z

dx

3

sin11xcosx (DS

− 3(1 + 4tg

2x)

8tg2x·p3

tg2x)

Chı’ dˆa˜n. D˘a.t t= tgx 32.

Z

sin3x

3

cos2xdx. (DS

3

cosx 7cos

2x−1)

33.

Z

3

cos2xsin3

xdx. (DS −3

5cos

5/3x+

11cos 11 x) 34. Z dx

sin3xcos5x (DS

4

tgx) 35.

Z

sin3x

5

cosxdx. (DS 14cos

14

5 x

4cos

4

(58)

T´ıch phˆan x´ac di.nh Riemann

11.1 H`am kha’ t´ıch Riemann v`a t´ıch phˆan x´ac di.nh 58

11.1.1 D- i.nh ngh˜ıa 58 11.1.2 D- iˆe`u kiˆe.n dˆe’ h`am kha’ t´ıch 59 11.1.3 C´ac t´ınh chˆa´t co ba’n cu’a t´ıch phˆan x´ac di.nh 59

11.2 Phu.o.ng ph´ap t´ınh t´ıch phˆan x´ac d i.nh 61 11.3 Mˆo.t sˆo´ ´u.ng du ng cu’ a t´ıch phˆan x´ac d i.nh 78

11.3.1 Diˆe.n t´ıch h`ınh ph˘a’ng v`a thˆe’ t´ıch vˆa.t thˆe’ 78 11.3.2 T´ınh dˆo d`ai cung v`a diˆe.n t´ıch m˘a.t tr`on xoay 89

11.4 T´ıch phˆan suy rˆo.ng 98

(59)

11.1 H`am kha’ t´ıch Riemann v`a t´ıch phˆan ac di.nh

11.1.1 D- i.nh ngh˜ıa

Gia’ su.’ h`am f(x) x´ac di.nh v`a bi ch˘a.n trˆen doa.n [a, b] Tˆa.p ho p h˜u.u ha.n diˆe’mxk nk=0:

a=x0 < x1 < x2 <· · ·< xn−1 < xn=b

du.o c go.i l`a ph´ep phˆan hoa.ch doa.n [a, b] v`a du.o..c k´y hiˆe.u l`a T[a, b] hay do.n gia’n l`aT

D- i.nh ngh˜ıa 11.1.1. Gia’ su.’ [a, b] ⊂ R, T[a, b] = {a = x0 < x1 <

· · ·< xn =b}l`a ph´ep phˆan hoa.ch doa.n [a, b] Trˆen mˆo˜i doa.n [xj−1, xj],

j = 1, , n ta cho.n mˆo.t c´ach t`uy ´y diˆe’m ξj v`a lˆa.p tˆo’ng S(f, T, ξ) =

n

X

j=1

f(ξj)∆xj, ∆xj =xjxj−1

go.i l`a tˆo’ng t´ıch phˆan (Riemann) cu’a h`am f(x) theo doa.n [a, b] tu.o.ng ´

u.ng v´o.i ph´ep phˆan hoa.ch T v`a c´ach cho.n diˆe’m ξj,j = 1, n Nˆe´u gi´o.i ha.n

lim

d(T)→0S(f, T, ξ) = limd(T)→0

n

X

j=1

f(ξj)∆xj (11.1)

tˆ` n ta.i h˜u.u ha.n khˆong phu thuˆo.c v`ao ph´ep phˆan hoa.cho T v`a c´ach cho.n c´ac diˆe’m ξj, j = 1, n th`ı gi´o.i ha.n d´o du.o c go.i l`a t´ıch phˆan x´ac di.nh cu’a h`am f(x).

(60)

11.1.2 D- iˆ`u kiˆe e.n dˆe’ h`am kha’ t´ıch

D- i.nh l´y 11.1.1. Nˆe´u h`amf(x)liˆen tu c trˆen doa n[a, b]th`ıf ∈ R[a, b].

Hˆe qua’. Mo i h`am so cˆa´p dˆ`u kha’ t´ıch trˆen doa.n bˆa´t k`y n˘a`m tro.ne trong tˆa p ho p x´ac di.nh cu’a n´o.

D- i.nh l´y 11.1.2. Gia’ su.’ f : [a, b] →R l`a h`am bi ch˘a.n v`a E ⊂ [a, b]

l`a tˆa p ho p c´ac diˆe’m gi´an doa.n cu’a n´o H`am f(x) kha’ t´ıch Riemann trˆen doa n [a, b] khi v`a chı’ tˆa p ho..p E c´o dˆo - khˆong, t´u.c l`a E

tho’a m˜an diˆ`u kiˆe.n:eε >0, tˆ` n ta.i hˆe dˆe´m du.o c (hay h˜u.u ha.n) c´aco khoa’ng (ai, bi) sao cho

E

[

i=1

(ai, bi), ∞

X

i=1

(bi−ai) = lim N→∞

N

X

i=1

(bi−ai)< ε.

Nˆe´u c´ac diˆ`u kiˆe.n cu’a di.nh l´y 11.1.2 (go.i l`a tiˆeu chuˆa’n kha’ t´ıche Lo.be (Lebesgue)) du.o c tho’a m˜an th`ı gi´a tri cu’a t´ıch phˆan

b

Z

a

f(x)dx khˆong phu thuˆo.c v`ao gi´a tri cu’a h`amf(x) ta.i c´ac diˆe’m gi´an doa.n v`a ta.i c´ac diˆe’m d´o h`am f(x) du.o..c bˆo’ sung mˆo.t c´ach t`uy ´y nhu.ng pha’i ba’o to`an t´ınh bi ch˘a.n cu’a h`am trˆen [a, b].

11.1.3 ac t´ınh chˆa´t co ba’n cu’a t´ıch phˆan x´ac di.nh

1) a

Z

a

f(x)dx=

2) b

Z

a

f(x)dx=−

a

Z

b

f(x)dx.

(61)

4) Nˆe´uf ∈ R[a, b] th`ı|f(x)| ∈ R[a, b] v`a

b

Z

a

f(x)dx

6

b

Z

a

|f(x)|dx, a < b. 5) Nˆe´uf, g ∈ R[a, b] th`ıf(x)g(x)∈ R[a, b]

6) Nˆe´uf g ∈ D[a, b] v`a ]c, d]⊂[a, b] th`ıf(x)g(x)∈ R[c, d]

7) Nˆe´u f ∈ R[a, c], f ∈ R[c, b] th`ıf ∈ R[a, b], d´o diˆe’m c c´o thˆe’ s˘a´p xˆe´p t`uy ´y so v´o.i c´ac diˆe’m a v`a b.

Trong c´ac t´ınh chˆa´t sau dˆay ta luˆon luˆon xem a < b. 8) Nˆe´uf ∈ R[a, b] v`a f >0 th`ı

b

Z

a

f(x)dx>0 9) Nˆe´uf, g ∈ R[a, b] v`af(x)>g(x)x∈[a, b] th`ı

b

Z

a

f(x)dx>

b

Z

a

g(x)dx.

10) Nˆe´uf ∈ C[a, b],f(x)> 0,f(x) 6≡0 trˆen [a, b] th`ı∃K >0 cho

b

Z

a

f(x)dx>K.

11) Nˆe´uf, g∈ R[a, b],g(x)>0 trˆen [a, b] M = sup

[a,b]

f(x), m= inf

[a,b]f(x)

th`ı

m b

Z

a

g(x)dx6

b

Z

a

f(x)g(x)dxM b

Z

a

(62)

11.2 Phu.o.ng ph´ap t´ınh t´ıch phˆan x´ac di.nh

Gia’ su.’ h`am f(x) kha’ t´ıch trˆen doa.n [a, b] H`am

F(x) = x

Z

a

f(x)dt, a 6x 6b

du.o c go.i l`a t´ıch phˆan v´o.i cˆa.n trˆen biˆe´n thiˆen

D- i.nh l´y 11.2.1. H`am f(x) liˆen tu c trˆen doa n [a, b]l`a c´o nguyˆen h`am trˆen doa n d´o Mˆo t c´ac nguyˆen h`am cu’a h`am f(x) l`a h`am

F(x) = x

Z

a

f(t)dt. (11.2)

T´ıch phˆan v´o.i cˆa.n trˆen biˆe´n thiˆen du.o c x´ac di.nh dˆo´i v´o.i mo.i h`am f(x) kha’ t´ıch trˆen [a, b] Tuy nhiˆen, dˆe’ h`amF(x) da.ng (11.2) l`a nguyˆen h`am cu’a f(x) diˆ`u cˆo´t yˆe´u l`ae f(x) pha’i liˆen tu.c.

Sau dˆay l`a di.nh ngh˜ıa mo.’ rˆo.ng vˆe` nguyˆen h`am

D- i.nh ngh˜ıa 11.2.1. H`am F(x) du.o c go.i l`a nguyˆen h`am cu’a h`am f(x) trˆen doa.n [a, b] nˆe´u

1) F(x) liˆen tu.c trˆen [a, b].

2) F0(x) =f(x) ta.i c´ac diˆe’m liˆen tu.c cu’af(x)

Nhˆa n x´et. H`am liˆen tu.c trˆen doa.n [a, b] l`a tru.`o.ng ho..p riˆeng cu’a h`am liˆen tu.c t`u.ng doa.n Do d´o dˆo´i v´o.i h`am liˆen tu.c di.nh ngh˜ıa 11.2.1 vˆ` nguyˆen h`am l`a tr`e ung v´o.i di.nh ngh˜ıa c˜u tru.´o.c dˆay v`ıF0(x) =f(x)

(63)

nguyˆen h`am l`a

F(x) = x

Z

a

f(t)dt.

D- i.nh l´y 11.2.3. (Newton-Leibniz) Dˆo´i v´o.i h`am liˆen tu c t`u.ng doa n trˆen [a, b] ta c´o cˆong th´u.c Newton-Leibniz:

b

Z

a

f(x)dx=F(b)−F(a) (11.3)

trong d´o F(x) l`a nguyˆen h`am cu’a f(x) trˆen [a, b] v´o.i ngh˜ıa mo.’ rˆo ng.

D- i.nh l´y 11.2.4 (Phu.o.ng ph´ap dˆo’i biˆe´n) Gia’ su.’ :

(i) f(x) x´ac di.nh v`a liˆen tu.c trˆen [a, b],

(ii) x = g(t) x´ac di.nh v`a liˆen tu.c c`ung v´o.i da.o h`am cu’a n´o trˆen doa n [α, β], d´o g(α) =a, g(β) =bv`a a6g(t)6b.

Khi d´o

b

Z

a

f(x)dx= β

Z

α

f(g(t))g0(t)dt (11.4) D- i.nh l´y 11.2.5 (Phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n).a Nˆe´u f(x) v`a

g(x) c´o da o h`am liˆen tu c trˆen [a, b]th`ı

b

Z

a

f(x)g0(x)dx=f(x)g(x)ba

b

Z

a

f0(x)g(x)dx (11.5)

C ´AC V´I DU. V´ı du 1. Ch´u.ng to’ r˘a`ng trˆen doa.n [−1,1] h`am

f(x) = signx=

        

1 v´o.i x > 0,

0 v´o.i x= 0, x∈[−1,1]

(64)

a) kha’ t´ıch, b) khˆong c´o nguyˆen h`am, c) c´o nguyˆen h`am mo.’ rˆo.ng.

Gia’i. a) H`am f(x) kha’ t´ıch v`ı n´o l`a h`am liˆen tu.c t`u.ng doa.n b) Ta ch´u.ng minh h`am f(x) khˆong c´o nguyˆen h`am theo ngh˜ıa c˜u Thˆa.t vˆa.y mo.i h`am da.ng

F(x) =

  

x+C1 x <0

x+C2 x>0

dˆ`u c´o da.o h`am b˘a`ng signe xx 6= 0, d´o C1 v`a C2 l`a c´ac sˆo´ t`uy

´

y Tuy nhiˆen, thˆa.m ch´ı h`am “tˆo´t nhˆa´t” sˆo´ c´ac h`am n`ay F(x) =|x|+C

(nˆe´u C1 = C2 = C) c˜ung khˆong c´o da.o h`am ta.i diˆe’m x = Do d´o

h`am signx (v`a d´o mo.i h`am liˆen tu.c t`u.ng doa.n) khˆong c´o da.o h`am trˆen khoa’ng bˆa´t k`y ch´u.a diˆe’m gi´an doa.n.

c) Trˆen doa.n [−1,1] h`am signx c´o nguyˆen h`am mo.’ rˆo.ng l`a h`am F(x) =|x|v`ı n´o liˆen tu.c trˆen doa.n [−1,1] v`aF0(x) =f(x) khix6=

N

V´ı du 2. T´ınh a

Z

0

a2−x2dx, a >0.

Gia’i. D˘a.t x= asint Nˆe´u t cha.y hˆe´t doa.n h0,π

i

th`ıx cha.y hˆe´t doa.n [0, a] Do d´o

a

Z

0

a2−x2dx=

π/2

Z

0

a2cos2tdt=a2 π/2

Z

0

1 + cos 2t dt

= a

2

2 π/2

Z

0

dt+a

2

2 π/2

Z

0

cos 2tdt= a

2π

4 · N V´ı du 3. T´ınh t´ıch phˆan

I = √

2/2

Z

0

r

(65)

Gia’i. Ta thu..c hiˆe.n ph´ep dˆo’i biˆe´n x = cost Ph´ep dˆo’i biˆe´n n`ay tho’a m˜an c´ac diˆ`u kiˆe.n sau:e

(1) x=ϕ(t) = cost liˆen tu.c∀t ∈R (2) Khit biˆe´n thiˆen trˆen doa.n

hπ

4, π

i

th`ıxcha.y hˆe´t doa.n

h

0,

2

i

(3) ϕ

π

4

=

2 , ϕ

π

2

= (4) ϕ0(t) = −sint liˆ

en tu.c ∀t∈hπ

4, π

i

Nhu vˆa.y ph´ep dˆo’i biˆe´n tho’a m˜an di.nh l´y 11.2.4 v`a d´o x= cost, dx=−sintdt,

ϕ

π

2

= 0, ϕ

π

4

=

2 · Nhu vˆa.y

I =

π

4

Z

π2

cotgt

2(−sint)dt=

π

2

Z

π

4

(1 + cost)dt

=t+ sintπ/π/24 = π + 1−

2 ·. N V´ı du 4. T´ınh t´ıch phˆan

I = √

3/2

Z

1/2

dx x

1−x

Gia’i. Ta thu c hiˆe.n ph´ep dˆo’i biˆe´n

x= sintdx= costdt v`a biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan c´o da.ng

costdt sint

cos2t =

    

dt

sint nˆe´u cost > 0,

dt

(66)

C´ac cˆa.n α v`a β cu’a t´ıch phˆan theot du.o c x´ac di.nh bo.’i

2 = sintα= π 6,

3

2 = sintβ = π 3· (Ta c˜ung c´o thˆe’ lˆa´y α1 =

6 v`a β1 = 2π

3 ) Trong ca’ hai tru.`o.ng ho p biˆe´n x= sint dˆ`u cha.y hˆe´t doa.n [e a, b] =

h1

2,

3

i

Ta s˜e thˆa´y kˆe´t qua’ t´ıch phˆan l`a nhu nhau Thˆa.t vˆa.y tru.`o.ng ho p th´u nhˆa´t ta c´o cost >0 v`a

I = π/3

Z

π/6

dt

sint = ln tg t

π/3

Z

π/6

= ln2 +

3 · Trong tru.`o.ng ho p th´u hait∈h5π

6 ,

3

i

ta c´o cost <0 v`a

I =−

2π/3

Z

5π/6

dt

sint =−ln tg t

2π/3 5π/6

= ln2 +

3

3 · N

V´ı du 5. T´ınh t´ıch phˆan

I = π/3

Z

0

xsinx cos2xdx.

Gia’i. Ta t´ınh b˘a`ng phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n.a D˘a.t

u=xdu=dx, dv = sinxdx

cos2xv=

(67)

Do d´o

I =x·

cosx π/3 − π/3 Z dx cosx =

π cosπ

3

−ln tgx + π π/3 = 2π

3 −ln tg

π

6 + π

+ ln tgπ =

3 −ln tg 5π 12 · N V´ı du 6. T´ınh t´ıch phˆan

I =

1

Z

0

x2(1−x)3dx.

Gia’i. Ta d˘a.t

u=x2, dv= (1−x)3dx

du= 2xdx, v=−(1−x)

4

4 ·

Do d´o

I =−x2(1−x)

4 0+ Z

2x(1−x)

4

4 dx

| {z }

I1

= +I1.

T´ınh I1 T´ıch phˆan t`u.ng phˆ` na I1 ta c´o

I1 =

1

1

Z

0

x(1x)4dx=−1

2x

(1−x)5

5 0+ Z

(1−x)5 dx = 0−

10

(1−x)6

6 =

60 ⇒I = 60 · N

V´ı du 7. Ap du.ng cˆong th´u.c Newton-Leibnitz dˆe’ t´ınh t´ıch phˆan´

1) I1 = 100π

Z

0

1−cos 2xdx, 2) I2=

Z

0

(68)

Gia’i. Ta c´o

1−cos 2x=

2|sinx| Do d´o

100π

Z

0

1−cos 2xdx=

2

100π

Z

0

|sinx|dx =

2h π

Z

0

sinxdx

2π

Z

π

sinxdx+

3π

Z

2π

sinxdx . +· · ·+

100Z π

99π

sinxdx

i

=− √

2[2 + +· · ·+ 2] = 200

2

2) Thu c hiˆe.n ph´ep dˆo’i biˆe´n t=ex, sau d´o ´ap du.ng phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n Ta c´oa

Z

exarc sin(e−x)dx=−

Z

arc sint t2 dt

=

tarc sint

Z

dt t

1−t2

=

tarc sint+I1.

I1 =−

Z

dt t√1−t2 =

Z d1

t

r1

t

2

−1

= ln1 t +

r

1 t2 −1

+C.

Do d´o

Z

exarc sinexdx= arc sint t + ln

1

t +

r1

t2 −1

+C =exarc sinex+ ln(ex+

e2x−1) +C Nguyˆen h`am v`u.a thu du.o c c´o gi´o.i ha.n h˜u.u ha.n ta.i diˆe’m x = d´o theo cˆong th´u.c (11.3) ta c´o

1

Z

0

exarc sinexdx=earc sine−1 −π

2 + ln(e+

(69)

V´ı du 8. T´ınh t´ıch phˆan Dirichlet π/2

Z

0

sin(2n−1)x

sinx dx, n∈N

Gia’i. Ta c´o cˆong th´u.c +

n−1

X

k=1

cos 2kx= sin(2n−1)x sinx · T`u d´o v`a lu.u ´y r˘a`ng

π/2

Z

0

cos 2kxdx= 0, k= 1,2, , n−1 ta c´o π/2

Z

0

sin(2n−1)x sinx dx=

π 2· N B `AI T ˆA P

T´ınh c´ac t´ıch phˆan sau dˆay b˘a`ng phu.o.ng ph´ap dˆo’i biˆe´n (1-14) 1.

5

Z

0

xdx

1 + 3x (DS 4)

2.

ln

Z

ln

dx

exex (DS ln3

2 )

3.

3

Z

1

(x3+ 1)dx

x2√4−x2 (DS

7

3 −1) D˘a.t x= sint. 4.

π/2

Z

0

dx

2 + cosx (DS π

(70)

5.

1

Z

0

x2dx

(x+ 1)4 (DS

1 24)

6.

ln

Z

0

ex−1dx. (DS. 4−π )

7.

7

Z

3

x3dx

3

p

(x2+ 1)2 (DS 3)

Chı’ dˆa˜n. D˘a.t t=x2+ 1.

8. e

Z

1

4

1 + lnx

x dx. (DS 0,8(2

4

2−1))

Chı’ dˆa˜n. D˘a.t t= + lnx.

9.

+√3

Z

−3

x2

9−x2dx. (DS. 81π

8 )

chı’ dˆa˜n. D˘a.t x= cost.

10.

3

Z

0

r

x

6−xdx. (DS

3(π−2)

2 )

Chı’ dˆa˜n. D˘a.t x= sin2t. 11.

π

Z

0

sin6x

2dx. (DS 5π 16)

Chı’ dˆa˜n. D˘a.t x= 2t

12. π/4

Z

0

cos72xdx (DS 35)

(71)

13.

2/2

Z

0

r

1 +x

1−xdx. (DS π

4 + 1−

2 )

Chı’ dˆa˜n. D˘a.t x= cost. 14.

29

Z

3

3

p

(x−2)2

3 +p3

(x−2)2dx. (DS +

3

3 π)

T´ınh c´ac t´ıch phˆan sau dˆay b˘a`ng phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n (15-32).a

15.

1

Z

0

x3arctgxdx (DS 6)

16. e

Z

1/e

|lnx|dx. (DS 2(1−1/e)) 17.

π

Z

0

exsinxdx. (DS 2(e

π + 1))

18.

1

Z

0

x3e2xdx. (DS e

2+ 3

8 )

19.

1

Z

0

arc sinx

1 +xdx. (DS π

2−4) 20.

π/4

Z

0

ln(1 + tgx)dx (DS πln )

21. π/b

Z

0

eaxsinbxdx. (DS b a2+b2 e

πa b + 1)

22.

1

Z

0

exln(ex+ 1)dx (DS −1 +e

(72)

23. π/2

Z

0

sin 2x·arctg(sinx)dx. (DS π −1) 24.

2

Z

1

sin(lnx)dx. (DS sin(ln 2)−cos(ln 2) + 2)

25. π

Z

0

x3sinxdx. (DS π3−6π)

26.

2

Z

1

xlog2xdx. (DS 2−

4 ln 2)

27. a

7

Z

0

x3

3

a2+x2dx. (DS

141a3√3 a

20 )

28. a

Z

0

a2−x2dx. (DS. πa

4 )

29. π/2

Z

π/6

x+ sinx

1 + cosxdx. (DS π

6(1 +

3))

30. π/2

Z

0

sinmxcos(m+ 2)xdx (DS −

cos m+ )

31. π/2

Z

0

cosmxcos(m+ 2)xdx (DS 0)

32. π/2

Z

0

cosxcos 2nxdx (DS π 4n(−1)

(73)

33. T´ınh

2

Z

0

f(x)dx, d´o

f(x) =

  

x2 khi 06x61

2−x 16x62

b˘a`ng hai phu.o.ng ph´ap; a) su.’ du.ng nguyˆen h`am cu’a f(x) trˆen doa.n [0,2]; b) chia doa.n [0,2] th`anh hai doa.n [0,1] v`a [1,2] (DS

6) 34. Ch´u.ng minh r˘a`ng nˆe´u f(x) liˆen tu.c trˆen doa.n [−`, `] th`ı

(i) `

Z

`

f(x)dx = `

Z

0

f(x)dx f(x) l`a h`am ch˘a˜n;

(ii) `

Z

`

f(x)dx = f(x) l`a h`am le’

35. Ch´u.ng minh r˘a`ng ∀m, n ∈ Z c´ac d˘a’ng th´u.c sau dˆay du.o c tho’a m˜an:

(i) π

Z

π

sinmxcosnxdx=

(ii) π

Z

π

cosmxcosnxdx= 0, m 6=n. (iii)

π

Z

π

sinmxsinnxdx= 0, m 6=n. 36. Ch´u.ng minh d˘a’ng th´u.c

b

Z

a

f(x)dx= b

Z

a

f(a+bx)dx.

(74)

37. Ch´u.ng minh d˘a’ng th´u.c π/2

Z

0

f(cosx)dx= π/2

Z

0

f(sinx)dx.

Chı’ dˆa˜n. D˘a.t t= πx.

38. Ch´u.ng minh r˘a`ng nˆe´u f(x) liˆen tu.c khi x>0 th`ı a

Z

0

x3f(x2)dx=

a2

Z

0

xf(x)dx

39. Ch´u.ng minh r˘a`ng nˆe´u f(t) l`a h`am le’ th`ı x

Z

a

f(t)dt l`a h`am ch˘a˜n, t´u.c l`a

x

Z

a

f(t)dt = x

Z

a

f(t)dt

Chı’ dˆa˜n. D˘a.t t=−xv`a biˆe’u diˆe˜n −x

Z

a

f(t)dt= a

Z

a +

x

Z

a

v`a su.’ du.ng t´ınh ch˘a˜n le’ cu’a h`am f.

T´ınh c´ac t´ıch phˆan sau dˆay (40-65) b˘a`ng c´ach ´ap du.ng cˆong th´u.c Newton-Leibnitz

40.

5

Z

0

xdx

1 + 3x (DS 4)

41.

ln

Z

ln

dx

exex (DS

(75)

42.

3

Z

0

(x3+ 1)dx

x2√4−x2 (DS

7

3

−1) 43.

π/2

Z

0

dx

2 + cosx (DS π

3)

44.

ln

Z

0

ex−1dx. (DS. 4−π )

45.

7

Z

3

x3dx

3

p

(x2+ 1)2 (DS 3)

46. e

Z

1

4

1 + lnx

x dx. (DS 0,8(2

4

2−1)) 47.

3

Z

−3

x2

9−x2dx. (DS. 81π

8 )

48.

3

Z

0

r

x

6−xdx. (DS

3(π−2)

2 )

Chı’ dˆa˜n. D˘a.t x= sin2t. 49.

4

Z

3

x2+ 3

x−2dx. (DS 11

2 + 7ln2)

50. −1

Z

−2

x+

x2(x−1)dx. (DS ln

4 −

1 2)

51.

1

Z

0

(x2+ 3x)dx

(x+ 1)(x2+ 1) (DS

(76)

52.

1

Z

0

dx

x2+ 2x+ 2 (DS ln

2 +

5 +

2)

53.

4

Z

0

dx

1 +√2x+ (DS 2−ln 2) 54.

2

Z

1

e1x

x3dx. (DS

1 2(e−e

1

4))

55. e

Z

1

dx

x(1 + ln2x) (DS π 4)

56. e

Z

1

cos(lnx)

x dx. (DS sin 1)

57.

1

Z

0

xexdx. (DS 1−2

e)

58. π/3

Z

π/4

xdx

sin2x (DS

π(9−4

3) 36 )

59.

3

Z

1

lnxdx. (DS ln 3−2) 60.

2

Z

1

xlnxdx. (DS ln 2−

4)

61.

1/2

Z

0

arc sinxdx. (DS π 12 +

3 −1) 62.

π

Z

0

(77)

63. π/2

Z

0

e2xcosxdx. (DS e π

2 )

64.

2

Z

0

|1−x|dx. (DS 1) 65.

b

Z

a

|x|

x dx. (DS |b| − |a|) T´ınh c´ac t´ıch phˆan sau dˆay

66. a/b

Z

0

dx a2+b2x =

π 4ab

67.

1

Z

0

x2dx

4 + 2x =

6− 64

15

68.

2

Z

0

dx

x2+ 5x+ 4 =

1 3ln

5

69.

1

Z

0

dx

x2−x+ 1 =

2π 3√3 70.

1

Z

0

(x2+ 1)

x4+x2+ 1dx=

π 2√2 71.

pi/2

Z

0

dx

1 + cosx =

72.

1

Z

0

x2+ 1dx= √1

2+

2ln(1 +

(78)

73.

1

Z

0

1− √

x23/2dx = 3π

32 D˘a.t x= sin3ϕ.

74. a

Z

0

x2

r

ax a+xdx=

π

4 −

a2, a >0 D˘a.t x=acosϕ.

75.

2a

Z

0

2ax−x2dx= πa

2 D˘a.t x= 2asin2ϕ.

76.

1

Z

0

ln(1 +x) +x2 dx=

π 8ln

Chı’ dˆa˜n. D˘a.t x= tgt rˆ` i ´ap du.ng cˆong th´u.co sint+ cost =

2 cosπt

77. π

Z

0

xsinx

1 + cos2xdx =

π2

4

Chı’ dˆa˜n. Biˆe’u diˆ˜ne π

Z

0

= π/2

Z

0

+ π

Z

π/2

rˆ` i thu c hiˆe.n ph´ep dˆo’i biˆe´n trongo t´ıch phˆan t`u.π/2 dˆe´n π.

78. π

Z

π

3

sinxdx=

79. π

Z

π

(79)

80. π/2

Z

π/2

(cos2x+x2sinx)dx= π

81.

1

Z

−1

(ex+ex)tgxdx=

82. pi/2

Z

0

sinxsin 2x sin 3xdx =

83. e

Z

1/e

|lnx|dx = 2(1−e−1) 84.

π

Z

0

excos2xdx= 5(e

π− 1)

85. e

Z

1

(1 + lnx)2dx= 2e−1

Chı’ dˆa˜n. T´ıch phˆan t`u.ng phˆ` n.a

11.3 o.t sˆo´ ´u.ng du ng cu’ a t´ıch phˆan x´ac di.nh

11.3.1 Diˆe.n t´ıch h`ınh ph˘a’ng v`a thˆe’ t´ıch vˆa.t thˆe’ 1Diˆe.n t´ıch h`ınh ph˘a’ng

(80)

x=a, x=bv`a tru.c Ox du.o..c t´ınh theo cˆong th´u.c

SD = b

Z

a

f(x)dx. (11.6)

Nˆe´u f(x)60 ∀x∈[a, b] th`ı SD =−

b

Z

a

f(x)dx (11.6*)

Nˆe´u d´ay h`ınh thang cong n˘a`m trˆen tru.cOy th`ı

SD = d

Z

c

g(y)dy, x=g(y), y ∈[c, d] 2+Nˆe´u du.`o.ng congL

du.o c cho bo.’i phu.o.ng tr`ınh tham sˆo´x=ϕ(t), y=ψ(t),t∈[α, β] th`ı

SD = β

Z

α

ψ(t)ϕ0(t)dt (11.7)

3+ Diˆ

e.n t´ıch cu’a h`ınh qua.t gi´o.i ha.n bo.’i du.`o.ng cong cho du.´o.i da.ng to.a dˆo cu cρ=f(ϕ) v`a c´ac tiaϕ=ϕ0 v`aϕ=ϕ1 du.o c t´ınh theo cˆong

th´u.c

SQ=

ϕ1

Z

ϕ0

[f(ϕ)]2dϕ. (11.8)

4+ Nˆe´u miˆ`ne D ={(x, y) :a6x6b;f1(x)6y 6f2(x)} th`ı

SD = b

Z

a

(81)

2 Thˆe’ t´ıch vˆa t thˆe’

1+Nˆe´u biˆe´t du.o..c diˆe.n t´ıchS(x) cu’a thiˆe´t diˆe.n ta.o nˆen bo’ i vˆ a.t thˆe’ v`a m˘a.t ph˘a’ng vuˆong g´oc v´o.i tru.c Ox ta.i diˆe’m c´o ho`anh dˆo. x th`ı xthay dˆo’i mˆo.t da.i lu.o ng b˘a`ng dx th`ı vi phˆan cu’a thˆe’ t´ıch b˘a`ng

dv=S(x)dx,

v`a thˆe’ t´ıch to`an vˆa.t thˆe’ du.o c t´ınh theo cˆong th´u.c

V = b

Z

a

S(x)dx (11.10)

trong d´o [a, b] l`a h`ınh chiˆe´u vuˆong g´oc cu’a vˆa.t thˆe’ lˆen tru.c Ox. 2+ Nˆe´u vˆ

a.t thˆe’ du.o c ta.o nˆen ph´ep quay h`ınh thang cong gi´o.i ha.n bo.’i du.`o.ng cong y = f(x), f(x) > ∀x ∈ [a, b], tru.c Ox v`a c´ac du.`o.ng th˘a’ng x =a, x =b xung quanh tru.c Ox th`ı diˆe.n t´ıch vˆa t thˆe’ tr`on xoay d´o du.o c t´ınh theo cˆong th´u.c

Vx =π b

Z

a

[f(x)]2dx. (11.11)

Nˆe´u quay h`ınh thang cong xung quanh tru.c Oy th`ı vˆa.t tr`on xoay thu du.o c c´o thˆe’ t´ıch

Vy =π d

Z

c

[x(y)]2dy, x=x(y); [c, d] =prOyV. (11.12)

3+ Nˆe´u h`am y=f(x

) du.o c cho bo.’i c´ac phu.o.ng tr`ınh tham sˆo´ x=x(t)

(82)

tho’a m˜an nh˜u.ng diˆ`u kiˆe.n n`ao d´o th`ı thˆe’ t´ıch vˆa.t thˆe’ ta.o nˆen bo.’ie ph´ep quay h`ınh thang cong xung quanh tru.c Ox b˘a`ng

Vx =π β

Z

α

y2(t)x0(t)dt (11.13)

4+ Nˆ

e´u h`ınh thang cong du.o c gi´o.i ha.n bo.’i c´ac du.`o.ng cong

y1(x) 6y2(x) ∀x ∈[a, b], d´o y1(x) v`a y2(x) liˆen tu.c trˆen [a, b]

th`ı thˆe’ t´ıch vˆa.t thˆe’ ta.o nˆen ph´ep quay h`ınh thang d´o xung quanh tru.c Oxb˘a`ng

Vx =π b

Z

a

(y2(x))2−(y1(x))2

dx. (11.14)

5+ Dˆo´i v´o.i vˆa.t thˆe’ thu du.o c bo.’i ph´ep quay h`ınh thang cong xung quanh tru.c Oy v`a tho’a m˜an mˆo.t sˆo´ diˆe`u kiˆe.n tu.o.ng tu ta c´o

Vy =π β

Z

α

x2(t)y0(t)dt (11.15)

Vy =π d

Z

c

(x2(y))2−(x1(y))2

dy. (11.16)

C ´AC V´I DU.

V´ı du 1. T`ım diˆe.n t´ıch h`ınh ph˘a’ng gi´o.i ha.n bo.’i du.`o.ng astroid x=acos3t, y=asin3t.

(83)

c´ac tru.c to.a dˆo (h˜ay v˜e h`ınh !) nˆen

S = 4S1 =

Z

π/2

asin3t·3acos2t(−sint)dt = 12a2

π/2

Z

0

sin4tcos2tdt

= 2a

2

π/2

Z

0

(1−cos 2t)(1−cos22t)dt = 3πa

3

8 N

V´ı du 2. Trˆen hypecbon x2−y2 =a2 cho diˆe’m M(x0, y0) x0 > 0,

y0 >0 T´ınh diˆe.n t´ıch h`ınh ph˘a’ng gi´o.i ha.n bo.’i tru.c Ox, hypecbˆon v`a

tiaOM

Gia’i. Ta chuyˆe’n sang to.a dˆo cu c theo cˆong th´u.c x = rcosϕ, y=rsinϕ Khi d´o phu.o.ng tr`ınh hypecbˆon c´o da.ng

r2 = a

2

cos2ϕ−sin2

ϕ = a2 cos 2ϕ· D˘a.t tgα= y0

x0

v`a lu.u ´y r˘a`ng x2

0 −y02 =a2 ta thu du.o c

S =

α

Z

0

r2= a

2

2 α

Z

0

cos 2ϕ =

a2

4 ln

1 + tgα 1−tgα = a

2

4 ln

(x0+y0)2

a2 =

a2 ln

x0+y0

a · O’ dˆay ta d˜a su.’ du.ng cˆong th´u.c

Z

dt cost = ln

tgt

2 + π

(84)

V´ı du 3. T´ınh diˆe.n t´ıch h`ınh ph˘a’ng gi´o.i ha.n bo.’i c´ac du.`o.ng c´o phu.o.ng tr`ınhx2

+y2 = 2y, x2+y2 = 4y; y=x v`ay =−x.

Gia’i. Du.a phu.o.ng tr`ınh du.`o.ng tr`on vˆ` da.ng ch´ınh t˘a´c ta c´o:e x2+ (y−1)2 = v`ax2+ (y−2)2 = D´o l`a hai du.`o.ng tr`on tiˆe´p x´uc

trong ta.i tiˆe´p diˆe’m O(0,0) T`u d´o miˆ`n ph˘a’nge D gi´o.i ha.n bo.’i c´ac du.`o.ng d˜a cho dˆo´i x´u.ng qua tru.c Oy L`o.i gia’i s˜e du.o c do.n gia’n ho.n nˆe´u ta chuyˆe’n sang to.a dˆo cu c (v´o.i tru.c cu c tr`ung v´o.i hu.´o.ng du.o.ng cu’a tru.c ho`anh):

x=rcosϕ y =rsinϕ

(

x2+y2 = 2y⇒r= sinϕ,

x2+y2 = 4y⇒r= sinϕ,

v`a

D =

n

(r, ϕ) : π

4 6ϕ6 3π

4 ; sinϕ6r64 sinϕ

o

.

K´y hiˆe.uS∗ l`a diˆe.n t´ıch phˆa` n h`ınh tr`on gi´o.i ha.n bo.’i du.`o.ng tr`onx2+ y2 = 4y (t´u.c l`a r = sinϕ) v`a hai tia ϕ = π

4 v`a ϕ = 3π

4 ; S l`a diˆe.n t´ıch phˆan h`ınh tr`on gi´o.i ha.n bo’ i x2+y2 = 2y (t´u.c l`ar = sinϕ) v`a hai tia d˜a nˆeu Khi d´o

SD =S∗−S = 2h1

π/2

Z

π/4

(4 sinϕ)2−1

2 π/2

Z

π/4

(2 sinϕ)2i

= 12 π/2

Z

π/4

sin2ϕdϕ= 3π

2 + N

V´ı du 4. T´ınh thˆe’ t´ıch vˆa.t tr`on xoay ta.o nˆen ph´ep quay h`ınh thang cong gi´o.i ha.n bo’ i c´ ac du.`o.ng yb, x

2

a2 −

y2

b2 = xung quanh

tru.c Oy.

(85)

l`a du’ Ta c´o

V = 2V1 = 2π

b

Z

0

x2dy= 2πa2 b

Z

0

1 + y

2

b2

dy

= 2πa2y+ y

3

3b2

b

0

= 3πa

2

b. N

V´ı du 5. T´ınh thˆe’ t´ıch vˆa.t thˆe’ lˆa.p nˆen quay astroid x=acos3t,

y=asin3t, 06t62π xung quanh tru.cOx.

Gia’i. Du.`o.ng astroid dˆo´i x´u.ng dˆo´i v´o.i c´ac tru.c Oxv`a Oy Do d´o Vx =π

a

Z

a

y2dx= 2π a

Z

0

y2dx

y2 =a2sin6t, dx=−3acos2tsintdt t= π

2 khix= 0, t= khix=a. Do d´o

V = 2π a

Z

0

y2dx=−6a3π

0

Z

π/2

sin6tcos2tsintdt

= 6a3π

0

Z

π/2

(1−cos2t)3cos2t(−sintdt) = 6a3π

0

Z

π/2

(cos2t−3 cos4t+ cos6t−cos8t)(d(cost) =· · ·= 32

105πa

3

. N

V´ı du 6. T´ınh thˆe’ t´ıch vˆa.t thˆe’ gi´o.i ha.n bo.’i hypecboloid mˆo.t tˆa` ng x2

a2 +

y2

b2 −

z2

(86)

v`a c´ac m˘a.t ph˘a’ng z = 0, z =h (h >0)

Gia’i. Ta s˜e ´ap du.ng cˆong th´u.c (11.10), d´o ta x´et c´ac thiˆe´t diˆe.n ta.o nˆen bo.’i c´ac m˘a.t ph˘a’ng vuˆong g´oc v´o.i tru.cOz Khi d´o (11.10) c´o da.ng

V = h

Z

0

S(z)dz,

trong d´oS(z) l`a diˆe.n t´ıch cu’a thiˆe´t diˆe.n phu thuˆo.c v`ao z Khi c˘a´t vˆa.t thˆe’ bo.’ i m˘a.t ph˘a’ng z= const ta thu du.o c elip v´o.i phu.o.ng tr`ınh

x2

a2 +

y2

b2 = +

z2

c2

z = const

 

⇔

      

x2

a21 + z

c2

+ y

2

b21 + z

c2

=

z= const T`u d´o suy r˘a`ng

a1 =

r

a21 +z

c2

, b1 =

r

b21 +z

c2

l`a c´ac b´an tru.c cu’a elip Nhu.ng ta biˆe´t r˘a`ng diˆe.n t´ıch h`ınh elip v´o.i b´an tru.ca1,b1 l`aπa1b1 (c´o thˆe’ t´ınh b˘a`ng cˆong th´u.c (11.7) dˆo´i v´o.i elip

c´o phu.o.ng tr`ınh tham sˆo´x=a1cost, y=b1sint, t∈[0,2π])

Nhu vˆa.y

S(z) =πab1 +z

2

c2

, z ∈[0, h] T`u d´o theo cˆong th´u.c (11.10) ta c´o

V = h

Z

0

πab1 + z

2

c2

dz =πabh1 + h

2

3c2

. N

(87)

Gia’i. Vˆa.t tr`on xoay thu du.o c c´o t´ınh chˆa´t l`a mo.i thiˆe´t diˆe.n ta.o bo.’ i m˘a.t ph˘a’ng vuˆong g´oc v´o.i tru.c quay dˆe`u l`a v`anh tr`on gi´o.i ha.n bo.’i c´ac du.`o.ng tr`on dˆ` ng tˆam X´et thiˆe´t diˆe.n c´ach gˆo´c to.a dˆo khoa’ng b˘a`ngo y (0 6y64) Ta c´o

S =πR2−πr2 =π[(3 +x)2−(3−x)2] = 12πx= 12πp4−y v`ıx l`a ho`anh dˆo cu’a diˆe’m trˆen parabˆon d˜a cho Khi y thay dˆo’i da.i lu.o ng dy th`ı vi phˆan thˆe’ t´ıch

dv =S(y)dy = 12πp4−ydy. Do d´o thˆe’ t´ıch to`an vˆa.t b˘a`ng

V = 12π

4

Z

0

p

4−ydy= 8π(4−y)3/2

0

= 64π N

V´ı du 8. T`ım thˆe’ t´ıch vˆa.t thˆe’ gi´o.i ha.n bo.’i c´ac m˘a.t x2+y2 = R2; y= 0, z = 0, x

R + z

h−1 = 0, x R

z

h −1 =

Gia’i. Do t´ınh dˆo´i x´u.ng (h˜ay v˜e h`ınh) cu’a vˆa.t thˆe’ dˆo´i v´o.i m˘a.t ph˘a’ng x = nˆen ta chı’ cˆ` n t´ınh thˆe’ t´ıch phˆaa ` n n˘a`m g´oc phˆa` n t´am th´u nhˆa´t Mo.i thiˆe´t diˆe.n ta.o nˆen bo.’i c´ac m˘a.t ph˘a’ng ⊥Ox dˆ`ue l`a h`ınh ch˜u nhˆa.t ABCD v´o.iOA=x Khi d´o

S(x) =SABCD =AB·AD= h

R(R−x)·

R2−x2.

T`u d´o thu du.o..c

V = R

Z

0

S(x)dx= 2h R

R

Z

0

(R−x)

R2−x2dx (d˘a.tx=Rsint)

= 2hR2 π/2

Z

0

(1−sint) cos2tdt= hR

2(3π−4)

(88)

B `AI T ˆA P

Trong c´ac b`ai to´an sau dˆay (1-17) t´ınh diˆe.n t´ıch c´ac h`ınh ph˘a’ng gi´o.i ha.n bo’ i c´ ac du.`o.ng d˜a chı’

1. y= 6x−x2 −7, y=x−3. (DS.

2) 2. y= 6x−x2, y = (DS 36)

3. 4y= 8x−x2, 4y=x+ 6. (DS 5

24) 4. y= 4−x2,y=x2−2x. (DS 9)

5. 6x=y3−16y, 24x=y3−16y (DS 16) 6. y= 1−ex,x= 2, y = 0. (DS. e2−3)

7. y=x2−6x+ 10,y= 6x−x2; x=−1 (DS 211

3) 8. y= arc sinx,yπ

2, x= (DS 2) 9. y=ex,y =ex, x= 1. (DS. (e−1)

2

e ) 10. y2 = 2px, x2 = 2py (DS

3p

2

)

11. x2+y2+ 6x−2y+ = 0, y=x2+ 6x+ 10

(DS S1 =

3π+

6 , S2 =

9π−2 )

12. x=a(t−sint),y=a(1−cost),t ∈[0,2π] (DS 3πa2)

Chı’ dˆa˜n. Dˆay l`a phu.o.ng tr`ınh tham sˆo´ cu’a du.`o.ng xycloid 13. x=acos3t, y=asin3

t,t ∈[0,2π] (DS 3πa

2

8 ) 14. x=acost,y =bsint,t∈[0,2π] (DS πab)

15. Du.`o.ng lemniscate Bernoulliρ2 =a2cos 2ϕ (DS. a2)

16. Du.`o.ng h`ınh tim (Cacdioid)ρ=a(1 + cosϕ). (DS 3πa

2

(89)

17∗ C´ac du.`o.ng tr`on ρ=

3acosϕ, ρ= 2asinϕ. (DS a25

6π

3)

Trong c´ac b`ai to´an sau (18-22) h˜ay t´ınh thˆe’ t´ıch vˆa.t thˆe’ theo diˆe.n t´ıch c´ac thiˆe´t diˆe.n song song.

18. Thˆe’ t´ıch h`ınh elipxoid x

2

a2 +

y3 b2 +

z2

c2 = (DS

4 3πabc)

19. Thˆe’ t´ıch vˆa.t thˆe’ gi´o.i ha.n bo.’i m˘a.t tru x2+y2 =a2,y2+z2 =a2 (DS 16

3 a

3)

Chı’ dˆa˜n. Do t´ınh dˆo´i x´u.ng, chı’ cˆ` n t´ınh thˆe’ t´ıch mˆo.t phˆaa ` n t´am vˆa.t thˆe’ v´o.ix > 0,y > 0, z >0 l`a du’ C´o thˆe’ lˆa´y c´ac thiˆe´t diˆe.n song song v´o.i m˘a.t ph˘a’ng xOz D´o l`a c´ac h`ınh vuˆong

20. Thˆe’ t´ıch vˆa.t thˆe’ h`ınh n´on v´o.i b´an k´ınh d´ay R v`a chiˆ`u caoe h. (DS πR

2h

3 )

Chı’ dˆa˜n. Di.ch chuyˆe’n h`ınh n´on vˆe` vi tr´ı v´o.i dı’nh ta.i gˆo´c to.a dˆo.

v`a tru.c dˆo´i x´u.ng l`aOx Thiˆe´t diˆe.n cˆa` n t`ım l`a h`ınh tr`on v´o.i b´an k´ınh r(x) = R

xx (?)

21. Thˆe’ t´ıch vˆa.t thˆe’ gi´o.i ha.n bo.’i c´ac m˘a.t n´on (z−2)2 = x

2

3 + y2

2 v`a m˘a.t ph˘a’ngz = (DS 8π

6 )

22. Thˆe’ t´ıch vˆa.t thˆe’ gi´o.i ha.n bo.’i m˘a.t tru partabolic z = 4−y2, c´ac

m˘a.t ph˘a’ng to.a dˆo v`a m˘a.t ph˘a’ng x=a. (DS 16a )

Trong c´ac b`ai to´an sau dˆay (23-34) h˜ay t´ınh thˆe’ t´ıch cu’a vˆa.t tr`on xoay thu du.o c bo.’i ph´ep quay h`ınh ph˘a’ng D gi´o.i ha.n bo’ i du.` o.ng (c´ac du.`o.ng) cho tru.´o.c xung quanh tru.c cho tru.´o.c

23. D :y2= 2px,x=a

(90)

24. D : x

2

a2 +

y2

b2 61 (b < a) xung quanh tru.c Oy (DS.

a

2

b) 25. D : x

2

a2 +

y2

b2 61 (b < a) xung quanh tru.c Ox (DS.

ab

2

) 26. D : 2y=x2; 2x+ 2y−3 = xung quanh tru.cOx (DS 18

15π) 27. D :x2+y2 = 1; x+y= xung quanh tru.c Ox (DS. π

3) 28. D :x2+y2 = 4, x=−1,x= 1, y >

0 xung quanh tru.cOx. (DS 8π)

29. D :y= sinx, 0 6x6π, y= xung quanh tru.c Ox (DS. π

2

2 ) 30. D : x

2

a2 −

y2

b2 = 1, y = 0,y=bxung quanh tru.c Oy (DS.

4 3πa

2

b) 31. D :y2+x−4 = 0, x= xung quanh tru.cOy (DS 34

15π) 32. D :xy= 4,y = 0, x= 1, x= xung quanh tru.c Ox (DS 12π) 33. D :x2+ (y−b)2 6R2 (0 < R6b) xung quanh tru.c Ox.

(DS 2π2bR2)

Chı’ dˆa˜n. H`ınh tr`on D c´o thˆe’ xem nhu hiˆe.u cu’a hai thang cong D1 =

(x, y) :−R6 x6R,06y 6− √

R2−x2 v`a

D2 =

(x, y) :−R6 x6R,06y 6+

R2−x2 .

34. D = (x, y) : 0 6 y 6 √R2−x2 xung quanh du.`o.ng th˘a’ng

y=R.

(DS 3π−4 πR

3

)

Chı’ dˆa˜n. Chuyˆe’n gˆo´c to.a dˆo vˆe` diˆe’m (0, R)

11.3.2 T´ınh dˆo d`ai cung v`a diˆe.n t´ıch m˘a.t tr`on xoay

(91)

y=ψ(t) th`ı vi phˆan dˆo d`ai cung du.o c biˆe’u diˆe˜n bo.’i cˆong th´u.c d=p1 + (y0

x)2dx=

q

1 + (x0

y)2dy =

q

x0 t

2

+y0 t

2

dt (11.17) v`a dˆo d`ai cu’a du.`o.ng cong L(A, B) du.o..c t´ınh bo.’i cˆong th´u.c

`(A, B) = xZB=b

xA=a

p

1 + (y0)2dx=

yB

Z

yA

q

1 + (x0 y)2dy

= tB

Z

tA

q

x0 t

2

+y0 t

2

dt. (11.18)

Nˆe´u du.`o.ng cong du.o..c cho bo.’i phu.o.ng tr`ınh to.a dˆo cu cρ=ρ(ϕ) th`ı

d` =

q

ρ2+ ρ0 ϕ

2

v`a

`(A, B) = ϕB

Z

ϕA

q

ρ2 + ρ0 ϕ

2

dϕ. (11.19)

2+ Nˆe´u m˘a.t σ thu du.o c quay du.`o.ng cong cho trˆen [a, b] bo.’ i h`am khˆong ˆam y = f(x) > 0 xung quanh tru.c Ox th`ı vi phˆan diˆe.n t´ıch m˘a.t

ds= 2π·y+ (y+dy)

2 d`=π(2y+dy)d`≈ 2πyd` v`a diˆe.n t´ıch m˘a.t tr`on xoay du.o c t´ınh theo cˆong th´u.c

Sx= 2π b

Z

a

f(x)p1 + (f0

(92)

Nˆe´u quay du.`o.ng cong L(A, B) xung quanh tru.cOy th`ıds≈2πx(y)d` v`a

Sy = 2π yB

Z

yA

x(y)

q

1 + (x0

y)2dy. (11.21) Nˆe´u du.`o.ng congL(A, B) du.o..c cho bo.’i phu.o.ng tr`ınh tham sˆo´x=ϕ(t), y=ψ(t)>0 (t∈[α, β]) th`ı

Sx = 2π β

Z

α ψ(t)

q

ϕ02

+ψ02dt. (11.22)

Tu.o.ng tu ta c´o

Sy = 2π β

Z

α ϕ(t)

q

ϕ02

+ψ02dt, ϕ(t)>0. (11.23)

C ´AC V´I DU. V´ı du 1. T´ınh dˆo d`ai du.`o.ng tr`on b´an k´ınh R.

Gia’i. Ta c´o thˆe’ xem du.`o.ng tr`on d˜a cho c´o tˆam ta.i gˆo´c to.a dˆo Phu.o.ng tr`ınh du.`o.ng tr`on du.´o.i da.ng tham sˆo´ c´o da.ng x = Rcost, y=Rsint,t∈[0,2π] Ta chı’ cˆ` n t´ınh dˆo d`ai cu’a mˆo.t phˆaa ` n tu du.`o.ng tr`on ´u.ng v´o.i 6t6 π

2 l`a du’ Theo cˆong th´u.c (11.18) ta c´o

`= π/2

Z

0

p

(−Rsint)2+ (Rcost)2dt= 4Rt

π/2

0 = 2πR N

V´ı du 2. T´ınh dˆo d`ai cu’a v`ong th´u nhˆa´t cu’a du.`o.ng xo˘a´n ˆo´c Archimedesρ=aϕ.

Gia’i. Theo di.nh ngh˜ıa, du.`o.ng xo˘a´n ˆo´c Archimedes l`a du.`o.ng cong

(93)

t`u gˆo´c-cu..c m`a tia n`ay la.i quay xung quanh gˆo´c cu c v´o.i vˆa.n tˆo´c g´oc cˆo´ di.nh V`ong th´u nhˆa´t cu’a du.`o.ng xo˘a´n ˆo´c Archimedes du.o c ta.o nˆen g´oc cu c ϕ biˆe´n thiˆen t`u dˆe´n 2π Do d´o theo cˆong th´u.c (11.19) ta c´o

` =

2π

Z

0

p

a2ϕ2+a2=a 2π

Z

0

p

ϕ2+ 1dϕ.

T´ıch phˆan t`u.ng phˆ` n b˘a`ng c´ach d˘a.ta u=pϕ2+ 1, dv=ta c´o

`=ahϕpϕ2+ 12π

2π

Z

0

ϕ2

p

ϕ2+ 1

i

=a

h

ϕpϕ2+ 1

2π

0

2π

Z

0

ϕ2+ 1−1

p

ϕ2+ 1

i

=ah1 2ϕ

p

ϕ2 + +1

2ln(ϕ+

p

ϕ2+ 1)i

2π

0

=ahπ

4π2+ +

2 2π+

4π2+ 1i.N

V´ı du 3. T´ınh diˆe.n t´ıch m˘a.t cˆa` u b´an k´ınh R.

Gia’i. C´o thˆe’ xem m˘a.t cˆa` u c´o tˆam ta.i gˆo´c to.a dˆo v`a thu du.o c bo.’i ph´ep quay nu.’ a du.`o.ng tr`on y=

R2−x2 xung quanh tru.c Ox.

Phu.o.ng tr`ınh du.`o.ng tr`on c´o da.ng x2 + y2 = R2 Do d´o y0 =

−√ x

R2−x2 Theo cˆong th´u.c (11.20) ta c´o

Sx = 2π R

Z

R

R2−x

s

1 + x

2

R2 −x2dx= 2π

R

Z

R

R2 −x2+x2dx

= 2πRx

R

R = 4πR

2

. N

(94)

Gia’i. Biˆe´n ρ chı’ nhˆa.n gi´a tri thu..c cos 2ϕ > t´u.c l`a

π/46ϕ6π/4 (nh´anh bˆen pha’i) hay 3π/46ϕ65π/4 (nh´anh bˆen tr´ai) Vi phˆan cung cu’a lemniscat b˘a`ng

d`=

q

ρ2+ρ02

=

s

a2cos 2ϕ+ (−√asin 2ϕ

cos 2ϕ

2

= √adϕ

cos 2ϕ·

Ngo`ai ray =ρsinϕ=a√cos 2ϕ·sinϕ T`u d´o diˆe.n t´ıch cˆa` n t`ım b˘a`ng hai lˆ` n diˆe.n t´ıch cu’a m˘a.t thu du.o c bo.’i ph´ep quay nh´anh pha’i Do d´oa theo (11.20)

S = 2·2π π/4

Z

0

yds= 4π π/4

Z

0

a√cos 2ϕ·sinϕ·adϕ

cos 2ϕ

= 4π π/4

Z

0

a2sinϕdϕ= 2πa2(2− √

2) N

V´ı du 5. T`ım diˆe.n t´ıch m˘a.t ta.o nˆen bo.’i ph´ep quay cung parabˆon y= x

2

2 , 06x6

3 xung quanh tru.cOy.

Gia’i. Ta c´o x = √2y, x0 = √1

2y Do d´o, ´ap du.ng cˆong th´u.c (11.18) ta thu du.o c

S = 2π

3/2

Z

0

p

2y

r

1 +

2ydy = 2π

3/2

Z

0

p

2y+ 1dy

= 2π· (2y+ 1)

3/2

3

3/2

= 14π · N

V´ı du 6. T`ım diˆe.n t´ıch m˘a.t ta.o nˆen bo.’i ph´ep quay elipx2+ 4y2 = 26

xung quanh: a) tru.cOx; b) tru.c Oy.

Gia’i. Nu.’ a trˆen cu’a elip d˜a cho c´o thˆe’ xem nhu dˆ` thi cu’a h`amo y=

2

(95)

c`on trˆen khoa’ng (−6,6) da.o h`am khˆong bi ch˘a.n Do vˆa.y khˆong thˆe’ t´ınh b˘a`ng cˆong th´u.c (11.20) to.a dˆo Dˆe` c´ac du.o c.

Dˆe’ kh˘a´c phu.c kh´o kh˘an d´o, ta d`ung ph´ep tham sˆo´ h´oa du.`o.ng elip: x = cost, y= sint, 06t62π

1+Ph´ep quay xung quanh tru.cOx Ta x´et nu.’ a trˆen cu’a elip tu.o.ng ´

u.ng v´o.i 06t6π Theo cˆong th´u.c (11.22) du.´o.i da.ng tham sˆo´ ta c´o

Sx = 2π π

Z

0

3 sint·p36 sin2t+ cos2tdt.

D˘a.t cost = √2

3sinϕ ta c´o

Sx= 24

π/3

Z

π/3

cos2ϕdϕ=

3π(4π+

3)

2+ Ph´

ep quay xung quanh tru.c Oy Ta x´et nu.’ a bˆen pha’i cu’a elip (tu.o.ng ´u.ng v´o.it ∈−π

2, π

i

Tu.o.ng tu nhu trˆen ta ´ap du.ng (11.23) v`a thu du.o c

Sy = 2π π/2

Z

π/2

6 cost·p36 sin2t+ cos2tdt D˘a.t sint = √1

3shϕ

= 24

arcshZ √3

−arcsh√3

ch2ϕdϕ= 24

3 + ln(2 +

3). N

B `AI T ˆA P T´ınh dˆo d`ai cung cu’a du.`o.ng cong 1. y=x3/2 t`u.x= dˆe´n x= (DS

27(10

(96)

2. y=x2−1 t`u.x=−1 dˆe´n x= (DS. √5 +

2ln(2 +

5)) 3. y= a

2 e

x/a+ex/a t`u.x= dˆe´n x=a (DS. a(e

2−1)

2e ) 4. y= ln cosx t`u.x= dˆe´n x= π

6 (DS 2ln 3) 5. y= ln sinx t`u.x = π

3 dˆe´nx = 2π

3 (DS ln 3) 6. x=etsint,y =etcost, 06t 6 π

2 (DS

2(eπ/2−1))

7. x=a(t−sint),y=a(1−cost); 06t62π (DS 8a) 8. x=acos3t,y=asin3

t; 06t62π (DS 6a)

Chı’ dˆa˜n. V`ıpx0 t

2

+y0 t

2

= 3a

1 |sin 2t|v`a h`am|sin 2t|c´o chu k`yπ/2 nˆen `=

π/2

Z

0

d`.

9. x=etcost, y=etsint t`u.t = dˆe´nt = lnπ (DS.

2(π−1)) 10. x = sint+ cost, y= sint−8 cost t`u.t = dˆe´n t= π

2 (DS 5π)

11. ρ=aekθ (du.`o.ng xo˘´n ˆo´c lˆoga) t`a u.θ = dˆe´nθ =T. (DS a

k

1 +k2(ekT −1))

12. ρ=a(1−cosϕ),a >0, 06ϕ62π (du.`o.ng h`ınh tim) (DS 8a) 13. ρϕ = t`u diˆe’m A2,1

2

dˆe´n diˆe’m B1 2,2

- du.`o.ng xo˘a´n ˆo´c hypecbon

(DS

5 + ln

3 +

5 )

T´ınh diˆe.n t´ıch c´ac m˘a.t tr`on xoay thu du.o c quay cung du.`o.ng cong hay du.`o.ng cong xung quanh tru.c cho tru.´o.c.

14. Cung cu’a du.`o.ng y = x3 t`u.x= −2

3 dˆe´n x =

(97)

(DS 2π 27

125

27 −1

) 15. Du.`o.ng x=acos3t, y=asin3

t xung quanh tru.cOx. (DS 12

5 πa

2

) 16. x

2

a2 +

y2

b2 = 1, a > b xung quanh tru.c Ox.

(DS 2πb

b+a

εarc sinε

, ε l`a tˆam sai cu’a elip)

Chı’ dˆa˜n. Da.o h`am hai vˆe´ phu.o.ng tr`ınh elip rˆo`i r´ut yy0 =

bx

2

a2 , c`on biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan du.o c viˆe´t y

p

1 +y02

dx =

p

y2+ (yy0)3dx.

17. Cung du.`o.ng tr`on x2 + (y−b)2 = R (khˆong c˘a´t tru.c Oy) t`u.y

dˆe´n y2 xung quanh tru.cOy (DS 2πR(y2−y1))

Chı’ dˆa˜n. M˘a.t thu du.o c l`a d´o.i cˆ` ua

18. y= sinxt`u.x= dˆe´n x=π xung quanh tru.cOx. (DS 2π

2 + ln(1 +

2)) 19. y= x

3

3 t`u.x=−2 dˆe´n x= xung quanh tru.c Ox. (DS 34

17−2

9 π)

20. Cung bˆen tr´ai du.`o.ng th˘a’ng x = cu’a du.`o.ng cong y2 = +x, xung quanh tru.cOx (DS. 62π

3 ) 21. y= a

2 e

x/a+ex/a t`u.x= dˆe´nx=a (a >0). (DS πa

2

4 (e

2+ 4−e−2))

22. y2 = 4x t`u.x= dˆe´n x

= 3, xung quanh tru.c Ox (DS. 56π ) 23. x=etsint, y=etcost t`u.t= dˆe´nt = π

2, xung quanh tru.cOx. (DS 2π

2 (e

(98)

24. x=acos3t, y=asin3t, 06t62π; quay xung quanh tru.cOx. (DS 12

5 πa

2

)

Chı’ dˆa˜n. V`ı du.`o.ng cong c´o t´ınh dˆo´i x´u.ng qua c´ac tru.c to.a dˆo nˆen chı’ cˆ` n t´ınh diˆe.n t´ıch ta.o nˆen bo.’i mˆo.t phˆaa ` n tu du.`o.ng thuˆo.c g´oc I quay xung quanh tru.c Ox.

25. x = t −sint, y = 1−cost (diˆe.n t´ıch du.o c ta.o th`anh quay mˆo.t cung); xung quanh tru.c Ox.

(DS 64π ) 26. y= sin 2x t`u.x= dˆe´n x= π

2; xung quanh tru.cOx. (DS π

2

2

5 + ln(

5 + 2)) 27. 3x2+ 4y2

= 12; xung quanh tru.c Oy (DS 2π(4 + ln 3)) 28. x2 =y+ 4, y

= 2; xung quanh tru.c Oy (DS. 62π )

29. Cung cu’a du.`o.ng tr`on x2+y2 = (y >0) gi˜u.a hai diˆe’m c´o ho`anh

dˆo. x=−1 v`a x= 1; xung quanh tru.c Ox (DS 8π)

30. Du.`o.ng h`ınh tim (cacdiod) ρ = a(1 + cosϕ); quay xung quanh tru.c cu c

(DS 32πa

2

5 )

31. Du.`o.ng tr`onρ= 2rsinϕ; quay xung quanh tru.c cu..c (DS 4π2r2)

32. Cung _

AB cu’a du.`o.ng xicloid x = a(t−sint), y = a(1−cost); quay xung quanh du.`o.ng th˘a’ng y=a (DS 16√2πa

2

3 )

Chı’ dˆa˜n. Ap du.ng cˆong th´u´ c

S = 2π

3π

Z

π/2

2(y(t)−a)

q

x0 t

2

+y0 t

2

(99)

11.4 T´ıch phˆan suy rˆo.ng

11.4.1 T´ıch phˆan suy rˆo ng cˆa n vˆo ha.n

1 Gia’ su.’ h`am f(x) x´ac di.nh ∀x>a v`a kha’ t´ıch trˆen mo.i doa.n [a, b]. Nˆe´u tˆ` n ta.i gi´o.i ha.n h˜u.u ha.no

lim b→+∞

b

Z

a

f(x)dx (11.24) th`ı gi´o.i ha.n d´o du.o c go.i l`a t´ıch phˆan suy rˆo.ng cu’a h`am f(x) trˆen khoa’ng [a,+∞) v`a k´y hiˆe.u l`a

+∞

Z

a

f(x)dx.

Trong tru.`o.ng ho p n`ay ngu.`o.i ta c`on n´oi r˘a`ng t´ıch phˆan suy rˆo.ng (11.24) hˆo.i tu v`a h`amf(x) kha’ t´ıch theo ngh˜ıa suy rˆo.ng trˆen khoa’ng [a,+∞) Nˆe´u gi´o.i ha.n (11.24) khˆong tˆo` n ta.i th`ı t´ıch phˆan

+∞

Z

a

f(x)dx du.o c go.i l`a t´ıch phˆan phˆan k`y v`a h`amf(x) khˆong kha’ t´ıch theo ngh˜ıa suy rˆo.ng trˆen [a,+∞)

Tu.o.ng tu nhu trˆen, theo di.nh ngh˜ıa b

Z

−∞

f(x)dx = lim a→−∞

b

Z

a

f(x)dx (11.25)

+∞

Z

−∞

f(x)dx= c

Z

−∞

f(x)dx+

+∞

Z

c

f(x)dx, c∈R (11.26) C´ac cˆong th´u.c co ba’n dˆo´i v´o.i t´ıch phˆan suy rˆo.ng

1) T´ınh tuyˆe´n t´ınh Nˆe´u c´ac t´ıch phˆan suy rˆo.ng

+∞

Z

a

f(x)dx v`a

+∞

Z

a

g(x)dxhˆo.i tu. ∀α, β ∈Rth`ı t´ıch phˆan

+∞

Z

a

(100)

v`a

+∞

Z

a

(αf(x) +βg(x))dx=α

+∞

Z

a

f(x)dx+β

+∞

Z

a

g(x)dx.

2)Cˆong th´u.c Newton-Leibnitz Nˆe´u trˆen khoa’ng [a,+∞) h`amf(x) liˆen tu.c v`a F(x),x∈[a,+∞) l`a nguyˆen h`am n`ao d´o cu’a n´o th`ı

+∞

Z

a

f(x)dx=F(x)a+∞=F(+∞)−F(a) d´o F(+∞) = lim

x→+∞F(x)

3) Cˆong th´u.c dˆo’i biˆe´n Gia’ su.’ f(x), x∈[a,+∞) l`a h`am liˆen tu.c, ϕ(t), t ∈[α, β] l`a kha’ vi liˆen tu.c v`a a =ϕ(α) ϕ(t) < lim

tβ−0ϕ(t) =

+∞ Khi d´o:

+∞

Z

a

f(x)dx= β

Z

α

f(ϕ(t))ϕ0(t)dt (11.27) 4)Cˆong th´u.c t´ıch phˆan t`u.ng phˆ` n.a Nˆe´uu(x) v`av(x),x∈[a,+∞) l`a nh˜u.ng h`am kha’ vi liˆen tu.c v`a lim

x→+∞(uv) tˆ` n ta.i th`ı:o

+∞

Z

a

udv=uv+a∞−

+∞

Z

a

vdu (11.28)

trong d´o uv+a∞= lim x→+∞(uv)

u(a)v(a). C´ac diˆ`u kiˆe e.n hˆo.i tu.

1) Tiˆeu chuˆa’n Cauchy T´ıch phˆan

+∞

Z

a

f(x)dx hˆo.i tu v`a chı’ khi

ε >0, ∃b=b(ε)>a cho∀b1 > b v`a∀b2 > b ta c´o:

b2

Z

b1

f(x)dx

(101)

2) Dˆa´u hiˆe.u so s´anh I Gia’ su.’ g(x) > f(x) > ∀x > a v`a f(x), g(x) kha’ t´ıch trˆen mo.i doa.n [a, b],b <+∞ Khi d´o:

(i) Nˆe´u t´ıch phˆan

+∞

Z

a

g(x)dx hˆo.i tu th`ı t´ıch phˆan

+∞

Z

a

f(x)dx hˆo.i tu

(ii) Nˆe´u t´ıch phˆan

+∞

Z

a

f(x)dxphˆan k`y th`ı t´ıch phˆan

+∞

Z

a

g(x)dxphˆan k`y

3) Dˆa´u hiˆe.u so s´anh II Gia’ su.’ f(x)>0,g(x)>0 ∀x>a v`a lim

x→+∞ f(x) g(x) =λ. Khi d´o:

(i) Nˆe´u < λ < +∞ th`ı c´ac t´ıch phˆan

+∞

Z

a

f(x)dx v`a

+∞

Z

a

g(x)dx dˆ` ng th`o.i hˆo.i tu ho˘a.c dˆoo ` ng th`o.i phˆan k`y

(ii) Nˆe´u λ = v`a t´ıch phˆan

+∞

Z

a

g(x)dx hˆo.i tu th`ı t´ıch phˆan

+∞

Z

a

f(x)dx hˆo.i tu

(iii) Nˆe´u λ = +∞ v`a t´ıch phˆan

+∞

Z

a

f(x)dx hˆo.i tu th`ı t´ıch phˆan

+∞

Z

a

g(x)dx hˆo.i tu

Dˆe’ so s´anh ta thu.`o.ng su.’ du.ng t´ıch phˆan

+∞

Z

a dx

% &

hˆo.i tu nˆe´u α >1, phˆan k`y nˆe´u α61

(102)

D- i.nh ngh˜ıa. T´ıch phˆan

+∞

Z

a

f(x)dx du.o c go.i l`a hˆo.i tu tuyˆe.t dˆo´i nˆe´u

t´ıch phˆan

+∞

Z

a

|f(x)|dx hˆo.i tu v`a du.o c go.i l`a hˆo.i tu c´o diˆe`u kiˆe.n nˆe´u t´ıch phˆan

+∞

Z

a

f(x)dx hˆo.i tu nhu.ng t´ıch phˆan

+∞

Z

a

|f(x)|dx phˆan k`y Mo.i t´ıch phˆan hˆo.i tu tuyˆe.t dˆo´i dˆe`u hˆo.i tu

3) T`u dˆa´u hiˆe.u so s´anh II v`a (11.29) r´ut ra

Dˆa´u hiˆe.u thu..c h`anh. Nˆe´u x → +∞ h`am du.o.ng f(x) l`a vˆo c`ung b´e cˆa´p α >0 so v´o.i

x th`ı (i) t´ıch phˆan

+∞

Z

a

f(x)dx hˆo.i tu khi α >1;

(ii) t´ıch phˆan

+∞

Z

a

f(x)dx phˆan k`y α 61

C ´AC V´I DU. V´ı du 1. T´ınh t´ıch phˆan

I =

+∞

Z

2

dx x2√x2−1·

Gia’i. Theo di.nh ngh˜ıa ta c´o

+∞

Z

2

dx

x2√x2−1 = limb→+∞ b

Z

2

dx x2√x2−1·

D˘a.t x =

(103)

I(b) = b

Z

2

dx

x2√x2−1 = 1/b

Z

1/2

dt t

t2

r

1 t2 −1

=−

1/b

Z

1/2

tdt

1−t2

=

1−t2 1/b

1/2

=

r

1−

b2 −

r

1−

4. T`u d´o suy r˘a`ng I = lim

b→+∞I(b) = 2−

3

2 Nhu vˆa.y t´ıch phˆan d˜a cho hˆo.i tu N

V´ı du 2. Kha’o s´at su hˆo.i tu cu’a t´ıch phˆan

+∞

Z

1

2x2+ 1

x3+ 3x+ 4dx.

Gia’i. H`am du.´o.i dˆa´u t´ıch phˆan >0∀x>1 Ta c´o f(x) = 2x

2

+ x3+ 3x+ 4 =

2 + x2

x+ x+

4 x2

·

V´o.i x du’ l´o.n h`am f(x) c´o d´ang diˆe.u nhu.

x Do d´o ta lˆa´y h`am ϕ(x) =

x dˆe’ so s´anh v`a c´o lim

x→+∞ f(x)

ϕ(x) = limx→+∞

(2x2+ 1)x

x2+ 3x+ 4 = 26=

V`ı t´ıch phˆan ∞

Z

1

dx

x phˆan k`y nˆen theo dˆa´u hiˆe.u so s´anh II t´ıch phˆan d˜a cho phˆan k`y N

V´ı du 3. Kha’o s´at su. hˆo.i tu cu’a t´ıch phˆan ∞

Z

2

dx

3

(104)

Gia’i. Ta c´o bˆa´t d˘a’ng th´u.c

3

x3−1 >

1

x khix >2

Nhu.ng t´ıch phˆan ∞

Z

2

dx

x phˆan k`y, d´o theo dˆa´u hiˆe.u so s´anh I t´ıch phˆan d˜a cho phˆan k`y N

V´ı du 4. Kha’o s´at su hˆo.i tu v`a d˘a.c t´ınh hˆo.i tu cu’a t´ıch phˆan

+∞

Z

1

sinx x dx.

Gia’i. Dˆ` u tiˆen ta t´ıch phˆan t`a u.ng phˆ` n mˆo.t c´ach h`ınh th´u.ca

+∞

Z

1

sinx

x dx=− cosx

x

+∞

1

+∞

Z

1

cosx

x2 dx= cos 1− +∞

Z

1

cosx x2 dx.

(11.30)

T´ıch phˆan

+∞

Z

1

cosx

x2 dx hˆo.i tu tuyˆe.t dˆo´i, d´o n´o hˆo.i tu Nhu vˆa.y

ca’ hai sˆo´ ha.ng o.’ vˆe´ pha’i (11.30) h˜u.u ha.n T`u d´o suy ph´ep t´ıch phˆan t`u.ng phˆ` n d˜a thu c hiˆe.n l`a ho p l´y v`a vˆe´ tr´ai cu’a (11.30) l`a t´ıcha phˆan hˆo.i tu

Ta x´et su hˆo.i tu tuyˆe.t dˆo´i Ta c´o

|sinx|> sin2x= 1−cos 2x v`a vˆa.y ∀b >1 ta c´o

b

Z

1

|sinx|

x dx>

b

Z

1

dx x

1

b

Z

1

cos 2x

(105)

T´ıch phˆan th´u nhˆa´t o.’ vˆe´ pha’i cu’a (11.31) phˆan k`y T´ıch phˆan th´u hai o.’ vˆe´ pha’i d´o hˆo.i tu (diˆe`u d´o du.o c suy b˘a`ng c´ach t´ıch phˆan t`u.ng phˆ` n nhu (11.30)) Qua gi´o.i ha.n (11.31) khia b → +∞ ta c´o vˆe´ pha’i cu’a (11.31) dˆ` n dˆe´na ∞ v`a d´o t´ıch phˆan vˆe´ tr´ai cu’a (11.31) phˆan k`y, t´u.c l`a t´ıch phˆan d˜a cho hˆo.i tu c´o diˆe`u kiˆe.n (khˆong tuyˆe.t dˆo´i). N

B `AI T ˆA P T´ınh c´ac t´ıch phˆan suy rˆo.ng cˆa.n vˆo ha.n 1.

Z

0

xex2dx (DS 2)

2.

Z

0

dx x

x2−1 (DS

π 6)

3.

Z

0

dx

(x2+ 1)2 (DS

π−2 )

4.

Z

0

xsinxdx. (DS Phˆan k`y)

5.

Z

−∞ 2xdx

x2 + 1 (DS Phˆan k`y)

6.

Z

0

exsinxdx. (DS 2)

7.

+∞

Z

2

1

x2−1 +

2 (x+ 1)2

dx. (DS +

1 2ln 3)

8.

+∞

Z

−∞

dx

x2 + 4x+ 9 (DS

π

(106)

9.

+∞

Z

2

xdx

(x2+ 1)3 (DS

1

36) Chı’ dˆa˜n. D˘a.t x=

t.

10.

+∞

Z

1

dx x

x2+x+ 1 (DS ln

1 +√2

3

) Chı’ dˆa˜n. D˘a.tx= t

11.

+∞

Z

1

arctgx

x2 dx. (DS

π +

ln 2 )

12.

+∞

Z

3

2x+

x2+ 3x−10dx. (DS Phˆan k`y)

13.

Z

0

eaxsinbxdx,a >0 (DS b a2+b2)

14.

+∞

Z

0

eaxcosbxdx, a >0 (DS a a2+b2)

Kha’o s´at su. hˆo.i tu cu’a c´ac t´ıch phˆan suy rˆo.ng cˆa.n vˆo ha.n 15.

Z

1

ex

x dx. (DS Hˆo.i tu.)

Chı’ dˆa˜n. Ap du.ng bˆa´t d˘a’ng th´u´ c e

x x 6e

xx>1

16.

+∞

Z

2

xdx

x4 + 1 (DS Phˆan k`y)

Chı’ dˆa˜n. Ap du.ng bˆa´t d˘a’ng th´u´ c

x

x4+ 1 >

x

x4+x4 ∀x>

17.

+∞

Z

1

sin23x

3

(107)

18.

+∞

Z

1

dx

4x+ lnx (DS Phˆan k`y)

19.

+∞

Z

1

ln1 +1 x

dx. (DS Hˆo.i tu nˆe´u α >0)

20.

+∞

Z

0

xdx

3

x5+ 2 (DS Hˆo.i tu.)

21.

+∞

Z

1

cos 5x−cos 7x

x2 dx. (DS Hˆo.i tu.)

22.

+∞

Z

0

xdx

3

1 +x7 (DS Hˆo.i tu.)

23.

+∞

Z

0

x+

1 + 2√x+x2dx. (DS Hˆo.i tu.)

24.

Z

1

1

x(e

1/x

1)dx (DS Hˆo.i tu.)

25.

Z

1

x+√x+ x2+ 2√5

x4+ 1dx. (DS Phˆan k`y)

26.

Z

3

dx

p

x(x−1)(x−2) (DS Hˆo.i tu.) 27.

Z

0

(3x4−x2)e−x2dx. (DS Hˆo.i tu.)

Chı’ dˆa˜n. So s´anh v´o.i t´ıch phˆan hˆo.i tu.

+∞

Z

0

ex

2

2 dx(ta.i ?) v`a ´ap

(108)

28.

+∞

Z

5

ln(x−2)

x5 +x2+ 1dx. (DS Hˆo.i tu.)

Chı’ dˆa˜n. Ap du.nng hˆe th´u.c´

lim t→+∞

lnt

= ∀α >0⇒x→lim+∞

ln(x−2)

= ∀α >0 T`u d´o so s´anh t´ıch phˆan d˜a cho v´o.i t´ıch phˆan hˆo.i tu.

+∞

Z

5

dx

, α > Tiˆe´p dˆe´n ´ap du.ng dˆa´u hiˆe.u so s´anh II.

11.4.2 T´ıch phˆan suy rˆo ng cu’ a h`am khˆong bi ch˘a.n Gia’ su.’ h`am f(x) x´ac di.nh trˆen khoa’ng [a, b) v`a kha’ t´ıch trˆen mo.i doa.n [a, ξ],ξ < b Nˆe´u tˆ` n ta.i gi´o.i ha.n h˜u.u ha.no

lim ξb−0

ξ

Z

0

f(x)dx (11.32)

th`ı gi´o.i ha.n d´o du.o c go.i l`a t´ıch phˆan suy rˆo.ng cu’a h`amf(x) trˆen [a, b) v`a k´y hiˆe.u l`a:

b

Z

a

f(x)dx. (11.33)

Trong tru.`o.ng ho p n`ay t´ıch phˆan suy rˆo.ng (11.33) du.o c go.i l`a t´ıch phˆan hˆo.i tu Nˆe´u gi´o.i ha.n (11.32) khˆong tˆo` n ta.i th`ı t´ıch phˆan suy rˆo.ng (11.33) phˆan k`y.

Di.nh ngh˜ıa t´ıch phˆan suy rˆo.ng cu’a h`amf(x) x´ac di.nh trˆen khoa’ng (a, b] du.o..c ph´at biˆe’u tu.o.ng tu

(109)

doa.n [a, b] v`a tru.`o.ng ho..p n`ay t´ıch phˆan suy rˆo.ng du.o c x´ac di.nh bo.’ i d˘a’ng th´u.c:

b

Z

a

f(x)dx= c

Z

a

f(x)dx+ b

Z

c

f(x)dx.

2 C´ac cˆong th´u.c co ba’n

1) Nˆe´u c´ac t´ıch phˆan b

Z

a

f(x)dx v`a b

Z

a

g(x)dx hˆo.i tu th`ı∀α, β ∈R ta c´o t´ıch phˆan

b

Z

a

[αf(x) +βg(x)]dx hˆo.i tu v`a

b

Z

a

[αf(x) +βg(x)]dx=α b

Z

a

f(x)dx+β b

Z

a

g(x)dx.

2) Cˆong th´u.c Newton-Leibnitz Nˆe´u h`am f(x), x∈ [a, b) liˆen tu.c v`a F(x) l`a mˆo.t nguyˆen h`am n`ao d´o cu’a f trˆen [a, b) th`ı:

b

Z

a

f(x)dx=F(x)ab−0 =F(b−0)−F(a), F(b−0) = lim

xb−0F(x)

3) Cˆong th´u.c dˆo’i biˆe´n Gia’ su.’ f(x) liˆen tu.c trˆen [a, b) c`on ϕ(t), t ∈ [α, β) kha’ vi liˆen tu.c v`a a = ϕ(α) ϕ(t) < lim

tβ−0ϕ(t) =b Khi

d´o:

b

Z

a

f(x)dx= β

Z

α

(110)

4) Cˆong th´u.c t´ıch phˆan t`u.ng phˆ` n Gia’ su.a ’ u(x),x∈[a, b) v`av(x), x∈[a, b) l`a nh˜u.ng h`am kha’ vi liˆen tu.c v`a lim

xb−0(uv) tˆ` n ta.i Khi d´o;o

b

Z

a

udv =uvba

b

Z

a vdu

uvba = lim xb−0(uv)

u(a)v(a). C´ac diˆ`u kiˆe e.n hˆo.i tu.

1) Tiˆeu chuˆa’n Cauchy Gia’ su.’ h`am f(x) x´ac di.nh trˆen khoa’ng [a, b), kha’ t´ıch theo ngh˜ıa thˆong thu.`o.ng trˆen mo.i doa.n [a, ξ], ξ < b v`a khˆong bi ch˘a.n lˆan cˆa.n bˆen tr´ai cu’a diˆe’m x = b Khi d´o t´ıch phˆan

b

Z

a

f(x)dx hˆo.i tu v`a chı’ khi ∀ε > 0, ∃η ∈[a, b) cho

η1, η2 ∈(η, b) th`ı

η2

Z

η1

f(x)dx

< ε.

2) Dˆa´u hiˆe.u so s´anh I. Gia’ su.’ g(x) >f(x) > trˆen khoa’ng [a, b) v`a kha’ t´ıch trˆen mˆo˜i doa.n [a, ξ], ξ < b Khi d´o:

(i) Nˆe´u t´ıch phˆan b

Z

a

g(x)dx hˆo.i tu th`ı t´ıch phˆan b

Z

a

f(x)dxhˆo.i tu

(ii) Nˆe´u t´ıch phˆan b

Z

a

f(x)dxphˆan k`y th`ı t´ıch phˆan b

Z

a

g(x)dx phˆan k`y

3) Dˆa´u hiˆe.u so s´anh II. Gia’ su.’ f(x)>0, g(x)>0,x∈[a, b) v`a lim

xb−0

(111)

(i) Nˆe´u 0< λ <+∞ th`ı c´ac t´ıch phˆan b

Z

a

f(x)dxv`a b

Z

a

g(x)dx dˆ` ngo th`o.i hˆo.i tu ho˘a.c dˆo` ng th`o.i phˆan k`y

(ii) Nˆe´uλ = v`a t´ıch phˆan b

Z

a

g(x)dxhˆo.i tu th`ı t´ıch phˆan b

Z

a

f(x)dx hˆo.i tu

(iii) Nˆe´u λ = +∞ v`a t´ıch phˆan b

Z

a

f(x)dx hˆo.i tu th`ı t´ıch phˆan b

Z

a

g(x)dx hˆo.i tu

Dˆe’ so s´anh ta thu.`o.ng su.’ du.ng t´ıch phˆan: b

Z

a

dx (b−x)α

% &

hˆo.i tu nˆe´u α <1 phˆan k`y nˆe´uα> ho˘a.c

b

Z

a

dx (x−a)α

% &

hˆo.i tu nˆe´u α <1 phˆan k`y nˆe´u α>1

D- i.nh ngh˜ıa. T´ıch phˆan b

Z

a

f(x)dx du.o c go.i l`a hˆo.i tu tuyˆe.t dˆo´i nˆe´u

t´ıch phˆan b

Z

a

|f(x)|dxhˆo.i tu v`a du.o c go.i l`a hˆo.i tu c´o diˆe`u kiˆe.n nˆe´u t´ıch phˆan

b

Z

a

f(x)dxhˆo.i tu nhu.ng b

Z

a

(112)

Dˆa´u hiˆe.u thu..c h`anh. Nˆe´u xb−0 h`am f(x) > x´ac di.nh v`a liˆen tu.c [a, b) l`a vˆo c`ung l´o.n cˆa´p α so v´o.i

bx th`ı (i) t´ıch phˆan

b

Z

a

f(x)dx hˆo.i tu khiα <1;

(ii) t´ıch phˆan b

Z

a

f(x)dx phˆan k`y α>1

C ´AC V´I DU.

V´ı du 1. X´et t´ıch phˆan

1

Z

0

dx

1−x2

Gia’i. H`am f(x) =

1−x2 liˆen tu.c v`a d´o n´o kha’ t´ıch trˆen mo.i

doa.n [0,1−ε],ε >0, nhu.ng x→1−0 th`ıf(x)→+∞ Ta c´o lim

ε→0 1−ε

Z

0

dx

1−x2 = limε→0arc sin(1

ε) = asrc sin = π 2· Nhu vˆa.y t´ıch phˆan d˜a cho hˆo.i tu N

V´ı du 2. Kha’o s´at su hˆo.i tu cu’a t´ıch phˆan

1

Z

0

xdx

1−x4 ·

Gia’i. H`am du.´o.i dˆa´u t´ıch phˆan c´o gi´an doa.n vˆo c`ung ta.i diˆe’m x= Ta c´o

x

1−x4

1

1−xx∈[0,1) Nhu.ng t´ıch phˆan

1

Z

0

dx

(113)

V´ı du 3. Kha’o s´at su. hˆo.i tu cu’a t´ıch phˆan

1

Z

0

dx ex−cosx·

Gia’i. O’ dˆay h`am du.´o.i dˆa´u t´ıch phˆan c´o gi´an doa.n vˆo c`ung ta.i diˆe’m x= Khi x∈(0,1] ta c´o

1

ex−cosx > xe

v`ı r˘a`ng xe>ex−cosx

(ta.i ?) Nhu.ng t´ıch phˆan

1

Z

0

1

xedx phˆan k`y nˆen t´ıch phˆan d˜a cho phˆan k`y N

V´ı du 4. Kha’o s´at su. hˆo.i tu cu’a t´ıch phˆan

+∞

Z

0

arctgx

dx, α>

Gia’i. Ta chia khoa’ng lˆa´y t´ıch phˆan l`am hai cho khoa’ng th´u nhˆa´t h`am c´o bˆa´t thu.`o.ng ta.i diˆe’mx= Ch˘a’ng ha.n ta chia th`anh hai nu.’ a khoa’ng (0,1] v`a [1,+∞) Khi d´o ta c´o

+∞

Z

0

arctgx dx=

1

Z

0

arctgx dx+

+∞

Z

0

arctgx

dx. (11.34)

Dˆ` u tiˆen x´et t´ıch phˆana

1

Z

0

arctgx

dx, Ta c´o

f(x) = arctgx (x∼→0)

x =

1

(114)

T´ıch phˆan

1

Z

0

ϕ(x)dx hˆo.i tu khi α−1 <α < Do d´o t´ıch phˆan

1

Z

0

f(x)dx c˜ung hˆo.i tu khi α <2 theo dˆa´u hiˆe.u so s´anh II.

X´et t´ıch phˆan ∞

Z

1

f(x)dx ´Ap du.ng dˆa´u hiˆe.u so s´anh II 1◦ ta d˘a.t ϕ(x) =

v`a c´o lim x→+∞

f(x)

ϕ(x) = limx→+∞

arctgx =

π · V`ı t´ıch phˆan

Z

0

dx

hˆo.i tu α > nˆen v´o.i α > t´ıch phˆan du.o c x´et hˆo.i tu Nhu vˆa.y ca’ hai t´ıch phˆan o.’ vˆe´ pha’i (11.34) chı’ hˆo.i tu 1< α <2

D´o ch´ınh l`a diˆ`u kiˆe.n hˆo.i tu cu’a t´ıch phˆan d˜a cho.e N

V´ı du 5. Kha’o s´at su hˆo.i tu cu’a t´ıch phˆan

1

Z

0

ln(1 +

x2)

xsin√x dx.

Gia’i. H`am du.´o.i dˆa´u t´ıch phˆan khˆong bi ch˘a.n lˆan cˆa.n pha’i cu’a diˆe’m x= Khi x→0 + ta c´o

ln(1 +

x2)

xsin√x (x→∼0+0)

3

x2

x =

3

x =ϕ(x).

V`ı t´ıch phˆan

1

Z

0

dx

3

(115)

B `AI T ˆA P T´ınh c´ac t´ıch phˆan suy rˆo.ng sau. 1.

6

Z

2

dx

3

p

(4−x)2 (DS

3

2)

2.

2

Z

0

dx

3

p

(x−1)2 (DS 6)

3. e

Z

1

dx

xlnx (DS Phˆan k`y)

4.

2

Z

0

dx

x2−4x+ 3 (DS Phˆan k`y)

5.

1

Z

0

xlnxdx. (DS −0,25) 6.

3

Z

2

xdx

4

x2−4 (DS

2

4

125)

7.

2

Z

0

dx

(x−1)2 (DS Phˆan k`y)

8.

2

Z

−2

xdx

x2−1 (DS Phˆan k`y)

9.

2

Z

0

x3dx

4−x2 (DS

16

3 ) Chı’ dˆa˜n. D˘a.tx = sint.

10.

0

Z

−1

e1/x

x3 dx. (DS −

(116)

11.

1

Z

0

e1/x

x3 dx. (DS Phˆan k`y)

12.

1

Z

0

dx

p

x(1x) (DS π) 13.

b

Z

a

dx

p

(x−a)(bx); a < b. (DS π) 14.

1

Z

0

xln2xdx. (DS 4)

Kha’o s´at su hˆo.i tu cu’a c´ac t´ıch phˆan suy rˆo.ng sau dˆay.

15.

1

Z

0

cos2x

3

1−x2dx. (DS Hˆo.i tu.)

16.

1

Z

0

ln(1 +√3x

esinx−1 dx. (DS Hˆo.i tu.) 17.

1

Z

0

dx

ex−1 (DS Hˆo.i tu.) 18.

1

Z

0

xdx

esinx−1 (DS Hˆo.i tu.) 19.

1

Z

0

x2dx

3

p

(1−x2)5 (DS Phˆan k`y)

20.

1

Z

0

x3dx

3

p

(117)

21.

1

Z

0

dx

ex−cosx (DS Phˆan k`y) 22.

π/4

Z

0

ln(sin 2x)

5

x dx. (DS Hˆo.i tu.)

23.

1

Z

0

lnx

xdx. (DS Hˆo.i tu.)

Chı’ dˆa˜n. Su.’ du.ng hˆe th´u.c lim x→0+0x

αlnx= 0 ∀α >0⇒ c´o thˆe’ lˆa´y α=

4 ch˘a’ng ha.n ⇒

|lnx| √

x < x3/4

24.

1

Z

0

sinx

x2 dx. (DS Phˆan k`y)

25.

2

Z

0

dx

xx3 (DS Hˆo.i tu.)

26.

2

Z

1

(x−2)

x2−3x2+ 4dx. (DS Phˆan k`y)

27.

1

Z

0

dx

p

x(exex) (DS Hˆo.i tu.) 28.

2

Z

0

s

16 +x4

16−x4dx. (DS Hˆo.i tu.)

29.

1

Z

0

ex−1

sinx dx. (DS Hˆo.i tu.)

30.

1

Z

0

3

p

ln(1 +x)

(118)

T´ıch phˆan h`am nhiˆ`u biˆe e´n

12.1 T´ıch phˆan 2-l´o.p 118

12.1.1 Tru.`o.ng ho p miˆe`n ch˜u nhˆa.t 118 12.1.2 Tru.`o.ng ho..p miˆe`n cong 118 12.1.3 Mˆo.t v`ai ´u.ng du.ng h`ınh ho.c 121

12.2 T´ıch phˆan 3-l´o.p 133

12.2.1 Tru.`o.ng ho p miˆe`n h`ınh hˆo.p 133 12.2.2 Tru.`o.ng ho p miˆe`n cong 134 12.2.3 136 12.2.4 Nhˆa.n x´et chung 136

12.3 T´ıch phˆan d u.`o.ng 144

12.3.1 C´ac di.nh ngh˜ıa co ba’n 144 12.3.2 T´ınh t´ıch phˆan du.`o.ng 146

12.4 T´ıch phˆan m˘a t 158

(119)

12.4.3 Cˆong th´u.c Gauss-Ostrogradski 162 12.4.4 Cˆong th´u.c Stokes 162

12.1 T´ıch phˆan 2-l´o.p

12.1.1 Tru.`o.ng ho..p miˆe`n ch˜u nhˆa t Gia’ su.’

D = [a, b]×[c, d] ={(x, y) :a 6x6b, c 6y 6d}

v`a h`am f(x, y) liˆen tu.c miˆe`n D Khi d´o t´ıch phˆan 2-l´o.p cu’a h`am f(x, y) theo miˆ`n ch˜e u nhˆa.t

D ={(x, y) :a6x6 b;c6y6d}

du.o c t´ınh theo cˆong th´u.c

ZZ

D

f(M)dxdy= b

Z

a dx

d

Z

c

f(M)dy; (12.1)

ZZ

D

f(M)dxdy= d

Z

c dy

b

Z

a

f(M)dx, M = (x, y) (12.2)

Trong (12.1): dˆ` u tiˆen t´ınh t´ıch phˆan tronga I(x) theoy xemxl`a h˘a`ng sˆo´, sau d´o t´ıch phˆan kˆe´t qua’ thu du.o c I(x) theo x Dˆo´i v´o.i (12.2) ta c˜ung tiˆe´n h`anh tu.o..ng tu nhu.ng theo th´u tu ngu.o c la.i

12.1.2 Tru.`o.ng ho..p miˆe`n cong Gia’ su.’ h`am f(x, y) liˆen tu.c miˆe`n bi ch˘a.n

(120)

trong d´o y=ϕ1(x) l`a biˆen du.´o.i,y =ϕ2(x) l`a biˆen trˆen, ho˘a.c

D ={(x, y) :c6y6d;g1(y)6x6g2(y)}

trong d´o x = g1(y) l`a biˆen tr´ai c`on x = g2(y) l`a biˆen pha’i, o.’ dˆay

ta luˆon gia’ thiˆe´t c´ac h`am ϕ1, ϕ2, g1, g2 dˆ`u liˆen tu.c c´ac khoa’nge

tu.o.ng ´u.ng Khi d´o t´ıch phˆan 2-l´o.p theo miˆ`ne D luˆon luˆon tˆ` n ta.i.o Dˆe’ t´ınh t´ıch phˆan 2-l´o.p ta c´o thˆe’ ´ap du.ng mˆo.t hai phu.o.ng ph´ap sau

1+ Phu.o.ng ph´ap Fubini du a trˆen di.nh l´y Fubini vˆe` viˆe.c du.a t´ıch phˆan 2-l´o.p vˆ` t´ıch phˆan l˘a.p Phu.o.ng ph´ap n`ay cho ph´ep ta du.a t´ıche phˆan 2-l´o.p vˆ` t´ıch phˆan l˘a.p theo hai th´u tu kh´ac nhau:e

ZZ

D

f(M)dxdy = b

Z

a

h ϕZ2(x)

ϕ1(x)

f(M)dyidx = b

Z

a dx

ϕZ2(x)

ϕ1(x)

f(M)dy, (12.3)

ZZ

D

f(M)dxdy = d

Z

c

h gZ2(y)

g1(y)

f(M)dxidy = d

Z

c dy

gZ2(y)

g1(y)

f(M)dx (12.4)

T`u (12.3) v`a (12.4) suy r˘a`ng cˆa n cu’a c´ac t´ıch phˆan biˆe´n thiˆen v`a phu thuˆo c v`ao biˆe´n m`a t´ınh t´ıch phˆan trong, n´o du.o..c xem l`a khˆong dˆo’i Cˆa n cu’a t´ıch phˆan ngo`ai luˆon luˆon l`a h˘a`ng sˆo´.

Nˆe´u cˆong th´u.c (12.3) (tu.o.ng ´u.ng: (12.4)) phˆ` n biˆen du.´o.ia hay phˆ` n biˆen trˆen (tu.o.ng ´a u.ng: phˆ` n biˆen tr´ai hay pha’i) gˆoa ` m t`u mˆo.t sˆo´ phˆ` n v`a mˆo˜i phˆaa ` n c´o phu.o.ng tr`ınh riˆeng th`ı miˆe`nD cˆ` n chia th`anha nh˜u.ng miˆ`n bo.e ’ i c´ac du.`o.ng th˘a’ng song song v´o.i tru.c Oy (tu.o.ng ´

u.ng: song song v´o.i tru.cOx) cho mˆo˜i miˆe`n d´o c´ac phˆa` n biˆen du.´o.i hay trˆen (tu.o.ng ´u.ng: phˆ` n biˆen tr´ai, pha’i) dˆea `u chı’ du.o c biˆe’u diˆe˜n bo.’ i mˆo.t phu.o.ng tr`ınh.

2+ Phu.o.ng ph´ap dˆo’i biˆe´n Ph´ep dˆo’i biˆe´n t´ıch phˆan 2-l´o.p du.o c thu c hiˆe.n theo cˆong th´u.c

ZZ

D

f(M)dxdy=

Z Z

D

f[ϕ(u, v), ψ(u, v)]

D(x, y) D(u, v)

(121)

trong d´o D∗ l`a miˆ`n biˆe´n thiˆen cu’a to.a dˆo cong (e u, v) tu.o.ng ´u.ng c´ac diˆe’m (x, y) biˆe´n thiˆen D: x = ϕ(u, v), y = ψ(u, v); (u, v)∈D∗, (x, y)∈D; c`on

J = D(x, y) D(u, v) =

∂x ∂u

∂x ∂v ∂y ∂u

∂y ∂v

6= (12.6)

l`a Jacobiˆen cu’a c´ac h`am x=ϕ(u, v),y =ψ(u, v).

To.a dˆo cong thu.`o.ng d`ung ho.n ca’ l`a to.a dˆo cu c (r, ϕ) Ch´ung liˆen hˆe v´o.i to.a dˆo Dˆecac bo.’i c´ac hˆe th´u.c x = rcosϕ, y = rsinϕ, r < +∞, ϕ < 2π T`u (12.6) suy J = r v`a to.a dˆo. cu c (12.5) c´o da.ng

ZZ

D

f(M)dxdy =

ZZ

D

f(rcosϕ, rsinϕ)rdrdϕ. (12.7)

K´y hiˆe.u vˆe´ pha’i cu’a (12.7) l`a I(D∗) C´o c´ac tru.`

o.ng ho p cu thˆe’ sau dˆay

(i) Nˆe´u cu c cu’a hˆe to.a dˆo cu c n˘a`m ngo`aiD th`ı

I(D∗) = ϕ2

Z

ϕ1

rZ2(ϕ)

r1(ϕ)

f(rcosϕ, rsinϕ)rdr. (12.8)

(ii) Nˆe´u cu..c n˘a`m D v`a mˆo˜i tia di t`u cu..c c˘a´t biˆen ∂D khˆong qu´a mˆo.t diˆe’m th`ı

I(D∗) =

2π

Z

0

r(ϕ)

Z

0

f(rcosϕ, rsinϕ)rdr. (12.9)

(iii) Nˆe´u cu..c n˘a`m trˆen biˆen ∂D cu’a D th`ı

I(D∗) = ϕ2

Z

ϕ1

r(ϕ)

Z

0

(122)

12.1.3 o t v`ai ´u.ng du ng h`ınh ho c

1+ Diˆe.n t´ıchSD cu’a miˆ`n ph˘a’nge D du.o c t´ınh theo cˆong th´u.c SD =

ZZ

D

dxdySD =

ZZ

D

rdrdϕ. (12.11)

2+ Thˆe’ t´ıch vˆa.t thˆe’ h`ınh tru th˘a’ng d´u.ng c´o d´ay l`a miˆe`nD (thuˆo.c m˘a.t ph˘a’ng Oxy) v`a gi´o.i ha.n ph´ıa trˆen bo’ i m˘ a.t z =f(x, y)>0 du.o..c t´ınh theo cˆong th´u.c

V =

ZZ

D

f(x, y)dxdy. (12.12)

3+ Nˆe´u m˘

a.t (σ) du.o..c cho bo.’i phu.o.ng tr`ınh z = f(x, y) th`ı diˆe.n t´ıch cu’a n´o du.o c biˆe’u diˆe˜n bo.’i t´ıch phˆan 2-l´o.p

=

ZZ

D(x,y)

q

1 + (f0

x)2+ (fy0)2dxdy, (12.13)

trong d´o D(x, y) l`a h`ınh chiˆe´u vuˆong g´oc cu’a m˘a.t (σ) lˆen m˘a.t ph˘a’ng to.a dˆo.Oxy.

C ´AC V´I DU. V´ı du 1. T´ınh t´ıch phˆan

Z Z

D

xydxdy, D ={(x, y) : 16x62; 16y 62}.

Gia’i. Theo cˆong th´u.c (12.2):

ZZ

D

xydxdy =

2

Z

1

dy

2

Z

1

(123)

T´ınh t´ıch phˆan (xemy l`a khˆong dˆo’i) ta c´o I(x) =

2

Z

1

xydx=yx

2 2

= 2y−

2y. Bˆay gi`o t´ınh t´ıch phˆan ngo`ai:

ZZ D xydxdy = Z

2y−1

2y

dy= 4· N V´ı du 2. T´ınh t´ıch phˆan

Z Z

D

xydxdy nˆe´u D du.o c gi´o.i ha.n bo.’i c´ac du.`o.ng cong y=x−4,y2= 2x

Gia’i. B˘a`ng c´ach du ng c´ac du.`o.ng gi˜u.a c´ac giao diˆe’m A(8,4) v`a B(2,−2) cu’a ch´ung, ba.n do.c s˜e thu du.o c miˆe`n lˆa´y t´ıch phˆan D.

Nˆe´u dˆ` u tiˆen lˆa´y t´ıch phˆan theoa x v`a tiˆe´p dˆe´n lˆa´y t´ıch phˆan theo y th`ı t´ıch phˆan theo miˆ`ne D du.o c biˆe’u diˆe˜n bo.’i mˆo.t t´ıch phˆan bˆo.i

I = ZZ D xydxdy = Z −2 ydy y4 Z

y2/2

xdx,

trong d´o doa.n [−2,4] l`a h`ınh chiˆe´u cu’a miˆ`ne D lˆen tru.cOy T`u d´o I =

4

Z

−2

y

hx2

2

y4

y2/2

i

dy = Z −2 y h

(y+ 4)2 −y

4

4

i

dy= 90

Nˆe´u t´ınh t´ıch phˆan theo th´u tu kh´ac: dˆa` u tiˆen theo y, sau d´o theo xth`ı cˆ` n chia miˆea `nD th`anh hai miˆ`n bo.e ’ i du.`o.ng th˘a’ng quaB v`a song song v´o.i tru.c Oy v`a thu du.o..c

I = ZZ D1 + Z Z D2 = Z xdx √ 2x Z

−√2x

ydy+ Z xdx √ 2x Z

x−4

ydy

=

2

Z

0

xdx·0 +

8

Z

2

xhy

2 √ 2x x−4

i

(124)

Nhu vˆa.y t´ıch phˆan 2-l´o.p d˜a cho khˆong phu thuˆo.c th´u tu t´ınh t´ıch phˆan Do vˆa.y, cˆa` n cho.n mˆo.t th´u tu t´ıch phˆan dˆe’ khˆong pha’i chia miˆ`n.e N

V´ı du 3. T´ınh t´ıch phˆan

ZZ

D

(y− x)dxdy d´o miˆ`ne D du.o c gi´o.i ha.n bo.’i c´ac du.`o.ng th˘a’ng y = x+ 1, y = x−3, y = −1

3x+ 3, y=−1

3x+

Gia’i. Dˆe’ tr´anh su. ph´u.c ta.p, ta su.’ du.ng ph´ep dˆo’i biˆe´nu=−yx; v=y+1

3x v`a ´ap du.ng cˆong th´u.c (12.5) Qua ph´ep dˆo’i biˆe´n d˜a cho.n, du.`o.ng th˘a’ng y=x+ biˆe´n th`anh du.`o.ng th˘a’ng u= 1; c`on y=x−3 biˆe´n th`anhu=−3 m˘a.t ph˘a’ngOuv; tu.o.ng tu.., c´ac du.`o.ng th˘a’ng y=−1

3x+

3,y=−

3x+ biˆe´n th`anh c´ac du.`o.ng th˘a’ngv=

3,v = Do d´o miˆ`ne D∗ tro.’ th`anh miˆ`ne D∗ = [−3,1]×

h7

3,5

Dˆ˜ d`ang thˆa´ye r˘a`ng D(x, y)

D(u, v) =−

4 Do d´o theo cˆong th´u.c (12.5):

ZZ

D

(y−x)dxdy =

ZZ

D

h1

4u+ 4v

−−

4u+ 4v

i3

4dudv

=

ZZ

D

3

4ududv=

5

Z

7/3

dv

4

Z

−3

3

4udu=−8 N

Nhˆa n x´et. Ph´ep dˆo’i biˆe´n t´ıch phˆan hai l´o.p nh˘a`m mu.c d´ıch do.n gia’n h´oa miˆ`n lˆa´y t´ıch phˆan C´o thˆe’ l´e uc d´o h`am du.´o.i dˆa´u t´ıch phˆan tro.’ nˆen ph´u.c ta.p ho.n.

V´ı du 4. T´ınh t´ıch phˆan

ZZ

D

(x2+y2)dxdy, d´o D l`a h`ınh tr`on gi´o.i ha.n bo.’i du.`o.ng tr`on x2+y2 = 2x

(125)

c´o da.ng

x=rcosϕ, y=rsinϕ. (12.14) Thˆe´ (12.14) v`ao phu.o.ng tr`ınh du.`o.ng tr`on ta thu du.o..cr2 = 2rcosϕ

r= ho˘a.c r= cosϕ (dˆay l`a phu.o.ng tr`ınh du.`o.ng tr`on to.a dˆo. cu c) Khi d´o

D∗ =n(r, ϕ) :−π

2 6ϕ6 π

2,06r 62 cosϕ

o

T`u d´o thu du.o c

I =

ZZ

D

(x2+y2)dxdy=

ZZ

D

r3drdϕ = π/2

Z

π/2

2 cosZ ϕ

0

r3dr

= π/2

Z

π/2

r4

4

2 cosϕ

0

= π/2

Z

π/2

cos4ϕf ϕ= 3π · N

Nhˆa n x´et. Nˆe´u lˆa´y cu..c ta.i tˆam h`ınh tr`on th`ı x−1 = rcosϕ

y=rsinϕ

D∗ =(r, ϕ) : 06r 61,06ϕ62π}

v`a x2+y2 = + 2rcosϕ+r2 nˆen

I =

Z Z

D

r(1 + 2rcosϕ+r2)drdϕ

=

2π

Z

0

1

Z

0

(r+ 2r2cosϕ+r3)dr= 3π ·

V´ı du 5. T´ınh thˆe’ t´ıch vˆa.t thˆe’T gi´o.i ha.n bo’ i paraboloid z =x2+y2, m˘a.t tru. y=x2 v`a c´ac m˘

(126)

Gia’i. H`ınh chiˆe´u cu’a vˆa.t thˆe’T lˆen m˘a.t ph˘a’ngOxy l`a D(x, y) =n(x, y) :−16x61, x2 6y 61o. Do d´o ´ap du.ng (12.12) ta c´o

V(T) =

ZZ

D(x,y)

zdxdy=

ZZ

D(x,y)

(x2+y2)dxdy =

1

Z

−1

dx

1

Z

x2

(x2+y2)dy

=

1

Z

−1

h

x2y+ y

3

3

1

x2

i

dx= 88 105· N

V´ı du 6. T`ım diˆe.n t´ıch m˘a.t cˆa` u b´an k´ınhR v´o.i tˆam ta.i gˆo´c to.a dˆo

Gia’i. Phu.o.ng tr`ınh m˘a.t cˆa` u d˜a cho c´o da.ng x2+y2+z2 =R2. Do d´o phu.o.ng tr`ınh nu.’ a trˆen m˘a.t cˆa` u l`a

z =pR2 −x2−y2.

Do t´ınh dˆo´i x´u.ng nˆen ta chı’ t´ınh diˆe.n t´ıch nu’ a trˆen l` a du’ Ta c´o ds =

q

1 +z0 x

2

+z0 y

2

dxdy = p Rdxdy R2 −x2−y2 ·

Miˆ`n lˆa´y t´ıch phˆane D(x, y) ={(x, y) :x2+y2

6R2} Do d´o

S =

ZZ

D(x,y)

R

p

R2 −x2−y2dxdy=

x=rcosϕ y=rsinϕ J =r

= 2R

2π

Z

0

R

Z

0

rdr

R2−r2

= 4πR

h

− √

R2 −r2R

i

(127)

V´ı du 7. T´ınh diˆe.n t´ıch phˆa` n m˘a.t tru. x2 = 2z gi´o.i ha.n bo’ i giao tuyˆe´n cu’a m˘a.t tru d´o v´o.i c´ac m˘a.t ph˘a’ngx−2y= 0, y= 2x,x=

2

Gia’i. Dˆ˜ thˆa´y r˘a`ng h`ınh chiˆe´u cu’a phˆae ` n m˘a.t d˜a nˆeu l`a tam gi´ac v´o.i c´ac ca.nh n˘a`m trˆen giao tuyˆe´n cu’a m˘a.t ph˘a’ng Oxy v´o.i c´ac m˘a.t ph˘a’ng d˜a cho

T`u phu.o.ng tr`ınh m˘a.t tru ta c´oz = x

2

2, vˆa.y ∂z

∂x =x, ∂z

∂y = →dS =

1 +x2dxdy.

T`u d´o suy r˘a`ng

S =

2√2

Z

0

1 +x2dx 2x

Z

x/2

dy =

2√2

Z

0

x

1 +x2dx= 13. N

B `AI T ˆA P

T`ım cˆa.n cu’a t´ıch phˆan hai l´o.p

Z Z

D

f(x, y)dxdy theo miˆ`ne D gi´o.i ha.n bo.’i c´ac du.`o.ng d˜a chı’ (Dˆe’ ng˘a´n go.n ta k´y hiˆe.uf(x, y) =f(−)) 1. x= 3, x= 5, 3x−2y+ = 0, 3x−2y+ =

(DS

5

Z

3

dx

3x+4

5

Z

3x+1

5

f(−)dy) 2. x= 0, y = 0, x+y=

(DS

2

Z

0

dx

2−x

Z

0

(128)

3. x2+y2 61,x>0, y>0

(DS

1

Z

0

dx

1−x2

Z

0

f(−)dy) 4. x+y61,xy61, x>0

(DS

1

Z

0

dx

1−x

Z

x−1

f(−)dy) 5. y>x2, y64−x2.

(DS √

2

Z

−√2

dx

4−x2

Z

x2

f(−)dy) 6. x

2

4 + y2

9 61

(DS

+2

Z

−2

dx

3

4−x2

Z

−3

2

4−x2

f(−)dy) 7. y=x2,y =√x.

(DS

1

Z

0

dx

x

Z

x2

f(−)dy) 8. y=x, y= 2x, x+y =

(DS

2

Z

0

dx

2x

Z

x

f(−)dy+

3

Z

2

dx

6−x

Z

x

(129)

9. Z dy Z y

f(−)dx (DS

4 Z dx x Z

f(−)dy) 10. Z −1 dx

1−x2

Z

x+1

f(−)dy (DS

1

Z

0

dy y−1

Z

1−y2

f(−)dx) 11.

1

Z

0

dx

2−x2

Z

x

f(−)dy (DS

1 Z dy y Z

f dx+

2

Z

1

dy

2−y

Z f dx) 12. Z dy y Z 1/y

f dx. (DS

1

Z

1/2

dx

2

Z

1/x

f dy+

2 Z dx Z x f dy)

T´ınh c´ac t´ıch phˆan l˘a.p sau 13. Z dx 2x Z x

(x−y+ 1)dy (DS 3) 14. Z −2 dy y Z y3

x2+y2dx. (DS 6π)

15. Z dy y2 Z

(x+ 2y)dx (DS −11,2) 16.

5

Z

0

dx

5−x

Z

0

p

4 +x+ydy. (DS 506 15 ) 17. Z dx Z dy

(x+y)2 (DS

25 24) 18. a Z dx

2Z√ax

−2√ax

(x2+y2)dy (DS 344 105a

4

(130)

19.

2π

Z

0

a

Z

asinϕ

rdr. (DS πa

2

2 )

20.

1

Z

0

dx

1−x2

Z

0

p

1−x2−y2dy. (DS. π

6)

T´ınh c´ac t´ıch phˆan 2-l´o.p theo c´ac h`ınh ch˜u nhˆa.t d˜a chı’ ra. 21.

ZZ

D

(x+y2)dxdy; 26x63, 16 y62 (DS 45 6) 22.

ZZ

D

(x2+y)dxdy; 16x62, 06 y61 (DS 25 6) 23.

ZZ

D

(x2+y2)dxdy; 6x61, 6y 61 (DS 3) 24.

ZZ

D

3y2dxdy

1 +x2 ; 6x61, 6y61 (DS

π 4) 25.

ZZ

D

sin(x+y)dxdy; 0 6x6 π

2, 06y π

2 (DS 2) 26.

ZZ

D

xexydxdy; 06 x61, −16y60 (DS e) 27.

ZZ

D

dxdy

(x−y)2; 6x62, 36y64 (DS ln

4 3)

T´ınh c´ac t´ıch phˆan 2-l´o.p theo miˆ`ne D gi´o.i ha.n c´ac du.`o.ng d˜a chı’

28.

ZZ

D

xydxdy; y = 0, y=x,x= (DS 8) 29.

ZZ

D

xydxdy; y =x2, x=y2. (DS.

(131)

30.

ZZ

D

xdxdy;y=x3, x+y= 2, x= (DS 15) 31.

ZZ

D

xdxdy;xy = 6, x+y−7 = (DS 205 6) 32.

ZZ

D

y2xdxdy; x2+y2= 4, x+y−2 = 0. (DS 13

5) 33.

ZZ

D

(x+y)dxdy; 0 6y6π, 06x6 siny. (DS 5π ) 34.

ZZ

D

sin(x+y)dxdy;x=y, x+y = π

2, y= (DS 2) 35.

ZZ

D

ey2dxdy; D l`a tam gi´ac v´o.i dı’nh O(0,0), B(0,1), A(1,1) (DS −

2e + 2) 36.

ZZ

D

xydxdy;D l`a h`ınh elip 4x2+y2 64 (DS 0)

37.

ZZ

D

x2ydxdy; y= 0, y=√2ax−x2. (DS. 4a

5 ) 38.

ZZ

D

xdxdy

x2+y2; y=x, x= 2, x= 2y (DS

π

2 −2arctg 2) 39.

ZZ

D

x+ydxdy; x= 0, y= 0, x+y= (DS 5) 40.

ZZ

D

(x−y)dxdy; y= 2−x2, y = 2x−1. (DS 4

15) 41.

ZZ

D

(132)

42.

ZZ

D

xdxdy; x= + siny,x = 0, y= 0, y= 2π (DS 9π ) 43.

ZZ

D

xydxdy; (x−2)2 +y2 = (DS 3) 44.

ZZ

D

dxdy

2a−x; D l`a h`ınh tr`on b´an k´ınh a n˘a`m g´oc vuˆong I v`a tiˆe´p x´uc v´o.i c´ac tru.c to.a dˆo (DS.

3a

2a) 45.

ZZ

D

ydxdy; x=R(t−sint),y=R(1−cost), 06 t62π (l`a miˆ`ne gi´o.i ha.n bo.’i v`om cu’a xicloid.) (DS.

2πR

3)

Chı’ dˆa˜n.

ZZ

D

ydxdy =

2πR

Z

0

dx y=Zf(x)

0

ydy

Chuyˆe’n sang to.a dˆo cu..c v`a t´ınh t´ıch phˆan to.a dˆo m´o.i 46.

ZZ

D

(x2+y2)dxdy; D :x2+y2 6R2, y>0. (DS. πR

4 ) 47.

ZZ

D

ex2+y2dxdy; D :x2+y2 61, x>0, y>0 (DS π

4(e−1)) 48.

ZZ

D

ex2+y2dxdy; D :x2+y2 6R2 (DS 2π(eR2 −1)) 49.

ZZ

D

p

1−x2 −y2dxdy; D :x2

+y2 6x. (DS π

4

)

50.

ZZ

D

s

1−x2−y2

1 +x2+y2dxdy; D: x

2+y2 61, x>0,y >0.

(DS π(π−2)

(133)

51.

ZZ

D

ln(x2+y2)

x2+y2 dxdy; D : 6x

+y2 6e. (DS 2π)

52.

ZZ

D

(x2+y2)dxdy; D gi´o.i ha.n bo.’i c´ac du.`o.ng tr`on

x2+y2+ 2x−1 = 0, x2+y2+ 2x= (DS 5π )

Chı’ dˆa˜n. D˘a.t x−1 =rcosϕ, y=rsinϕ.

T´ınh thˆe’ t´ıch cu’a vˆa.t thˆe’ gi´o.i ha.n bo.’i c´ac m˘a.t d˜a chı’ ra. 53. x= 0, y = 0, z = 0, x+y+z = (DS

6)

54. x= 0, y = 0, z = 0, x+y= 1, z =x2+y2. (DS.

6) 55. z =x2+y2, y=x2, y = 1, z= 0. (DS. 88

105) 56. z =px2+y2, x2+y2=a2, z = 0. (DS.

3πa

3)

57. z =x2+y2, x2+y2=a2, z = (DS πa

4

2 ) 58. z =x, x2+y2=a2, z = 0. (DS. 4a

3

3 )

59. z = 4−x2 −y2, x=±1, y=±1 (DS 131 3) 60. 2−xy−2z = 0, y=x2,y =x. (DS 11

120) 61. x2+y2 = 4x,z =x, z = 2x (DS 4π)

T´ınh diˆe.n t´ıch c´ac phˆa` n m˘a.t d˜a chı’ ra.

62. Phˆ` n m˘a.t ph˘a’ng 6a x+ 3y+ 2z = 12 n˘a`m g´oc phˆa` n t´am I (DS 14)

63. Phˆ` n m˘a.t ph˘a’nga x+y+z = 2a n˘a`m m˘a.t tru.x2+y2 =a2.

(134)

64. Phˆ` n m˘a.t paraboloida z=x2+y2 n˘a`m m˘a.t tru x2+y2 = (DS π

6(17

17−1))

65. Phˆ` n m˘a.t 2a z =x2+y2 n˘a`m m˘a.t tru. x2+y2 = (DS

3(2

2−1)π)

66. Phˆ` n m˘a.t n´ona z =px2+y2 n˘a`m m˘a.t tru. x2

+y2 =a2 (DS πa2

2)

67. Phˆ` n m˘a.t cˆaa ` ux2+y2+z2 =R2 n˘a`m m˘a.t tru.x2+y2 =Rx.

(DS 2R2(π−2))

68. Phˆ` n m˘a.t n´ona z2 =x2+y2 n˘a`m m˘a.t tru. x2+y2 = 2x (DS

2π)

69. Phˆ` n m˘a.t tru.a z2 = 4x n˘a`m g´oc phˆa` n t´am th´u I v`a gi´

o.i ha.n bo.’ i m˘a.t tru.y2 = 4x v`a m˘

a.t ph˘a’ng x= (DS 3(2

2−1))

70. Phˆ` n m˘a.t cˆaa ` ux2+y2+z2 =R2 n˘a`m m˘a.t tru.x2+y2 =a2 (a6 R) (DS 4πa(a−√a2−R2))

12.2 T´ıch phˆan 3-l´o.p

12.2.1 Tru.`o.ng ho..p miˆe`n h`ınh hˆo p Gia’ su.’ miˆe`nD ⊂ R3:

D= [a, b]×[c, d]×[e, g] ={(x, y, z) :a6 x6b, c6y6d, e6z 6g}

v`a h`am f(x, y, z) liˆen tu.c trong D Khi d´o t´ıch phˆan 3-l´o.p cu’a h`am f(x, y, z) theo miˆ`ne D du.o..c t´ınh theo cˆong th´u.c

ZZ Z

D

f(x, y, z)dxdydz= b

Z

a

nZd c

hZg

e

f(x, y, z)dz

i

dy

o

dx

= b

Z

a dx

d

Z

c dy

g

Z

e

(135)

T`u (12.15) suy c´ac giai doa.n t´ınh t´ıch phˆan 3-l´o.p: (i) Dˆ` u tiˆen t´ınha I(x, y) =

g

Z

e

f(M)dz;

(ii) Tiˆe´p theo t´ınhI(x) = d

Z

c

I(x, y)dy;

(iii) Sau c`ung t´ınh t´ıch phˆan I = b

Z

a

I(x)dx.

Nˆe´u t´ıch phˆan (12.15) du.o c t´ınh theo th´u tu kh´ac th`ı c´ac giai doa.n t´ınh vˆa˜n tu.o.ng tu : dˆa` u tiˆen t´ınh t´ıch phˆan trong, tiˆe´p dˆe´n t´ınh t´ıch phˆan gi˜u.a v`a sau c`ung l`a t´ınh t´ıch phˆan ngo`ai

12.2.2 Tru.`o.ng ho..p miˆe`n cong 1+ Gia’ su.’ h`am f(M) liˆen tu.c miˆe`n bi ch˘a.n

D =(x, y, z) :a6x6b, ϕ1(x)6y6ϕ2(x), g1(x, y)6z 6g2(x, y) .

Khi d´o t´ıch phˆan 3-l´o.p cu’a h`am f(M) theo miˆ`ne D du.o c t´ınh theo cˆong th´u.c

ZZZ

D

f(M)dxdydz = b

Z

a

n ϕZ2(x)

ϕ1(x)

h g2Z(x,y)

g1(x,y)

f(M)dxidyodx (12.16)

ho˘a.c

Z ZZ

D

f(M)dxdydz =

Z Z

D(x,y)

dxdy g2Z(x,y)

g1(x,y)

f(M)dz, (12.17)

(136)

thu.`o.ng theo (12.16) t`u t´ıch phˆan trong, tiˆe´p dˆe´n t´ıch phˆan gi˜u.a v`a sau c`ung l`a t´ınh t´ıch phˆan ngo`ai Khi t´ınh t´ıch phˆan 3-l´o.p theo cˆong th´u.c (12.17): dˆ` u tiˆen t´ınh t´ıch phˆan v`a sau d´o c´o thˆe’ t´ınh t´ıcha phˆan 2-l´o.p theo miˆ`ne D(x, y) theo c´ac phu.o.ng ph´ap d˜a c´o 12.1 2+ Phu.o.ng ph´ap dˆo’i biˆe´n Ph´ep dˆo’i biˆe´n t´ıch phˆan 3-l´o.p

du.o c tiˆe´n h`anh theo cˆong th´u.c

Z ZZ

D

f(M)dxdydz =

Z ZZ

D

fϕ(u, v, w), ψ(u, v, w), χ(u, v, w)× ×

D(u, v, w)D(x, y, z)dudvdw, (12.18) d´oD∗ l`a miˆ`n biˆe´n thiˆen cu’a to.a dˆo conge u, v, w tu.o.ng ´u.ng khi c´ac diˆe’m (x, y, z) biˆe´n thiˆen D: x = ϕ(u, v, w), y =ψ(u, v, w), z=χ(u, v, w), D(x, y, z)

D(u, v, w) l`a Jacobiˆen cu’a c´ac h`am ϕ, ψ, χ

J = D(x, y, z) D(u, v, w) =

∂ϕ ∂u

∂ϕ ∂v

∂ϕ ∂w ∂ψ

∂u ∂ψ

∂v ∂ψ ∂w ∂χ

∂u ∂χ ∂v

∂χ ∂w

6

= (12.19)

Tru.`o.ng ho p d˘a.c biˆe.t cu’a to.a dˆo cong l`a to.a dˆo tru v`a to.a dˆo cˆa` u (i) Bu.´o.c chuyˆe’n t`u to.a dˆo Dˆec´ac sang to.a dˆo tru (r, ϕ, z) du.o c thu c hiˆe.n theo c´ac hˆe th´u.c x = rcosϕ, y = rsinϕ, z = z; 0 r < +∞, 06 ϕ < 2π, −∞ < z < +∞ T`u (12.19) suy J =r v`a to.a dˆo tru ta c´o

ZZ Z

D

f(M)dxdydz=

ZZ Z

D

frcosϕ, rsinϕ, zrdrdϕdz, (12.20)

(137)

(ii) Bu.´o.c chuyˆe’n t`u to.a dˆo Dˆec´ac sang to.a dˆo cˆa` u (r, ϕ, θ) du.o..c thu c hiˆe.n theo c´ac hˆe th´u.c x = rsinθcosϕ, y = rsinθsinϕ, z = rcosθ, 0 r < +∞, ϕ < 2π, θ π T`u (12.19) ta c´o J =r2sinθ v`

a to.a dˆo cˆa` u ta c´o

ZZZ

D

f(M)dxdydz =

=

ZZ Z

D

frsinθcosϕ, rsinθsinϕ, rcosθr2sinθdrdϕdθ, (12.21) d´o D∗ l`a miˆ`n biˆe´n thiˆen cu’a to.a dˆo cˆae ` u tu.o.ng ´u.ng diˆe’m (x, y, z) biˆe´n thiˆen D.

12.2.3

Thˆe’ t´ıch cu’a vˆa.t thˆe’ cho´an hˆe´t miˆe`n D ⊂ R3

du.o c t´ınh theo cˆong th´u.c

VD =

Z ZZ

D

dxdydz. (12.22)

12.2.4 Nhˆa n x´et chung

B˘a`ng c´ach thay dˆo’i th´u tu. t´ınh t´ıch phˆan t´ıch phˆan 3-l´o.p ta s˜e thu du.o c c´ac cˆong th´u.c tu.o.ng tu nhu cˆong th´u.c (12.16) dˆe’ t´ınh t´ıch phˆan Viˆe.c t`ım cˆa.n cho t´ıch phˆan do.n thˆong thu.`o.ng chuyˆe’n t´ıch phˆan 3-l´o.p vˆ` t´ıch phˆan l˘a.p du.o c thu c hiˆe.n nhu dˆo´i v´o.i tru.`o.ng ho pe t´ıch phˆan 2-l´o.p

C ´AC V´I DU. V´ı du 1. T´ınh t´ıch phˆan l˘a.p

I =

1

Z

−1

dx

1

Z

x2

dy

2

Z

0

(138)

Gia’i. Ta t´ınh liˆen tiˆe´p ba t´ıch phˆan x´ac di.nh thˆong thu.`o.ng b˘a´t dˆ` u t`a u t´ıch phˆan

I(x, y) =

2

Z

0

(4 +z)dz = 4z20+ z

2

2

2 = 10;

I(x) =

1

Z

x2

I(x, y)dy= 10

1

Z

x2

dy= 10(1−x2); I =

1

Z

−1

I(x)dx=

1

Z

−1

10(1−x2)dx= 40 · N V´ı du 2. T´ınh t´ıch phˆan

I =

ZZ Z

D

(x+y+z)dxdydz,

trong d´o miˆ`ne D du.o c gi´o.i ha.n bo.’i c´ac m˘a.t ph˘a’ng to.a dˆo v`a m˘a.t ph˘a’ng x+y+z =

Gia’i. Miˆ`ne D d˜a cho l`a mˆo.t t´u diˆe.n c´o h`ınh chiˆe´u vuˆong g´oc trˆen m˘a.t ph˘a’ng Oxy l`a tam gi´ac gi´o.i ha.n bo’ i c´ ac du.`o.ng th˘a’ng x = 0, y = 0, x+y = R˜o r`ang l`a x biˆe´n thiˆen t`u dˆe´n (doa.n [0,1] l`a h`ınh chiˆe´u cu’a D lˆen tru.c Ox) Khi cˆo´ di.nh x, 0 x th`ıy biˆe´n thiˆen t`u dˆe´n 1−x Nˆe´u cˆo´ di.nh ca’xv`ay(0 6x61, 06y61−x) th`ı diˆe’m (x, y, z) biˆe´n thiˆen theo du.`o.ng th˘a’ng d´u.ng t`u m˘a.t ph˘a’ng z = dˆe´n m˘a.t ph˘a’ng x+y +z = 1, t´u.c l`a z biˆe´n thiˆen t`u dˆe´n 1−xy Theo cˆong th´u.c (12.16) ta c´o

I =

1

Z

0

dx

1−x

Z

0

dy

1−Zxy

0

(139)

Dˆ˜ d`ang thˆa´y r˘a`nge I =

1

Z

0

dx

1−x

Z

0

xz+yz+z

2

2

i1−xy

0

dy

=

1

Z

0

nh

yyx2−xy2− y

3

3

i1−x

0

o

dx

=

1

Z

0

(2−3x+x3)dx= 8· N V´ı du 3. T´ınh I =

ZZZ

D

dxdydz

(x+y+z)3, d´o miˆ`ne D du.o c gi´o.i

ha.n bo.’i c´ac m˘a.t ph˘a’ngx+z = 3, y= 2, x= 0, y= 0, z =

Gia’i. Miˆ`ne D d˜a cho l`a mˆo.t h`ınh l˘ang tru c´o h`ınh chiˆe´u vuˆong g´oc lˆen m˘a.t ph˘a’ng Oxy l`a h`ınh ch˜u nhˆa.t D(x, y) = (x, y) :

x 3,0 y V´o.i diˆe’m M(x, y) cˆo´ di.nh thuˆo.c D(x, y) diˆe’m (x, y, z) ∈ D biˆe´n thiˆen trˆen du.`o.ng th˘a’ng d´u.ng t`u m˘a.t ph˘a’ng Oxy (z = 0) dˆe´n m˘a.t ph˘a’ng x+z = 3, t´u.c l`a z biˆe´n thiˆen t`u dˆe´n 3−x: 06z 63−x T`u d´o theo (12.17) ta c´o

ZZZ

D

f(M)dxdydz =

ZZ

D(x,y)

dxdy z=3Z−x

z=0

(x+y+z+ 1)−3dz

=

ZZ

D(x,y)

h(x+y+z+ 1)−2

−2

3−x

0

i

dxdy =· · ·= ln 2−1

8 · N

V´ı du 4. T´ınh t´ıch phˆan

ZZZ

D

(x2+y2+z2)dxdydz, d´o miˆ`ne D du.o c gi´o.i ha.n bo.’i m˘a.t 3(x2+y2) +z2 = 3a2

Gia’i. Phu.o.ng tr`ınh m˘a.t biˆen cu’aD c´o thˆe’ viˆe´t du.´o.i da.ng x2

a2 +

y2

b2 +

z2

(a

(140)

D´o l`a m˘a.t elipxoid tr`on xoay, t´u.c l`a D l`a h`ınh elipxoid tr`on xoay H`ınh chiˆe´u vuˆong g´ocD(x, y) cu’aD lˆen m˘a.t ph˘a’ngOxy l`a h`ınh tr`on x2 +y2 6 a2 Do d´o ´

ap du.ng c´ach lˆa.p luˆa.n nhu c´ac v´ı du v`a ta thˆa´y r˘a`ng diˆe’m M(x, y) ∈ D(x, y) du.o c cˆo´ di.nh th`ı diˆe’m (x, y, z) cu’a miˆ`ne D biˆe´n thiˆen trˆen du.`o.ng th˘a’ng d´u.ng M(x, y) t`u m˘a.t biˆen du.´o.i cu’a D

z =−p3(a2−x2−y2)

dˆe´n m˘a.t biˆen trˆen

z = +p3(a2−x2−y2).

T`u d´o theo (12.17) ta c´o

I =

Z Z

D(x,y)

dxdy

+

3(a2−x2−y2)

Z

3(a2−x2−y2)

(x2+y2+z2)dz

= 2a2

3

Z Z

x2+y26a2

p

a2−x2−y2dxdy=|chuyˆe’n sang to.a dˆo cu c|

= 2a2

3

Z Z

r6a

a2−r2rdrdϕ=a2√

3

2π

Z

0

a

Z

0

(a2 −r2)1/2rdr = 4πa

5

3 · N

V´ı du 5. T´ınh thˆe’ t´ıch cu’a vˆa.t thˆe’ gi´o.i ha.n bo.’i c´ac m˘a.t ph˘a’ng x+y+z = 4, x= 3, y= 2, x= 0, y = 0, z =

(141)

x+y = Do d´o ´ap du.ng (12.17) ta c´o VD = ZZZ D dxdydz = ZZ

D(x,y)

dxdy

4−Zxy

0

dz =

ZZ

D(x,y)

(4−xy)dxdy = Z dy Z

(4−xy)dx+

2

Z

1

dy

4−y

Z

0

(4−xy)dx =

1

Z

0

nh

(4−y)xx

2

2

i3 o dy+ Z nh

(4−y)xx

2

2

i4−y

0 o dy = Z 15

2 −3y

dy+

2

Z

1

(4−y)2dy= 55 · N V´ı du 6. T´ınh t´ıch phˆan

I =

ZZ Z

D

zpx2+y2dxdydz,

trong d´o miˆ`ne D gi´o.i ha.n bo.’i m˘a.t ph˘a’ng y= 0, z = 0, z =a v`a m˘a.t tru x2+y2 = 2x (x>0,y >0,a >0)

Gia’i. Chuyˆe’n sang to.a dˆo tru ta thˆa´y phu.o.ng tr`ınh m˘a.t tru.x2 + y2 = 2x

trong to.a dˆo tru c´o da.ngr= cosϕ, 06ϕ6 π

2 (h˜ay v˜e h`ınh !) Do d´o theo cˆong th´u.c (12.20) ta c´o

I = π/2

Z

0

2 cosZ ϕ

0

r2dr a

Z

0

zdz = a

2 π/2 Z

2 cosZ ϕ

0

r2dr

= 4a π/2 Z

cos3ϕdϕ= 9a

2

. N

V´ı du 7. T´ınh t´ıch phˆan I =

ZZZ

D

(142)

nˆe´u miˆ`ne D l`a nu.’ a trˆen cu’a h`ınh cˆ` ua x2+y2+z2 6R2, z >0

Gia’i. Chuyˆe’n sang to.a dˆo cˆa` u, miˆe`n biˆe´n thiˆen D∗ cu’a c´ac to.a dˆo. cˆ` u tu.o.ng ´a u.ng diˆe’m (x, y, z) biˆe´n thiˆen D l`a c´o da.ng

D∗ : 06ϕ <2π, 06 θ6 π

2, 06r6R. T`u d´o

I =

ZZZ

D

r2sin2θ·r2sinθdrdϕdθ=

2π Z π/2 Z

sin3θdθ R

Z

0

r4dr

= 15πR

5

. N

B `AI T ˆA P

T´ınh c´ac t´ıch phˆan l˘a.p sau

1. Z dxx Z ydy

2Z−2x

1−x

dz. (DS 12) 2. a Z ydy h Z dx ay

Z

0

dz. (DS a

3 h ) 3. Z dy Z √

2yy2

xdx

3

Z

0

z2dz. (DS 30)

4.

1

Z

0

dx

1−x

Z

0

dy

1−Zxy

0

dz

(1 +x+y+z)3 (DS

ln 2 − 16) 5. c Z dz b Z dy a Z

(x2+y2+z2)dx (DS abc (a

(143)

6. a

Z

0

dx ax

Z

0

dy a−Zxy

0

(x2+y2 +z2)dz (DS a

5

20)

T´ınh c´ac t´ıch phˆan 3-l´o.p theo miˆ`ne D gi´o.i ha.n bo.’i c´ac m˘a.t d˜a chı’

7.

ZZZ

D

(x+yz)dxdydz; x=−1, x= 1; y= 0, y= 1; z = 0, z = (DS −2)

8.

ZZZ

D

xydxdydz;x= 1, x= 2;y =−2,y=−1;z = 0, z = (DS −8

9) 9.

ZZZ

D

dxdydz

(x+y+z)2;x= 1, x = 2; y= 1, y= 2; z = 1, z =

(DS 2ln

128 125) 10.

ZZZ

D

(x+ 2y+ 3z+ 4)dxdydz;x= 0, x= 3; y = 0, y= 2; z = 0, z = (DS 54)

11.

ZZZ

D

zdxdydz; x= 0, y= 0, z = 0; x+y+z = (DS 24) 12.

ZZZ

D

xdxdydz;x= y= 0, z = 0, y= 1; x+z = (DS 6) 13.

ZZZ

D

yzdxdydz; x2+y2 +z2 = 1, z >0. (DS 0)

14.

ZZZ

D

xydxdydz;x2 +y2= 1, z = 0, z= (x>0,y>0).

(DS 8) 15.

ZZZ

D

(144)

(x>0, y>0,z >0) (DS 48) 16.

ZZZ

D

p

x2+y2dxdydz; x2

+y2 =z2,z = 0,z = (DS π/6)

17.

ZZZ

D

(x2+y2+z2)dxdydz;x= 0, x=a, y= 0, y =b, z = 0, z =c. (DS abc

3 (a

2+b2+c2))

18.

ZZZ

D

ydxdydz; y=

x2+z2, y=h,h >0. (DS. πh

4 ) T´ınh c´ac t´ıch phˆan 3-l´o.p sau b˘a`ng phu.o.ng ph´ap dˆo’i biˆe´n 19.

ZZZ

D

(x2+y2+z2)dxdydz;x2+y2+z2 6R2. (DS. 4πR

5 ) 20.

ZZZ

D

(x2+y2)dxdydz; z =x2+y2, z = (DS π 6) 21.

ZZZ

D

p

x2+y2+z2dxdydz; x2

+y2+z2 6R2 (DS πR4)

22.

ZZZ

D

zpx2+y2dxdydz; x2+y2 = 2x, y= 0, z= 0, z = 3.

(DS 8) 23.

ZZZ

D

zdxdydz; x2+y2+z2 6R2, x>0, y>0,z >0

(DS πR

4

16 ) 24.

ZZZ

D

(x2−y2)dxdydz; x2+y2 = 2z, z = 2. (DS. 16π

3 ) 25.

ZZZ

D

(145)

T´ınh thˆe’ t´ıch cu’a c´ac vˆa.t thˆe’ gi´o.i ha.n bo.’i c´ac m˘a.t d˜a chı’ 26. x= 0, y = 0, z = 0, x+ 2y+z−6 = (DS 36)

27. 2x+ 3y+ 4z = 12; x= 0, y= 0, z = (DS 12) 28. x

a + y b +

z

c = 1, x= 0, y= 0, z = (DS abc

6 ) 29. ax=y2+z2, x=a. (DS. πa

3

2 ) 30. 2z =x2+y2, z = 2. (DS 4π)

31. z =x2+y2, x2+y2+z2 = (DS π 6[8

2−7]) 32. z =px2+y2, z=x2

+y2 (DS π 6) 33. x2+y2−z = 1, z = 0. (DS. π

2) 34. 2z =x2+y2, y+z = 4. (DS. 81π

4 ) 35. x

2

a2 +

y2 b2 +

z2

c2 = (DS

4 3πabc)

12.3 T´ıch phˆan du.`o.ng

12.3.1 ac di.nh ngh˜ıa co ba’n

Gia’ su.’ h`am f(M), P(M) v`a Q(M),M = (x, y) liˆen tu.c ta.i mo.i diˆe’m cu’a du.`o.ng cong du.o cL=L(A, B) v´o.i diˆe’m dˆ` ua Av`a diˆe’m cuˆo´iB Chia mˆo.t c´ach t`uy ´yL(A, B) th`anh n cung nho’ v´o.i dˆo d`ai tu.o.ng ´u.ng l`a ∆s0, ∆s1, ∆s2, ,∆sn−1 D˘a.t d= max

06i6n−1(∆si) Trong mˆo˜i cung

nho’, lˆa´y mˆo.t c´ach t`uy ´y diˆe’m N0, N1, , Nn−1 t´ınh gi´a tri f(Ni),

P(Ni) v`a Q(Ni) ta.i diˆe’mNi d´o

(146)

Phu.o.ng ph´ap I.Lˆa´y gi´a tri.f(Ni) nhˆan v´o.i dˆo d`ai cung ∆si tu.o.ng ´

u.ng v`a lˆa.p tˆo’ng t´ıch phˆan σ1 =

n−1

X

i=0

f(Ni)∆si. (*)

Phu.o.ng ph´ap II. Kh´ac v´o.i c´ach lˆa.p tˆo’ng t´ıch phˆan (∗), phu.o.ng ph´ap n`ay ta lˆa´y gi´a tri. P(Ni), Q(Ni) nhˆan khˆong pha’i v´o.i dˆo d`ai cu’a c´ac cung nho’ m`a l`a nhˆan v´o.i h`ınh chiˆe´u vuˆong g´oc cu’a c´ac cung nho’ d´o trˆen c´ac tru.c to.a dˆo., t´u.c l`a lˆa.p tˆo’ng

σx = n−1

X

i=0

P(Ni)∆xi; ∆xi =proOx∆si,

σy = n−1

X

i=0

Q(Ni)∆yi; ∆yi =proOy∆si

Mˆo˜i c´ach lˆa.p tˆo’ng t´ıch phˆan trˆen dˆay s˜e dˆa˜n dˆe´n mˆo.t kiˆe’u t´ıch phˆan du.`o.ng

D- i.nh ngh˜ıa 12.3.1. Nˆe´u tˆ` n ta.i gi´o.i ha.n h˜u.u ha.n limo

d→0σ1 khˆong phu

thuˆo.c v`ao ph´ep phˆan hoa.ch du.`o.ng cong L th`anh c´ac cung nho’ v`a khˆong phu thuˆo.c v`ao viˆe.c cho.n c´ac diˆe’m trung gian Ni trˆen mˆo˜i cung nho’ th`ı gi´o.i ha.n d´o du.o c go.i l`a t´ıch phˆan du.`o.ng theo dˆo d`ai (hay t´ıch phˆan du.`o.ng kiˆe’u I) cu’a h`am f(x, y) theo du.`o.ng cong L = L(A, B) K´y hiˆe.u:

Z

L

f(x, y)ds. (12.23)

D- i.nh ngh˜ıa 12.3.2. Ph´at biˆe’u tu.o.ng tu nhu di.nh ngh˜ıa 12.3.1:

1+ lim

d→0σx = limd→0

n−1

X

i=0

P(Ni)∆xi =

Z

L(A,B)

P(x, y)dx

(147)

go.i l`a t´ıch phˆan du.`o.ng theo ho`anh dˆo (nˆe´u (12.24) tˆo`n ta.i h˜u.u ha.n)

2+ lim

d→0σy = limd→0

n−1

X

i=0

Q(Ni)∆yi=

Z

L(A,B)

Q(x, y)dy

(12.25) go.i l`a t´ıch phˆan du.`o.ng theo tung dˆo (nˆe´u (12.25) tˆo` n ta.i h˜u.u ha.n)

Thˆong thu.`o.ng ngu.`o.i ta lˆa.p tˆo’ng t´ıch phˆan da.ng

Σ = n−1

X

i=0

P(Ni)∆xi+ n−1

X

o=0

Q(Ni)∆yi

v`a nˆe´u∃ lim

d→0Σ th`ı gi´o.i ha.n d´o du.o c go.i l`a t´ıch phˆan du.`o.ng theo to.a

dˆo da.ng tˆo’ng qu´at:

Z

L(A,B)

P(x, y)dx+Q(x, y)dy. (12.26)

D- i.nh l´y. Nˆe´u c´ac h`am f(x, y), P(x, y), Q(x, y) liˆen tu c theo du.`o.ng cong L(A, B) = L th`ı c´ac t´ıch phˆan du.`o.ng (12.23) - (12.26) tˆ` n ta.io h˜u.u ha n.

T`u di.nh ngh˜ıa 12.3.1 v`a kh´ai niˆe.m dˆo d`ai cung (khˆong phu thuˆo.c hu.´o.ng cu’a cung) v`a di.nh ngh˜ıa 12.3.2 v`a t´ınh chˆa´t cu’a h`ınh chiˆe´u cu’a cung (h`ınh chiˆe´u dˆo’i dˆa´u dˆo’i hu.´o.ng cu’a cung) suy t´ınh chˆa´t quan tro.ng cu’a t´ıch phˆan du.`o.ng: t´ıch phˆan du.`o.ng theo dˆo d`ai khˆong phu thuˆo c v`ao hu.´o.ng cu’a du.`o.ng cong; t´ıch phˆan du.`o.ng theo to a dˆo. dˆo’i dˆa´u dˆo’i hu.´o.ng du.`o.ng cong.

12.3.2 T´ınh t´ıch phˆan du.`o.ng

(148)

tr`ınh cu’a du.`o.ng lˆa´y t´ıch phˆanL =L(A, B) ta biˆe´n dˆo’i biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan du.`o.ng th`anh biˆe’u th´u.c mˆo.t biˆe´n m`a gi´a tri cu’a biˆe´n d´o ta.i diˆe’m dˆa` u A v`a diˆe’m cuˆo´i B s˜e l`a cˆa.n cu’a t´ıch phˆan x´ac di.nh thu du.o c

1+ Nˆe´uL(A, B) du.o..c cho bo.’i c´ac phu.o.ng tr`ınh tham sˆo´x=ϕ(t), y=ψ(t),t∈[a, b] (trong d´o ϕ,ψ kha’ vi liˆen tu.c v`aϕ02+ψ02 >0) th`ı

ds=

q

ϕ02

+ψ02

dt

Z

L(A,B)

f(x, y)ds= b

Z

a

f[ϕ(t), ψ(t)]

q

ϕ02

+ψ02dt (12.27)

v`a

Z

L(A,B)

P(x, y)dx+Q(x, y)dy=

= b

Z

a

P ϕ(t), ψ(t)ϕ0(t) +Q ϕ(t), ψ(t)ψ0(t)dt. (12.28)

2+ Nˆe´u L(A, B

) du.o c cho bo.’i phu.o.ng tr`ınh y = g(x), x ∈ [a, b] (trong d´o g(x) kha’ vi liˆen tu.c trˆen [a, b]) th`ı

ds=

q

1 +g02

(x)dx

Z

L(A,B)

f(x, y)ds= b

Z

a

f[x, g(x)]

q

1 +g02

(x)dx (12.29)

v`a

Z

L(A,B)

P dx+Qdy= b

Z

a

(149)

3+ Nˆe´uL(A, B) du.o..c cho du.´o.i da.ng to.a dˆo cu cρ=ρ(ϕ)α 6ϕ6

β th`ı

ds=

q

ρ2+ρ0 ϕ

2

Z

L(A,B)

f(x, y)ds= β

Z

α

f[ρcosϕ, ρsinϕ]

q

ρ2+ρ02

dϕ. (12.31)

4+ T´ıch phˆan du.`

o.ng theo to.a dˆo c´o thˆe’ t´ınh nh`o cˆong th´u.c Green Nˆe´u P(x, y), Q(x, y) v`a c´ac da.o h`am riˆeng ∂Q

∂x, ∂P

∂y c`ung liˆen tu.c miˆ`ne D gi´o.i ha.n bo’ i du.` o.ng cong khˆong tu. c˘a´t tro.n t`u.ng kh´uc

L=∂D th`ı

I

L+

P dx+Qdy =

Z Z

D

∂Q

∂x∂P

∂y

dxdy. (12.32)

Cˆong th´u.c (12.32) go.i l`a cˆong th´u.c Green, d´o

I

L+

l`a t´ıch phˆan theo du.`o.ng cong k´ın c´o hu.´o.ng du.o.ngL+.

Hˆe qua’. Diˆe.n t´ıch miˆe`n D gi´o.i ha n bo’ i du.`. o.ng cong L du.o..c t´ınh theo cˆong th´u.c

SD =

I

L

xdyydx. (12.33)

5+ Nhˆa

n x´et vˆ` t´ıch phˆe an du.`o.ng khˆong gian. Gia’ su.’ L =

L(A, B) l`a du.`o.ng cong khˆong gian; f, P, Q, R l`a nh˜u.ng h`am ba biˆe´n liˆen tu.c trˆenL Khi d´o tu.o.ng tu nhu tru.`o.ng ho p du.`o.ng cong ph˘a’ng ta c´o thˆe’ di.nh ngh˜ıa t´ıch phˆan du.`o.ng theo dˆo d`ai

I

L(A,B)

f(x, y, z)dsv`a t´ıch phˆan du.`o.ng theo to.a dˆo.

Z

L

P(x, y, z)dx,

Z

L

Q(x, y, z)dy,

Z

L

(150)

v`a

Z

L

P dx+Qdy+Rdz.

Vˆ` thu c chˆa´t k˜y thuˆa.t t´ınh c´ac t´ıch phˆan n`ay khˆong kh´ac biˆe.t g`ıe so v´o.i tru.`o.ng ho..p du.`o.ng cong ph˘a’ng

C ´AC V´I DU. V´ı du 1. T´ınh t´ıch phˆan du.`o.ng

I

L x

yds, d´o L l`a cung parabˆon y2 = 2x t`u diˆe’m (1,

2) dˆe´n diˆe’m (2,2)

Gia’i. Ta t`ım vi phˆan dˆo d`ai cung Ta c´o y=

2x, y0= √1

2x, ds =

q

1 +y02

dx=

r

1 + 2xdx=

1 + 2x

2x dx. Tu d´o suy

I

L x yds=

2

Z

1

x

2x ·

1 + 2x

2x dx= 6[5

5−3

3] N

V´ı du 2. T´ınh dˆo d`ai cu’a du.`o.ng astroid x = acos3t, y = asin3

t, t∈[0,2π]

Gia’i. Ta ´ap du.ng cˆong th´u.c: dˆo d`ai (L) =

I

L

ds Trong tru.`o.ng ho p n`ay ta c´o

x0=−3acos2tsint, y0= 3asin2tcost, ds= 3a

2 sin 2tdt V`ı du.`o.ng cong dˆo´i x´u.ng v´o.i c´ac tru.c to.a dˆo nˆen

dˆo d`ai(L) = π/2

Z

0

3a

2 sin 2tdt= 6a

h−cos 2t

iπ/2

(151)

V´ı du 3. T´ınh

I

L

(x−y)ds, d´o L:x2+y2 = 2ax

Gia’i. Chuyˆe’n sang to.a dˆo cu c x =rcosϕ, y =rsinϕ Trong to.a dˆo cu..c phu.o.ng tr`ınh du.`o.ng tr`on c´o da.ng r = 2acosϕ,π

2 ϕ6 π Vi phˆan dˆo d`ai cung

ds =

q

r2+r0 ϕ

2

=

q

4a2cos2ϕ+ 4a2sin2

ϕdϕ= 2adϕ Do d´o

I =

I

L

(x−y)ds= π/2

Z

π/2

(2acosϕ) cosϕ−(2asinϕ) sinϕ2adϕ = 4a2

π/2

Z

π/2

cos2ϕdϕ= 2πa2. N

V´ı du 4. T´ınh t´ıch phˆan

I

L

(3x2+y)dx+ (x−2y2)dy, d´o L l`a biˆen cu’a h`ınh tam gi´ac v´o.i dı’nh A(0,0),B(1,0),C(0,1)

Gia’i. Theo t´ınh chˆa´t cu’a t´ıch phˆan du.`o.ng ta c´o

I

L =

I

AB +

I

BC +

I

CA .

a) Trˆen ca.nh AB ta c´oy= ⇒dy = Do d´o

I

AB =

1

Z

0

3x2dx=

b) Trˆen ca.nhBC ta c´ox+y= 1⇒y=−x+ 1, dy=−dx Do d´o

I

BC =

0

Z

1

[3x2+ (1−x)x+ 2(1−x2)]dx=−5

(152)

c) Trˆen ca.nh CA ta c´o x= ⇒dx= v`a d´o

I

CA =−

0

Z

1

2y2dy= 3· Nhu vˆa.y

I

L

= 1−

3 +

3 = N

V´ı du 5. T´ınh t´ıch phˆan

I

L

(x+y)dx−(x−y)dy, d´oLl`a du.`o.ng elip x

2

a2 +

y2

b2 = c´o di.nh hu.´o.ng du.o.ng

Gia’i. 1+Ta c´o thˆ

e’ t´ınh tru c tiˆe´p t´ıch phˆan d˜a cho b˘a`ng c´ac phu.o.ng ph´ap d˜a nˆeu (ch˘a’ng ha.n b˘a`ng c´ach tham sˆo´ h´oa phu.o.ng tr`ınh elip).

2+ Nhu.ng do.n gia’n ho.n ca’ l`a su.

’ du.ng cˆong th´u.c Green Ta c´o P =x+y, Q=−(x−y)∂Q

∂x∂P

∂y =−2 Do d´o theo cˆong th´u.c Green ta c´o

I

L =

Z Z

x2

a2+

y2 b261

(−2)dxdy=−2πab, v`ı diˆe.n t´ıch h`ınh elip b˘a`ng πab. N

V´ı du 6. T´ınh t´ıch phˆan

I

L

2(x2+y2)dx+x(4y+ 3)dy, d´o Ll`a du.`o.ng gˆa´p kh´ucABC v´o.i dı’nh A(0,0),B(1,1) v`a C(0,2)

Gia’i. Nˆe´u ta nˆo´i A v´o.i C th`ı thu du.o c du.`o.ng gˆa´p kh´uc k´ın L∗ gi´o.i ha.n ∆ABC Trˆen ca.nh CA ta c´o x= nˆendx= v`a t`u d´o

I

CA

(153)

Do d´o

I

L +

I

CA =

I

L∗

I

L =

I

L∗

.

´

Ap du.ng cˆong th´u.c Green ta c´o

I

L =

ZZ

ABC

[(4y+ 3)−4y]dxdy=

ZZ

ABC dxdy = 3S∆ABC = N

B `AI T ˆA P

T´ınh c´ac t´ıch phˆan du.`o.ng theo dˆo d`ai sau dˆay 1.

I

C

(x+y)ds, C l`a doa.n th˘a’ng nˆo´i A(9,6) v´o.i B(1,2) (DS 36

5)

2.

I

C

xyds,C l`a biˆen h`ınh vuˆong |x|+|y|=a, a >0 (DS 0) 3.

I

C

(x+y)ds, C l`a biˆen cu’a tam gi´ac dı’nh A(1,0),B(0,1),C(0,0) (DS +

2) 4.

I

C ds

xy,C l`a doa.n th˘a’ng nˆo´i A(0,2) v´o.iB(4,0) (DS

5 ln 2)

5.

I

C

p

x2+y2ds, C l`a du.`o.ng tr`on x2

+y2 =ax. (DS 2a2)

6.

I

C

(x2+y2)nds,C l`a du.`o.ng tr`on x2+y2 =a2. (DS 2πa2n+1)

7.

I

C e

x2+y2

(154)

(r, ϕ) : 06r6 a,06ϕ6 π

4

(DS 2(ea−1) + πae a

4 ) 8.

I

C

xyds,C l`a mˆo.t phˆa` n tu elip n˘a`m g´oc phˆa` n tu I (DS ab

3 ·

a2+ab+b2 a+b )

Chı’ dˆa˜n. Su.’ du.ng phu.o.ng tr`ınh tham sˆo´ cu’a du.`o.ng elip: x = acost,y=bsint.

9.

I

C

ds

p

x2 +y2+ 4,C l`a doa.n th˘a’ng nˆo´i diˆe’m O(0,0) vo.iA(1,2)

(DS ln

5 + ) 10.

I

C

(x2+y2+z2)ds, C l`a cung du.`o.ng cong x=acost, y=asint, z=bt; 06t62π, a >0, b >0

(DS 2π

a2+b2(3a2

+ 4π2b2)) 11.

I

C

x2ds, C l`a du.`o.ng tr`on

  

x2+y2+z2 =a2

x+y+z =

(DS 2πa

3

3 )

Chı’ dˆa˜n. Ch´u.ng to’ r˘a`ng

I

C

x2ds=

I

C

y2ds=

I

C

z2ds v`a t`u d´o suy

I =

I

C

(155)

12.

I

C

(x+y)ds, C l`a mˆo.t phˆa` n tu du.`o.ng tr`on

  

x2+y2+z2 =R2

y=x n˘a`m g´oc phˆa` n t´am I (DS.R2

2) 13. T´ınh

I

C

xyzds, C l`a mˆo.t phˆa` n tu du.`o.ng tr`on

  

x2+y2+z2 =R2 x2+y2 = R

2

4 n˘a`m g´oc phˆa` n t´am I

T´ınh c´ac t´ıch phˆan du.`o.ng theo to.a dˆo sau dˆay 14.

I

C

y2dx+x2dy,C l`a du.`o.ng t`u diˆe’m (0,0) dˆe´n diˆe’m (1,1): 1) C l`a doa.n th˘a’ng.

2) C l`a cung parabol y=x2.

3) C l`a cung parabol y=√x. (DS 1)

3; 2) 10 ; 3)

7 10) 15.

I

C

y2dxx2dy, C l`a du.`o.ng tr`on b´an k´ınh R = v`a c´o hu.´o.ng ngu.o c chiˆe`u kim dˆo` ng hˆo` v`a:

1) v´o.i tˆam ta.i gˆo´c to.a dˆo 2) v´o.i tˆam ta.i diˆe’m (1,1) (DS 1) 0; 2) −4π) 16.

I

C

(156)

v`a (1,2) (DS 2) 17.

I

C

cosydx−sinxdy,C l`a doa.n th˘a’ng t`u diˆe’m (2,−2) dˆe´n diˆe’m (−2,2) (DS −2 sin 2)

18.

I

C

(x2+y2)dx+ (x2−y2)dy,C l`a du.`o.ng cong y= 1− |1−x|, 06x62 (DS

3) 19.

I

C

(x+y)dx+ (x−y)dy,C l`a elip c´o hu.´o.ng du.o.ng x

2

a2 +

y2

b2 =

(DS 0) 20.

I

C

(2a−y)dx+xdy, C l`a mˆo.t v`om cuˆo´n cu’a du.`o.ng xicloid x=a(t−sint),y=a(1−cost), 06t62π (DS −2πa2)

21.

I

C

dx+dy

|z|+|y|, C l`a biˆen c´o hu.´o.ng du.o.ng cu’a h`ınh vuˆong v´o.i dı’nh

ta.i diˆe’m A(1,0), B(0,1), C(−1,0) v`aD(0,−1) (DS 0) 22.

I

C

(x2−y2)dx+ (x2 +y2)dy,C l`a elip c´o hu.´o.ng du.o.ng x2

a2 +

y2

b2 = (DS 0)

23.

I

C

(x2+y2)dx+xydy, C l`a cung cu’a du.`o.ng y=ex t`u diˆe’m (0,1) dˆe´n diˆe’m (1, e) (DS 3e

2

4 + 2) 24.

I

C

(x3−y2)dx+xydy, C l`a cung cu’a du.`o.ng y=ax t`u diˆe’m (0,1) dˆe´n diˆe’m (1, a) (DS

4 + a2

2 +

3(1−a2)

4 lna ) 25.

I

C

(157)

x=a(t−sint),y=a(1−cost),a >0 c´o di.nh hu.´o.ng theo hu.´o.ng t˘ang cu’a tham sˆo´ (DS a3π(5−2π))

´

Ap du.ng cˆong th´u.c Green dˆe’ t´ınh t´ıch phˆan du.`o.ng 26.

I

C

xy2dyx2dx, C l`a du.`o.ng tr`on x2+y2 =a2 (DS πa

4

4 ) 27.

I

C

(x+y)dx−(x−y)dy, C l`a elip x

2

a2 +

y2

b2 = (DS −2πab)

28.

I

C

ex2+y2(cos 2xydx+ sin 2xydy), C l`a du.`o.ng tr`on x2+y2 =R2.

(DS 0) 29.

I

C

(xy+exsinx+x+y)dx+ (xy−ey +x−siny)dy,

C l`a du.`o.ng tr`on x2+y2 = 2x. (DS. −π)

30.

I

C

(1 +xy)dx+y2dy,C l`a biˆen cu’a nu.’ a trˆen cu’a h`ınh tr`on x2+y2 62x(y>0). (DS. −π

2) 31.

I

C

(x2+y2)dx+ (x2 −y2)dy, C l`a biˆen cu’a tam gi´ac ∆ABC v´o.i A= (0,0), B = (1,0),C = (0,1), Kiˆe’m tra kˆe´t qua’ b˘a`ng c´ach t´ınh tru c tiˆe´p (DS 0)

32.

I

C

(2xy−x2)dx+ (x+y3)dy, C l`a biˆen cu’a miˆ`n bi ch˘a.n gi´o.i ha.ne bo.’ i hai du.`o.ng y = x2 v`a y2 = x Kiˆe’m tra kˆe´t qua’ b˘a`ng c´ach t´ınh

tru c tiˆe´p (DS 30) 33.

I

C

(158)

34.

I

C

(xy+x+y)dx+ (xy+xy)dy, d´o C l`a a) elip x

2

a2 +

y2

b2 = 1;

b) du.`o.ng tr`on x2+y2=ax (a >0) (DS a) 0; b)−πa

8 ) 35.

I

C

xy2dxx2ydy,C l`a du.`o.ng tr`on x2+y2 =R2 (DS. πR

2 ) 36.

I

C

2(x2 +y2)dx +x(4y + 3)dy, C l`a du.`o.ng gˆa´p kh´uc v´o.i dı’nh A = (0,0), B = (1,1), C = (0,2) Kiˆe’m tra kˆe´t qua’ b˘a`ng c´ach t´ınh tru c tiˆe´p (DS 3)

Chı’ dˆa˜n. Bˆo’ sung cho C doa.n th˘a’ng dˆe’ thu du.o c chu tuyˆe´n d´ong

37. H˜ay so s´anh hai t´ıch phˆan I1 =

I

AmB

(x+y)2dx−(x−y)2dy v`a I2 =

I

AnB

(x+y)2dx−(x−y)2dy nˆe´uAmBl`a doa.n th˘a’ng nˆo´iA(1,1) v´o.iB(2,6) v`aAnBl`a cung parabol quaA. B v`a gˆo´c to.a dˆo (DS.I1−I2 = 2)

38. T´ınh I =

I

AmBnA

(x+y)dx−(x−y)dy, d´o AmB l`a cung parabol qua A(1,0) v`a B(2,3) v`a c´o tru.c dˆo´i x´u.ng l`a tru.c Oy, c`on AnB l`a doa.n th˘a’ng nˆo´i A v´o.iB

(DS −1

3)

Chı’ dˆa˜n. Dˆ` u tiˆen viˆe´t phu.o.ng tr`ınh parabol v`a du.`o.ng th˘a’ng, saua d´o ´ap du.ng cˆong th´u.c Green

39. Ch´u.ng minh r˘a`ng gi´a tri cu’a t´ıch phˆan

I

C

(2xy−y)dx+x2dy, d´o C l`a chu tuyˆe´n d´ong, b˘a`ng diˆe.n t´ıch miˆe`n ph˘a’ng v´o.i biˆen l`a

(159)

40.

I

C

(x+y)2dx−(x2+y2)dy, C l`a biˆen cu’a ∆ABC v´o.i dı’nh A(1,1),B(3,2) v`aC(2,5) (DS −462

3) 41.

I

C

(y−x2)dx+ (x+y2)dy,C l`a biˆen h`ınh qua.t b´an k´ınh R v`a g´ocϕ(0 6ϕ6 π

2) (DS 0) 42.

I

C

y2dx+ (x+y)2dy, C l`a biˆen cu’a h`ınh tam gi´ac ∆ABC v´o.i A(a,0),B(a, a),C(0, a) (DS. 2a

3

3 )

12.4 T´ıch phˆan m˘a.t

12.4.1 ac di.nh ngh˜ıa co ba’n

Gia’ su.’ c´ac h`am f(M), P(M), Q(M) v`a R(M),M = (x, y, z) liˆen tu.c ta.i mo.i diˆe’mM cu’a m˘a.t tro.n, du.o c (σ) (m˘a.t tro.n l`a m˘a.t c´o m˘a.t ph˘a’ng tiˆe´p x´uc ta.i mo.i diˆe’m cu’a n´o) Chia mˆo.t c´ach t`uy ´y m˘a.t (σ) th`anh n ma’nh σ0, σ1, , σn−1 v´o.i diˆe.n t´ıch tu.o.ng ´u.ng l`a ∆S0,

∆S1, ,∆Sn−1 D˘a.t dk = diamσk; d = max

06k6n−1dk Trong mˆo˜i ma’nh

m˘a.t ta lˆa´y mˆo.t c´ach t`uy ´y diˆe’m Ni T´ınh gi´a tri cu’a c´ac h`am d˜a cho ta.i diˆe’mNi,i= 0, n−1 Ta k´y hiˆe.u cosα(Ni), cosβ(Ni) v`a cosγ(Ni) l`a c´ac cosin chı’ phu.o.ng cu’a vecto ph´ap tuyˆe´n~n(Ni) ta.i diˆe’mNi cu’a m˘a.t (σ).

X´et hai c´ach lˆa.p tˆo’ng t´ıch phˆan sau.

(I) Lˆa´y gi´a tri. f(Ni) nhˆan v´o.i c´ac phˆ` n tu.a ’ diˆe.n t´ıch m˘a.t ∆S0,

∆S1, ,∆Sn−1 v`a lˆa.p tˆo’ng

n−1

X

i=0

(160)

(II) Kh´ac v´o.i c´ach lˆa.p tˆo’ng t´ıch phˆan (I), phu.o.ng ph´ap n`ay ta lˆa´y gi´a tri. P(Ni), Q(Ni) v`a R(Ni) nhˆan khˆong pha’i v´o.i phˆ` na tu.’ diˆe.n t´ıch ∆Si cu’a c´ac ma’nh m˘a.t σi m`a l`a nhˆan v´o.i h`ınh chiˆe´u cu’a c´ac ma’nh d´o lˆen c´ac m˘a.t ph˘a’ng to.a dˆo. Oxy, Oxz v`aOyz, t´u.c l`a lˆa.p c´ac tˆo’ng da.ng

σxy = n−1

X

i=0

P(Ni)m(σxyi ), m(σixy) =proOxy(σi);

σxz = n−1

X

i=0

Q(Ni)m(σxzi ), m(σ i

xz) =proOxz(σi); σyz =

n−1

X

i=0

R(Ni)m(σyzi ), m(σyzi ) =proOyz(σi) D- i.nh ngh˜ıa 12.4.1. Nˆe´u tˆ` n ta.i gi´o.i ha.n h˜u.u ha.no

lim d→0

n−1

X

i=1

f(Ni)∆Si (12.34) khˆong phu thuˆo.c v`ao ph´ep phˆan hoa.ch m˘a.t (σ) th`anh c´ac ma’nh v`a khˆong phu thuˆo.c v`ao c´ach cho.n c´ac diˆe’m trung gian Niσi th`ı gi´o.i ha.n d´o go.i l`a t´ıch phˆan m˘a.t theo diˆe.n t´ıch.

K´y hiˆe.u :

ZZ

(σ)

f(x, y, z)dS

D- i.nh ngh˜ıa 12.4.2. C´ac t´ıch phˆan m˘a.t theo to.a dˆo du.o c di.nh ngh˜ıa bo.’ i

ZZ

(σ)

P(M)dxdy def= lim d→0

n−1

X

i=0

P(Ni)m(σxyi ) (12.35)

ZZ

(σ)

Q(M)dxdz def= lim d→0

n−1

X

i=0

Q(Ni)m(σxzi ) (12.36)

ZZ

(σ)

R(M)dydz def= lim d→0

n−1

X

i=0

(161)

nˆe´u c´ac gi´o.i ha.n o’ vˆe´ pha’i (12.35)-(12.37) tˆ ` n ta.i h˜u.u ha.n khˆong phu.o thuˆo.c v`ao ph´ep phˆan hoa.ch m˘a.t (σ) v`a c´ach cho.n diˆe’m trung gianNi, i= 0, n−1

T´ıch phˆan m˘a.t theo to.a dˆo da.ng tˆo’ng qu´at

ZZ

(σ)

P(M)dxdy+Q(M)dxdz+R(M)dydz

l`a tˆo’ng cu’a c´ac t´ıch phˆan m˘a.t theo to.a dˆo (12.35), (12.36) v`a (12.37). Nˆe´u (σ) l`a m˘a.t d´ong (k´ın !) th`ı t´ıch phˆan m˘a.ttheo ph´ıa ngo`ai cu’a n´o du.o c k´y hiˆe.u

ZZ

(σ)+

ho˘a.c do.n gia’n l`a

Z Z

(σ)

nˆe´u n´oi r˜o (σ) l`a m˘a.t n`ao;

c`on t´ıch phˆan theo ph´ıa trong du.o..c k´y hiˆe.u

Z Z

(σ)−

ho˘a.c do.n gia’n l`a

ZZ

(σ)

khi d˜a n´oi r˜o (σ) l`a m˘a.t n`ao.

12.4.2 Phu.o.ng ph´ap t´ınh t´ıch phˆan m˘a t

Phu.o.ng ph´ap chung dˆe’ t´ınh t´ıch phˆan m˘a.t ca’ hai da.ng l`a du.a vˆe` t´ıch phˆan hai l´o.p Cu thˆe’ l`a: xuˆa´t ph´at t`u phu.o.ng tr`ınh cu’a m˘a.t (σ) ta biˆe´n dˆo’i biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan th`anh biˆe’u th´u.c hai biˆe´n m`a miˆ`n biˆe´n thiˆen cu’a ch´e ung l`a h`ınh chiˆe´u do.n tri cu’a (σ) lˆen m˘a.t ph˘a’ng to.a dˆo tu.o.ng ´u.ng v´o.i c´ac biˆe´n d´o

1+ Nˆe´u m˘a.t (σ) c´o phu.o.ng tr`ınh z = ϕ(x, y) th`ı t´ıch phˆan m˘a.t theo diˆe.n t´ıch du.o c biˆe´n dˆo’i th`anh t´ıch phˆan hai l´o.p theo cˆong th´u.c

dS=

q

1 +ϕ0 x

2

+ϕ0 y

2

dxdy

ZZ

(σ)

f(x, y, z)dS=

ZZ

D(x,y)

f[x, y, ϕ(x, y)]

q

1 +ϕ0 x

2

+ϕ0 y

2

dxdy (12.38)

(162)

Nˆe´u m˘a.t (σ) c´o phu.o.ng tr`ınhy =ψ(x, z) th`ı

ZZ

(σ)

f(x, y, z)dS =

Z Z

D(x,z)

f[x, ψ(x, z), z]

q

1 +ψ0 x

2

+ψ0 z

2

dxdz, (12.39)

trong d´o D(x, z) =proOxz(σ)

Nˆe´u m˘a.t (σ) c´o phu.o.ng tr`ınhx =g(y, z) th`ı

ZZ

(σ)

f(·)dS =

ZZ

D(y,z)

f[g(y, z), y, z]

q

1 +g0 y

2+g0 z

2dydz, (12.40)

trong d´o D(y, z) =proOyz(σ) 2+ Gia’ thiˆe´t m˘

a.t (σ) chiˆe´u du.o c do.n tri lˆen c´ac m˘a.t ph˘a’ng to.a dˆo., t´u.c l`a m˘a.t c´o phu.o.ng tr`ınh da.ng

z =ϕ(x, y), (x, y)∈D(x, y); y=ψ(x, z), (x, z)∈D(x, z); x=g(y, z), (y, z)∈D(y, z).

Ta k´y hiˆe.ue1,e2,e3l`a c´ac vecto co so.’ cu’aR3v`a cosα(M) = cos(~n, ~de1),

cosβ(M) = cos(~n, ~de2), cosγ(M) = cos(~n, ~de3) D´o l`a c´ac cosin chı’

phu.o.ng cu’a vecto ph´ap tuyˆe´n v´o.i m˘a.t (σ) ta.i diˆe’mM ∈(σ) Khi d´o c´ac t´ıch phˆan m˘a.t theo to.a dˆo lˆa´y theo m˘a.t hai ph´ıa du.o c t´ınh nhu. sau

ZZ

(σ)

P(M)dxdy =

            

+

ZZ

D(x,y)

P(x, y, ϕ(x, y))dxdy nˆe´u cosγ >0;

ZZ

D(x,y)

P(x, y, ϕ(x, y))dxdy nˆe´u cosγ <0

(163)

Tu.o.ng tu ta c´o

ZZ

(σ)

Q(M)dxdz =

            

+

ZZ

D(x,z)

Q(x, ψ(x, z), z)dxdz nˆe´u cosβ >0,

ZZ

D(x,z)

Q(·)dxdz nˆe´u cosβ <0;

Z Z

(σ)

R(M)dydz =

            

+

ZZ

D(y,z)

R(g(y, z), y, z)dydz nˆe´u cosα >0

ZZ

D(y,z)

R(·)dydz nˆe´u cosα <0

Nhˆa n x´et. T´ıch phˆan m˘a.t theo to.a dˆo lˆa´y theo phˆa` nm˘a t tru. v´o.i du.`o.ng sinh song song v´o.i tru.c Oz l`a b˘a`ng Trong c´ac tru.`o.ng ho p tu.o.ng tu , c´ac t´ıch phˆan m˘a.t theo to.a dˆo x,z hay y,z c˜ung =

12.4.3 ong th´u.c Gauss-Ostrogradski D´o l`a cˆong th´u.c

ZZZ

D

∂P

∂x + ∂Q

∂y + ∂R

∂z

dxdydz =

Z Z

∂D

P dydz+Qdxdz+Rdxdy.

N´o x´ac lˆa.p mˆo´i liˆen hˆe gi˜u.a t´ıch phˆan m˘a.t theo m˘a.t biˆen ∂D cu’a D v´o.i t´ıch phˆan 3-l´o.p lˆa´y theo miˆ`ne D ⊂R3

12.4.4 ong th´u.c Stokes D´o l`a cˆong th´u.c

I

L

P dx+Qdy+Rdz=

ZZ

(σ)

∂Q

∂x∂P

∂y

dxdy+∂R ∂y

∂Q ∂z

dydz

+

∂P

∂z∂R

∂x

(164)

N´o x´ac lˆa.p mˆo´i liˆen hˆe gi˜u.a t´ıch phˆan m˘a.t theo m˘a.t (σ) v´o.i t´ıch phˆan du.`o.ng lˆa´y theo b`o.L cu’a m˘a.t (σ).

Ta nhˆa.n x´et r˘a`ng sˆo´ ha.ng th´u nhˆa´t o.’ vˆe´ pha’i cu’a cˆong th´u.c Stokes c˜ung ch´ınh l`a vˆe´ pha’i cˆong th´u.c Green Hai sˆo´ ha.ng c`on la.i thu du.o c t`u d´o bo.’ i ph´ep ho´an vi tuˆa` n ho`an c´ac biˆe´nx, y, z v`a c´ac h`am P, Q, R:

x

% &

z ←− y

P

% &

R ←− Q C ´AC V´I DU.

V´ı du 1. T´ınh t´ıch phˆan

ZZ

(σ)

(6x+ 4y+ 3z)dS, d´o (σ) l`a phˆ` na m˘a.t ph˘a’ng x+ 2y+ 3z = n˘a`m g´oc phˆa` n t´am th´u nhˆa´t

Gia’i. M˘a.t t´ıch phˆan l`a tam gi´ac ABC tronng d´o A(6,0,0), B(0,3,0) v`a C(0,0,2) Su.’ du.ng phu.o.ng tr`ınh cu’a (σ) dˆe’ biˆe´n dˆo’i t´ıch phˆan m˘a.t th`anh t´ıch phˆan 2-l´o.p T`u phu.o.ng tr`ınh cu’a (σ) r´ut z =

3(6−x−2y) T`u d´o dS =

q

1 +z0 x

2

+z0 y

2

dxdy=

14 dxdy. Do d´o

I =

14

ZZ

OAB

[(6x+ 4y+3

3(6−x−2y)]dxdy =

14

3

Z

0

dy

6Z−2y

0

(5x+ 2y+ 6)dx

=

14

3

Z

0

nh5

2x

2

+ 2xy+ 6xi

6−2y

0

o

dy= 54

(165)

V´ı du 2. T´ınh

ZZ

(σ)

p

1 + 4x2+ 4y2dS, (σ) l`a phˆ` n paraboloid tr`ona

xoayz = 1−x2 −y2 n˘a`m trˆen m˘a.t ph˘a’ng Oxy.

Gia’i. M˘a.t (σ) chiˆe´u du.o c do.n tri lˆen m˘a.t ph˘a’ngOxy v`a h`ınh tr`on x2+y2 61 l`a h`ınh chiˆe´u cu’a n´o: D(x, y) =(x, y) :x2+y2 61 Ta

t´ınh dS Ta c´o zx0 = −2x, z0y = −2y ⇒ dS = p1 + 4x2+ 4y2dxdy.

Do vˆa.y

ZZ

(σ)

=

Z Z

D(x,y)

p

1 + 4x2+ 4y2 ·p1 + 4x2 + 4y2dxdy

=

ZZ

x2+y261

(1 + 4x2+ 4y2)dxdy

B˘a`ng c´ach chuyˆe’n sang to.a dˆo cu c ta c´o

I =

2π

Z

0

1

Z

0

(1 + 4r2)rdr = 3π N

V´ı du 3. T´ınh t´ıch phˆan

ZZ

(σ)

(y2+z2dxdy, d´o (σ) l`a ph´ıa ngo`ai cu’a m˘a.t z =

1−x2 gi´o.i ha.n bo’ i c´ ac m˘a.t ph˘a’ng y= 0, y= 1.

Gia’i. M˘a.t (σ) l`a nu.’ a trˆen cu’a m˘a.t tru. x2+z2 = 1, z > Do d´o h`ınh chiˆe´u cu’a (σ) lˆen m˘a.t ph˘a’ng Oxy l`a h`ınh ch˜u nhˆa.t x´ac di.nh bo.’i c´ac diˆ`u kiˆe.n:e −1 x 1, y Do d´o v`ız =

1−x2 nˆen

cosγ >0 v`a

Z Z

(σ)

(y2+z2)dxdy =

ZZ

D(x,y)

[y2+ (

1−x2)2

]dxdy

=

1

Z

−1

dx

1

Z

0

(166)

V´ı du 4. T´ınh t´ıch phˆan

ZZ

(σ)

2dxdy+ydxdzx2zdydz, d´o (σ) l`a ph´ıa trˆen cu’a phˆ` n elipxoid 4xa 2+y2+ 4z2 = n˘a`m g´oc phˆa` n

t´am I

Gia’i. Ta viˆe´t t´ıch phˆan d˜a cho du.´o.i da.ng

I =

Z Z

(σ)

dxdy+

ZZ

(σ)

ydydz

ZZ

(σ)

x2zdydz.

v`a su.’ du.ng phu.o.ng tr`ınh cu’a m˘a.t (σ) dˆe’ biˆe´n dˆo’i mˆo˜i t´ıch phˆan Lu.u ´

y r˘a`ng cosα >0, cosβ >0, cosγ >0

(i) V`ı h`ınh chiˆe´u cu’a m˘a.t (σ) lˆen m˘a.t ph˘a’ng Oxy l`a phˆ` n tu h`ınha elip x

2

12 +

y2

22 61 nˆen

I1 =

ZZ

(σ)

dxdy=

ZZ

D(x,y)

dxdy= π

2 (v`ı diˆe.n t´ıch elip = 2π)

(ii) H`ınh chiˆe´u cu’a (σ) lˆen m˘a.t ph˘a’ng Oxz l`a phˆ` n tu h`ınh tr`ona 4x2+ 4z2 64⇔ x2+z2 61 M˘a.t kh´ac t`u phu.o.ng tr`ınh m˘a.t r´ut ra y= 2p1−x2−y2 v`a d´o

I2 =

Z Z

(σ)

ydxdz=

Z Z

D(x,y)

1−x2−z2dxdz =|chuyˆe’n sang to.a dˆo cu c|

= π/2

Z

0

1

Z

0

1−r2rdr = π

(iii) H`ınh chiˆe´u cu’a (σ) lˆen m˘a.t ph˘a’ng Oyz l`a mˆo.t phˆa` n tu h`ınh elip y

2

4 +z

2

(167)

x=

r

1− y

2

4 −z

2 rˆ` i thˆe´ v`ao h`am du.´o.i dˆa´u t´ıch phˆan cu’ao I 3:

I3 =

ZZ

(σ)

x2zdydz =

Z Z

D(y,z)

z 1− y

2

4 −z

2

dydz

=

1

Z

0

dz

2√1−z2

Z

0

z 1− y

2

4 −z

2

dy =· · ·= 15 · Nhu vˆa.y I = 2I1+I2−I3 =

4π −

4 15· N V´ı du 5. T´ınh

ZZ

(σ)−

ydydz, d´o (σ) l`a m˘a.t cu’a t´u diˆe.n gi´o.i ha.n bo.’ i m˘a.t ph˘a’ng x+y+z = v`a c´ac m˘a.t ph˘a’ng to.a dˆo., t´ıch phˆan du.o c lˆa´y theo ph´ıa cu’a t´u diˆe.n.

Gia’i. M˘a.t ph˘a’ng x+y+z = c˘a´t c´ac tru.c to.a dˆo ta.iA(1,0,0), B(0,1,0) v`a C = (0,0,1) Ta k´y hiˆe.u gˆo´c to.a dˆo l`a O(0,0,0) T`u d´o suy m˘a.t k´ın (σ) gˆ` m t`o u h`ınh tam gi´ac ∆ABC, ∆BCO, ∆ACO v`a ∆ABO Do vˆa.y t´ıch phˆan d˜a cho l`a tˆo’ng cu’a bˆo´n t´ıch phˆan.

(i) T´ıch phˆan I1 =

ZZ

ABC

ydxdz R´ut y t`u phu.o.ng tr`ınh m˘a.t (σ)

∆ABC ta c´oy= 1−xz v`a d´o I1 =−

Z Z

ACO

(1−xz)dxdz =

1

Z

0

dx

1−x

Z

0

(x+z−1)dz =−1

6· (Lu.u ´y r˘a`ng cosβ = cos(~n, Oy)< v`ı vecto.~n lˆa.p v´o.i hu.´o.ng du.o.ng tru.cOy mˆo.t g´oc t`u, d´o tru.´o.c t´ıch phˆan theo ∆ACOxuˆa´t hiˆe.n dˆa´u tr`u.)

(ii)

ZZ

(BCD)

ydxdz=

ZZ

(ABO)

(168)

v`ı m˘a.t ph˘a’ng BCO v`aABO dˆ`u vuˆong g´oc v´o.i m˘a.t ph˘a’nge Oxz. (iii)

ZZ

(ACO)

ydxdz =

Z Z

ACO

0dxdz =

Vˆa.y I =−1

6 N

V´ı du 6. T´ınh t´ıch phˆan I =

ZZ

(σ)

x3dydz+y3dzdx+z3dxdy, trong d´o (σ) l`a ph´ıa ngo`ai m˘a.t cˆa` ux2 +y2+z2 =R2.

Gia’i. Ap du.ng cˆong th´u.c Gauss-Ostrogradski ta c´o´

ZZ

(σ)

=

Z ZZ

D

(x2+y2+z2)dxdydz

trong d´o D ⊂ R3 l`a miˆ`n v´o.i biˆen l`a m˘a.t (e σ) Chuyˆe’n sang to.a dˆo. cˆ` u ta c´oa

3

ZZ Z

D

(x2 +y2+z2)dxdydz =

2π

Z

0

π

Z

0

sinθdθ R

Z

0

r4dr

= 12πR

5

5 · Vˆa.y I = 12πR

5

5 · N V´ı du 7. T´ınh t´ıch phˆan

I

L

x2y3dx+dy+zdz, d´o L l`a du.`o.ng tr`on x2+y2 = 1, z = 0, c`on m˘

a.t (σ) l`a ph´ıa ngo`ai cu’a nu.’ a m˘a.t cˆa` u x2+y2+z2 = 1, z >0 v`aL c´

o di.nh hu.´o.ng du.o.ng

Gia’i. Trong tru.`o.ng ho p n`ay P =x2y3, Q= 1, R =z Do d´o ∂Q

∂x∂P

∂y =−3x

2

y2, ∂R ∂y

∂Q ∂z = 0,

∂P ∂z

(169)

v`a d´o theo cˆong th´u.c Stokes ta c´o

I

L

=−3

Z Z

(σ)

x2y2dxdy=−π

8· N B `AI T ˆA P

T´ınh c´ac t´ıch phˆan m˘a.t theo diˆe.n t´ıch sau dˆay 1.

ZZ

(Σ)

(x+y+z)dS, (Σ) l`a m˘a.t lˆa.p phu.o.ng 0 6x61, 0661, 06z 61 (DS 9)

2.

ZZ

(Σ)

(2x+y+z)dS, (Σ) l`a phˆ` n m˘a.t ph˘a’nga x+y+z = n˘a`m

g´oc phˆ` n t´ama I (DS.

3 ) 3.

ZZ

(Σ)

z + 2x+ 4y

dS, (Σ) l`a phˆ` n m˘a.t ph˘a’ng 6a x+ 4y+ 3z = 12 n˘a`m g´oc phˆa` n t´am I (DS 4√61)

4.

ZZ

(σ)

p

x2+y2dS, (Σ) l`a phˆ` n m˘a.t n´ona z2 =x2+y2, 0 6z 61.

(DS

2π ) 5.

ZZ

(Σ)

(y+z+

a2 −x2)dS, (Σ) l`a phˆ` n m˘a.t tru.a x2

+y2 =a2 n˘a`m gi˜u.a hai m˘a.t ph˘a’ng z = v`a z =h (DS.ah(4a+πh))

6.

ZZ

(Σ)

p

y2−x2dS, (Σ) l`a phˆ` n m˘a.t n´ona z2=x2+y2 n˘a`m m˘a.t

tru x2+y2 =a2 (DS 8a

3

(170)

7.

ZZ

(Σ)

(x+y+z)dS, (Σ) l`a nu.’ a trˆen cu’a m˘a.t cˆa` u x2+y2+z2 =a2 (DS πa3)

8.

ZZ

(Σ)

p

x2+y2dS, (Σ) l`a m˘a.t cˆa` u x2+y2+z2 =a2 (DS. 8πa

3 ) 9.

ZZ

(Σ)

dS

(1 +x+y), (Σ) l`a biˆen cu’a t´u diˆe.n x´ac di.nh bo

’ i bˆa´t phu.o.ng

tr`ınhx+y+z 61,x>0,y>0,z>0 (DS 3(3−

3)+(√3−1) ln 2) 10.

Z Z

(Σ)

(x2 +y2)dS, (Σ) l`a phˆ` n m˘a.t paraboloida x2+y2 = 2z

du.o c

c˘a´t bo.’ i m˘a.t ph˘a’ng z= (DS 55 +

3 65 ) 11.

Z Z

(Σ)

p

1 + 4x2+ 4y2dS, (Σ) l`a phˆ` n m˘a.t paraboloida z = 1−x2−y2

gi´o.i ha.n bo.’i c´ac m˘a.t ph˘a’ng z = v`a z= (DS 3π) 12.

Z Z

(Σ)

(x2 +y2)dS, (Σ) l`a phˆ` n m˘a.t n´ona z = px2+y2 n˘a`m gi˜u.a

c´ac m˘a.t ph˘a’ngz = v`a z= (DS π

2 ) 13.

Z Z

(Σ)

(xy+yz+zx)dS, (Σ) l`a phˆ` n m˘a.t n´ona z = px2+y2 n˘a`m

trong m˘a.t tru. x2+y2 = 2ax (a >0) (DS 64a

4√2

15 ) 14.

ZZ

(Σ)

(x2+y2+z2)dS, (Σ) l`a ma.t cˆa` u (DS 4π)

15.

ZZ

(Σ)

(171)

bo.’ i m˘a.t ph˘a’ng x= 10 (DS 50π

3 (1 + 25

5)) Su.’ du.ng cˆong th´u.c t´ınh diˆe.n t´ıch m˘a.tS(Σ) =

Z Z

(Σ)

dS dˆe’ t´ınh diˆe.n t´ıch cu’a phˆ` n m˘a.t (Σ) nˆe´ua

16. (Σ) l`a phˆ` n m˘a.t ph˘a’ng 2a x+ 2y+z = 8a n˘a`m m˘a.t tru. x2+y2 =R2. (DS 3πR2)

17. (Σ) l`a phˆ` n m˘a.t tru.a y+z2 =R2 n˘a`m m˘a.t tru.

x2+y2 =R2. (DS 8R2)

18. (Σ) l`a phˆ` n m˘a.t paraboloida x2+y2 = 6z n˘a`m m˘a.t tru x2+y2 = 27. (DS 42π)

19. (Σ) l`a phˆ` n m˘a.t cˆaa ` u x2+y2+z2 = 3a2 n˘a`m paraboloid x2+y2 = 2az. (DS 2πa2(3−√3))

20. (Σ) l`a phˆ` n m˘a.t n´ona z2 = 2xy n˘a`m g´oc phˆa` n t´am I gi˜u.a hai m˘a.t ph˘a’ng x= 2, y= (DS 16)

21. (Σ) l`a phˆ` n m˘a.t tru.a x2+y2 =Rx n˘a`m m˘a.t cˆa` u

x2+y2+z2 =R2. (DS 4R2)

T´ınh c´ac t´ıch phˆan m˘a.t theo to.a dˆo sau: 22.

ZZ

(Σ)

dxdy, (Σ) l`a ph´ıa ngo`ai phˆ` n m˘a.t n´ona z =px2+y2 khi

06z 61 (DS −π) 23.

ZZ

(Σ)

ydzdx, (Σ) l`a ph´ıa trˆen cu’a phˆ` n m˘a.t ph˘a’nga x+y+z = a

(a >0) n˘a`m g´oc phˆa` n t´am I (DS. a

3

6) 24.

ZZ

(Σ)

(172)

25.

ZZ

(Σ)

xdydz+zdzdx + 5dxdy, (Σ) l`a ph´ıa trˆen cu’a phˆ` n m˘a.ta ph˘a’ng 2x+ 3y+z = thuˆo.c g´oc phˆa` n t´am I (DS 6)

26.

Z Z

(Σ)

yzdydz+xzdxdz+xydxdy, (Σ) l`a ph´ıa trˆen cu’a tam gi´ac ta.o bo.’ i giao tuyˆe´n cu’a m˘a.t ph˘a’ng x+y+z = a v´o.i c´ac m˘a.t ph˘a’ng to.a dˆo (DS. a

4

8 ) 27.

ZZ

(Σ)

x2dydz+z2dxdy, (Σ) l`a ph´ıa ngo`ai cu’a phˆ` n m˘a.t n´ona

x2+y2 =z2, 06z 61. (DS. −4

3) 28.

ZZ

(Σ)

xdydz+ydzdx+zdxdy, (Σ) l`a ph´ıa ngo`ai phˆ` n m˘a.t cˆaa ` u x2+y2+z2=a2 (DS 4πa3)

29.

ZZ

(σ)

x2dydzy2dzdx+z2dxdy, (Σ) l`a ph´ıa ngo`ai cu’a m˘a.t cˆa` u x2+y2+z2=R2 thuˆo.c g´oc phˆa` n t´am I (DS πa

4

8 ) 30.

ZZ

(Σ)

2dxdy+ydzdxx2zdydz, (Σ) l`a ph´ıa ngo`ai cu’a phˆ` n m˘a.ta elipxoid 4x2 +y2+ 4z2 = thuˆ

o.c g´oc phˆa` n t´am I (DS 4π −

4 15) 31.

ZZ

(Σ)

(y2+z2)dxdy, (Σ) l`a ph´ıa ngo`ai cu’a m˘a.t tru. z2 = 1−x2,

06y61 (DS π 3) 32.

ZZ

(Σ)

(z−R)2dxdy, (Σ) l`a ph´ıa ngo`ai cu’a nu.’ a m˘a.t cˆa` u x2+y2+ (z−R)2 =R2,R 6z 62R (DS −5π

(173)

33.

ZZ

(Σ)

x2dydz+y2dzdx+z2dxdy, (Σ) l`a ph´ıa ngo`ai cu’a phˆ` n m˘a.ta

cˆ` ua x2+y2+z2 =a2 thuˆo.c g´oc phˆa` n t´am I (DS 3πa

4

8 ) 34.

ZZ

(Σ)

z2dxdy, (σ) l`a ph´ıa cu’a m˘a.t elipxoid x2+y2+ 2z2 = (DS 0)

35.

ZZ

(Σ)

(z+ 1)dxdy, (Σ) l`a ph´ıa ngo`ai cu’a m˘a.t cˆa` u

x2+y2+z2 =R2 (DS. 4πR

3 ) 36.

ZZ

(Σ)

x2dydz+y2dzdx+z2dxdy, (Σ) l`a ph´ıa ngo`ai cu’a m˘a.t cˆa` u

(x−a)2+ (y−b)2+ (z−c)2 =R2 (DS. 8πR

3 (a+b+c)) 37.

ZZ

(Σ)

x2y2zdxdy, (Σ) l`a ph´ıa cu’a nu.’ a du.´o.i m˘a.t cˆa` u

x2+y2+z2 =R2 (DS. 2πR

105 ) 38.

ZZ

(Σ)

xzdxdy+xydydz+yzdxdz, (Σ) l`a ph´ıa ngo`ai cu’a t´u diˆe.n ta.o

bo.’ i c´ac m˘a.t ph˘a’ng to.a dˆo v`a m˘a.t ph˘a’ng x+y+z = (DS 8)

Chı’ dˆa˜n. Su.’ du.ng nhˆa.n x´et nˆeu phˆa` n l´y thuyˆe´t 39.

ZZ

(Σ)

yzdydz+xzdxdz +xydxdy, (Σ) l`a ph´ıa ngo`ai cu’a m˘a.t biˆen t´u diˆe.n lˆa.p bo.’i c´ac m˘a.t ph˘a’ng x = 0, y = 0, z = 0, x+y+z = a. (DS 0)

40.

ZZ

(Σ)

(174)

m˘a.t cˆa` u x2+y2 +z2 =R2 (z >0) (DS πR

4

2 ) ´

Ap du.ng cˆong th´u.c Gauss-Ostrogradski dˆe’ t´ınh t´ıch phˆan m˘a.t theo ph´ıa ngo`ai cu’a m˘a.t (Σ) (nˆe´u m˘a.t khˆong k´ın th`ı bˆo’ sung dˆe’ n´o tro.’ th`anh k´ın)

41.

ZZ

(Σ)

x2dydz+y2dzdx+z2dxdy, (Σ) l`a m˘a.t cˆa` u

(x−a)2+ (y−b)2+ (z−c)2 =R2 (DS 8π

3 (a+b+c)R

3

) 42.

ZZ

(Σ)

xdydz+ydzdx+zdxdy, (Σ) l`a m˘a.t cˆa` u x2+y2+z2 =R2.

(DS 4πR3)

43.

ZZ

(Σ)

4x3dydz+ 4y3dzdx−6z2dxdy, (Σ) l`a biˆen cu’a phˆ` n h`ınha tru x2+y2 6a2, 0 6z 6h. (DS 6πa2(a2−h2))

44.

ZZ

(σ)

(y−z)dydz+ (z−x)dzdx+ (x−y)dxdy, (Σ) l`a phˆ` n m˘a.ta n´on x2+y2 =z2, 06x6h (DS 0)

Chı’ dˆa˜n. V`ı (Σ) khˆong k´ın nˆen cˆ` n bˆo’ sung phˆaa ` n m˘a.t ph˘a’ngz =h n˘a`m n´on dˆe’ thu du.o c m˘a.t k´ın.

45.

ZZ

(Σ)

dydz+zxdzdx+xydxdy, (Σ) l`a biˆen cu’a miˆ`ne

{(x, y, z) :x2+y2 6a2,06z 6h} (DS 0)

46.

ZZ

(Σ)

ydydz+zdzdx+xdxdy, (Σ) l`a m˘a.t cu’a h`ınh ch´op gi´o.i ha.n bo.’ i c´ac m˘a.t ph˘a’ng

x+y+z =a (a >0),x= 0, y= 0, z = (DS 0) 47.

ZZ

(Σ)

(175)

(DS π 5) 48.

Z Z

(Σ)

x3dydz+y3dzdx+z3dxdy, (Σ) l`a m˘a.t cˆa` ux2+y2+z2 =a2.

(DS 12πa

5

5 ) 49.

ZZ

(Σ)

z2dxdy, (Σ) l`a m˘a.t elipxoid x

2

a2 +

y2

b2 +

z2

c2 = (DS 0)

Chı’ dˆa˜n. Xem v´ı du 10, mu.c III.

50.

ZZ

(Σ)

xdydz+ydzdx+zdxdy, (Σ) l`a m˘a.t elipxoidx

2

a2+

y2

b2 +

z2

c2 =

(Ds 4πabc) 51.

ZZ

(Σ)

xdydz+ydzdx+zdxdy, (Σ) l`a biˆen h`ınh tru.x2+y2 6a2,

h6z 6h. (DS 6πa2h) 52.

ZZ

(Σ)

x2dydz+y2dzdx+z2dxdy, (Σ) l`a biˆen cu’a h`ınh lˆa.p phu.o.ng 06x6a, 06y6a, 06z 6a. (DS 3a4)

Dˆe’ ´ap du.ng cˆong th´u.c Stokes, ta lu.u ´y la.i quy u.´o.c

Hu.´o.ng du.o.ng cu’a chu tuyˆe´nΣ cu’a m˘a.t (Σ) du.o c quy u.´o.c nhu sau: Nˆe´u mˆo.t ngu.`o.i quan tr˘a´c d´u.ng trˆen ph´ıa du.o c cho.n cu’a m˘a.t (t´u.c l`a hu.´o.ng t`u chˆan dˆe´n dˆ` u tr`a ung v´o.i hu.´o.ng cu’a vecto ph´ap tuyˆe´n) th`ı ngu.`o.i quan s´at di chuyˆe’n trˆen∂Σ theo hu.´o.ng d´o th`ı m˘a.t (Σ) luˆon luˆon n˘a`m bˆen tr´ai

´

Ap du.ng cˆong th´u.c Stokes dˆe’ t´ınh c´ac t´ıch phˆan sau 53.

I

C

(176)

54.

I

C

ydx+zdy+xdz,C l`a du.`o.ng tr`on x2+y2+z2 =R2,x+y+z = c´o hu.´o.ng ngu.o..c chiˆe`u kim dˆo`ng hˆo` nˆe´u nh`ın t`u phˆa` n du.o.ng tru.c Ox. (DS −√3πR2)

55.

I

C

(y− z)dx+ (z − x)dy + (x− y)dz, C l`a elip x2 +y2 = a2, x

a + z

h = (a > 0, h > 0) c´o hu.´o.ng ngu.o c chiˆe`u kim dˆo` ng hˆo` nˆe´u nh`ın t`u diˆe’m (2a,0,0) (DS −2πa(a+h))

56.

I

C

(y−z)dx+(zx)dy+(xy)dz,C l`a du.`o.ng tr`onx2+y2+z2 =a2,

y=xtgα, 0 < α < π

2 c´o hu.´o.ng ngu.o c chiˆe`u kim dˆo` ng hˆo` nh`ın t`u diˆe’m (2a,0,0) (DS 2√2πa2sinπ

4 −α)) 57.

I

C

(y−z)dx+ (z−x)dy+ (x−y)dz,C l`a elipx2+y2 = 1,x+z = c´o hu.´o.ng ngu.o c chiˆe`u kim dˆo` ng hˆo` nˆe´u nh`ın t`u phˆ` n du.o.ng tru.ca Oz. (DS −4π)

58.

I

C

(y2−z2)dx+ (z2−x2)dy+ (x2−y2)dz,C l`a biˆen cu’a thiˆe´t diˆe.n cu’a lˆa.p phu.o.ng 0 x a, 0 y a, 0 z a v´o.i m˘a.t ph˘a’ng x+y+z = 3a

2 c´o hu.´o.ng ngu.o c chiˆe`u kim dˆo` ng hˆo` nˆe´u nh`ın t`u diˆe’m (2a,0,0) (DS −9

2a

3

) 59.

I

C

exdx+z(x2 +y2)3/2dy+yz3dz, C l`a giao tuyˆe´n cu’a m˘a.t z =

p

x2+y2 v´o.i c´ac m˘

a.t ph˘a’ng x= 0, x= 2, y = 0, y= (DS −14)

60.

I

C

8yp(1−x2−z2)3dx+xy3

(177)(178)

y thuyˆe´t chuˆo˜i

13.1 Chuˆo˜i sˆo´ du.o.ng 178

13.1.1 C´ac di.nh ngh˜ıa co ba’n 178 13.1.2 Chuˆo˜i sˆo´ du.o.ng 179

13.2 Chuˆo˜i hˆo i tu tuyˆe.t dˆo´i v`a hˆo.i tu khˆong tuyˆe.t dˆo´i 191

13.2.1 C´ac di.nh ngh˜ıa co ba’n 191 13.2.2 Chuˆo˜i dan dˆa´u v`a dˆa´u hiˆe.u Leibnitz 192

13.3 Chuˆo˜i l˜uy th`u.a 199

13.3.1 C´ac di.nh ngh˜ıa co ba’n 199 13.3.2 D- iˆe`u kiˆe.n khai triˆe’n v`a phu.o.ng ph´ap khai

triˆe’n 201

13.4 Chuˆo˜i Fourier 211

(179)

13.1 Chuˆo˜i sˆo´ du.o.ng 13.1.1 ac di.nh ngh˜ıa co ba’n Gia’ su.’ cho d˜ay sˆo´ (an) Biˆe’u th´u.c da.ng

a1+a2+· · ·+an+· · ·=

X

n=1

an=X n>1

an (13.1)

du.o c go.i l`a chuˆo˜i sˆo´(hay do.n gia’n l`a chuˆo˜i) C´ac sˆo´a1, , an,

du.o c go.i l`ac´ac sˆo´ ha ng cu’a chuˆo˜i, sˆo´ ha.ngango.i l`a sˆo´ ha ng tˆo’ng qu´at

cu’a chuˆo˜i Tˆo’ng n sˆo´ ha.ng dˆa` u tiˆen cu’a chuˆo˜i du.o c go.i l`a tˆo’ng riˆeng th´u.n cu’a chuˆo˜i v`a k´y hiˆe.u l`a sn, t´u.c l`a

sn=a1+a2+· · ·+an.

V`ı sˆo´ sˆo´ ha.ng cu’a chuˆo˜i l`a vˆo ha.n nˆen c´ac tˆo’ng riˆeng cu’a chuˆo˜i lˆa.p th`anh d˜ay vˆo ha.n c´ac tˆo’ng riˆeng s1, s2, , sn,

D- i.nh ngh˜ıa 13.1.1. Chuˆo˜i (13.1) du.o c go.i l`a chuˆo˜i hˆo.i tu. nˆe´u d˜ay c´ac tˆo’ng riˆeng (sn) cu’a n´o c´o gi´o.i ha n h˜u.u ha n v`a gi´o.i ha.n d´o du.o c go.i l`atˆo’ng cu’a chuˆo˜i hˆo.i tu Nˆe´u d˜ay (sn) khˆong c´o gi´o.i ha.n h˜u.u ha.n th`ı chuˆo˜i (13.1)phˆan k`y

D- i.nh l´y 13.1.1. Diˆ`u kiˆe.n cˆae ` n dˆe’ chuˆo˜i (13.1) hˆo i tu l`a sˆo´ ha ng tˆo’ng qu´at cu’a n´o dˆ` n dˆe´n khia n→ ∞, t´u.c l`a lim

n→∞an= 0.

Di.nh l´y 13.1.1 chı’ l`a diˆ`u kiˆe.n cˆae ` n ch´u khˆong l`a diˆ`u kiˆe.n du’.e Nhu.ng t`u d´o c´o thˆe’ r´ut diˆ`u kiˆe.n du’ dˆe’ chuˆo˜i phˆan k`y:e Nˆe´u

lim n→∞an

6

= th`ı chuˆo˜i P

n>1

an phˆan k`y.

Chuˆo˜i P n>m+1

anthu du.o c t`u chuˆo˜i P n>1

an sau c˘a´t bo’ m sˆo´ ha.ng dˆ` u tiˆen du.o c go.i l`aa phˆ` n du th´a u.mcu’a chuˆo˜i P

n>1

(180)

(13.1) hˆo.i tu v`a tˆo’ng cu’a n´o b˘a`ngRm th`ıs=sm+Rm Chuˆo˜i hˆo.i tu c´o c´ac t´ınh chˆa´t quan tro.ng l`a

(i) V´o.i sˆo´m cˆo´ di.nh bˆa´t k`y chuˆo˜i (13.1) v`a chuˆo˜i phˆa` n du th´u.m cu’a n´o dˆ` ng th`o.i hˆo.i tu ho˘a.c dˆoo ` ng th`o.i phˆan k`y

(ii) Nˆe´u chuˆo˜i (13.1) hˆo.i tu th`ıRm →0 m→ ∞

(iii) Nˆe´u c´ac chuˆo˜i P n>1

an v`a P n>1

bn hˆo.i tu v`a α, β l`a h˘a`ng sˆo´ th`ı

X

n>1

(αan+βbn) =αX n>1

an+βX n>1

bn.

13.1.2 Chuˆo˜i sˆo´ du.o.ng Chuˆo˜i sˆo´ P

n>1

an du.o c go.i l`a chuˆo˜i sˆo´ du.o.ng nˆe´u an >0 ∀n∈N Nˆe´u an>0∀n th`ı chuˆo˜i du.o c go.i l`a chuˆo˜i sˆo´ du.o.ng thu c su

Tiˆeu chuˆa’n hˆo i tu . Chuˆo˜i sˆo´ du.o.ng hˆo.i tu v`a chı’ d˜ay tˆo’ng riˆeng cu’a n´o bi ch˘a.n trˆen.

Nh`o diˆ`u kiˆe.n n`ay, ta c´o thˆe’ thu du.o c nh˜u.ng dˆa´u hiˆe.u du’ sau dˆay:e

Dˆa´u hiˆe.u so s´anh I Gia’ su.’ cho hai chuˆo˜i sˆo´ A:X

n>1

an, an>0∀n ∈N v`a B :X n>1

bn, bn>0 ∀n∈N v`aan6bnn∈N Khi d´o:

(i) Nˆe´u chuˆo˜i sˆo´B hˆo.i tu th`ı chuˆo˜i sˆo´A hˆo.i tu., (ii) Nˆe´u chuˆo˜i sˆo´A phˆan k`y th`ı chuˆo˜i sˆo´B phˆan k`y

Dˆa´u hiˆe.u so s´anh II. Gia’ su.’ c´ac chuˆo˜i sˆo´A v`a B l`a nh˜u.ng chuˆo˜i sˆo´ du.o.ng thu..c su v`a ∃ lim

n→∞ an

bn = λ (r˜o r`ang l`a λ +∞) Khi d´o:

(i) Nˆe´u λ <∞th`ı t`u su hˆo.i tu cu’a chuˆo˜i sˆo´B k´eo theo su hˆo.i tu. cu’a chuˆo˜i sˆo´A

(181)

(iii) Nˆe´u 0< λ <+∞th`ı hai chuˆo˜i A v`a B dˆ` ng th`o.i hˆo.i tu ho˘a.co dˆ` ng th`o.i phˆan k`o y

Trong thu c h`anh dˆa´u hiˆe.u so s´anh thu.`o.ng du.o c su.’ du.ng du.´o.i da.ng “ thu c h`anh” sau dˆay:

Dˆa´u hiˆe.u thu c h`anh. Nˆe´u dˆo´i v´o.i d˜ay sˆo´ du.o.ng (an) tˆ` n ta.i c´ac sˆo´o pv`aC >0 choanC

np,n → ∞th`ı chuˆo˜i

P

n>1

an hˆo.i tu nˆe´u p >1 v`a phˆan k`y nˆe´u p61

C´ac chuˆo˜i thu.`o.ng du.o c d`ung dˆe’ so s´anh l`a 1) Chuˆo˜i cˆa´p sˆo´ nhˆan P

n>0

aqn, a6= hˆ

o.i tu 06 q <1 v`a phˆan k`y q>1

2) Chuˆo˜i Dirichlet: P n>1

1

hˆo.i tu khiα >1 v`a phˆan k`y khiα6 Chuˆo˜i phˆan k`y P

n>1

1

n go.i l`a chuˆo˜i diˆe`u h`oa

T`u dˆa´u hiˆe.u so s´anh I v`a chuˆo˜i so s´anh 1) ta r´ut ra:

Dˆa´u hiˆe.u D’Alembert. Nˆe´u chuˆo˜i a1+a2+· · ·+an+ ., an >0

n c´o

lim n→∞

an+1

an =D

th`ı chuˆo˜i hˆo.i tu khiD<1 v`a phˆan k`y D>1

Dˆa´u hiˆe.u Cauchy. Nˆe´u chuˆo˜i a1+a2 +· · ·+an+ ., an >0 ∀n

c´o

lim n→∞

n

an =C

th`ı chuˆo˜i hˆo.i tu khiC <1 v`a phˆan k`y C >1

Trong tru.`o.ng ho..p D = C = th`ı ca’ hai dˆa´u hiˆe.u n`ay dˆe`u khˆong cho cˆau tra’ l`o.i kh˘a’ng di.nh v`ı tˆo` n ta.i chuˆo˜i hˆo.i tu lˆa˜n chuˆo˜i phˆan k`y v´o.i D ho˘a.cC b˘a`ng

Dˆa´u hiˆe.u t´ıch phˆan. Nˆe´u h`am f(x) x´ac di.nh ∀x > khˆong ˆam v`a gia’m th`ı chuˆo˜i P

n>1

(182)

Z

0

f(x)dx hˆo.i tu

T`u dˆa´u hiˆe.u t´ıch phˆan suy chuˆo˜i P n>1

1

hˆo.i tu α > v`a phˆan k`y 0< α61 Nˆe´u α60 th`ı an=

6→0 α60 v`a n→ ∞nˆen chuˆo˜i d˜a cho c˜ung phˆan k`y

C ´AC V´I DU. V´ı du 1. Kha’o s´at su. hˆo.i tu cu’a c´ac chuˆo˜i

1) X

n>1

1

p

n(n+ 1); 2)

X

n>7

1 nlnn·

Gia’i. 1) Su.’ du.ng bˆa´t d˘a’ng th´u.c hiˆe’n nhiˆen

p

n(n+ 1) > n+ · V`ı chuˆo˜i P

n>1

1

n+ l`a phˆ` n du sau sˆo´ ha.ng th´u nhˆa´t cu’a chuˆo˜i diˆe`ua h`oa nˆen n´o phˆan k`y

Do d´o theo dˆa´u hiˆe.u so s´anh I chuˆo˜i d˜a cho phˆan k`y. 2) V`ı lnn >2∀n > nˆen

nlnn <

n2 ∀n >7

Do chuˆo˜i Dirichlet P n>7

1

n2 hˆo.i tu nˆen suy r˘a`ng chuˆo˜i d˜a cho hˆo.i

tu N

V´ı du 2. Kha’o s´at su. hˆo.i tu cu’a c´ac chuˆo˜i:

1) X

n>1

(n−1)n

nn+1 , 2)

X

n>1

n2e− √

n .

Gia’i. 1) Ta viˆe´t sˆo´ ha.ng tˆo’ng qu´at cu’a c´ac chuˆo˜i du.´o.i da.ng: (n−1)n

nn+1 =

1 n

1−

n

(183)

Ta biˆe´t r˘a`ng lim n→∞

1−

n

n =

e nˆenann→∞∼ ne Nhu.ng chuˆo˜i P

n→∞

ne phˆan k`y, d´o chuˆo˜i d˜a cho phˆan k`y 2) R˜o r`ang l`a dˆa´u hiˆe.u D’Alembert v`a Cauchy khˆong gia’i quyˆe´t du.o c vˆa´n dˆe` vˆe` su hˆo.i tu Ta nhˆa.n x´et r˘a`nge

n

= 0(n−α2) khin→ ∞

(α >0) T`u d´o

X

n>1

an=X n>1

1 na20−2

hˆo.i tu nˆe´u a0 >6 Do vˆa.y theo dˆa´u hiˆe.u so s´anh I chuˆo˜i

P

n>1

n2e−√n hˆo.i tu N

V´ı du 3. Kha’o s´at su hˆo.i tu cu’a chuˆo˜i

1) X

n>1

2n+n2

3n+n , 2)

X

n>1

(n!)2

(2n)!·

Gia’i. 1) Ta c´o: an+1

an =

2n+1+ (n+ 1)2

3n+1+ (n+ 1) ×

3n+n 2n+n2 =

2 + (n+ 1)

2

2n

3 +n+ 3n

×

1 + n 3n + n

2

2n ,

n

an=

n

v u u u u t

1 +n

2

2n + n

3n

·

T`u d´o suy lim n→∞

an+1

an =

3 v`a limn→∞

n

an =

3 V`a ca’ hai dˆa´u hiˆe.u Cauchy, D’Alembert dˆ`u cho kˆe´t luˆa.n chuˆo˜i hˆo.i tu e

2) ´Ap du.ng dˆa´u hiˆe.u D’Alembert ta c´o:

D= lim n→∞

an+1

an = limn→∞

(n+ 1)2

(184)

Nhˆa n x´et. Nˆe´u ´ap du.ng bˆa´t d˘a’ng th´u.c

n

e

n

< n!< e

n

2

n th`ı

(n!)n2

(2n)!

1

n

< en2

n

2

2

2n

e

2 =

e2+2n

42 ,

do d´o lim n→∞

n

an <

e

4

2

< v`a d´o dˆa´u hiˆe.u Cauchy c˜ung cho ta kˆe´t luˆa.n.

V´ı du 4. Kha’o s´at su hˆo.i tu cu’a chuˆo˜i

1) X

n>1

2n

n2+ 1, 2)

X

n>2

1

nlnpn, p >

Gia’i. 1) Ta c´o an= 2n

n2+ 1 =f(n) Trong biˆe’u th´u.c cu’a sˆo´ ha.ng

tˆo’ng qu´at cu’a an = 2n

n2+ 1 ta thay n bo.’ i biˆe´n liˆen tu.c x v`a ch´u.ng to’

r˘a`ng h`am f(x) thu du.o c liˆen tu.c do.n diˆe.u gia’m trˆen nu.’a tru.c du.o.ng. Ta c´o:

+∞

Z

1

2x

x2+ 1dx= limA→+∞

A

Z

1

2x

x2+ 1dx= limA→+∞ln(x

+ 1)A1 = ln(+∞)−ln =∞.

Do d´o chuˆo˜i 1) phˆan k`y

2) Nhu trˆen, ta d˘a.t f(x) =

xlnpx, p > 0,x >2 H`am f(x) tho’a m˜an mo.i diˆe`u kiˆe.n cu’a dˆa´u hiˆe.u t´ıch phˆan V`ı t´ıch phˆan

+∞

Z

2

(185)

V´ı du 5. Ch´u.ng minh r˘a`ng chuˆo˜i P n>1

n+

(n+ 1)√n tho’a m˜an diˆ`u kiˆe.ne cˆ` n hˆo.i tu nhu.ng chuˆo˜i phˆan k`y.a

Gia’i. Ta c´o

an= n+

(n+ 1)√n (n→∞∼ )

1

nnlim→∞an= Tiˆe´p theo∀k = 1,2, , n ta c´o

ak = k+ (k+ 1)

k >

k >

n v`a d´o

sn = n

X

k=1

ak >n·√1

n =

n →+∞ khin → ∞

v`a d´o chuˆo˜i phˆan k`y N

B `AI T ˆA P

Trong c´ac b`ai to´an sau dˆay, b˘a`ng c´ach kha’o s´at gi´o.i ha.n cu’a tˆo’ng riˆeng, h˜ay x´ac lˆa.p t´ınh hˆo.i tu (v`a t´ınh tˆo’ngS) hay phˆan k`y cu’a chuˆo˜i

1. X n>1

1

3n−1 (DS S =

3 2) 2. X

n>0

(−1)n

2n (DS 3) 3. X

n>1

(−1)n−1 (DS Phˆan k`y) 4. X

n>0

ln2n2 (DS 1−ln22) 5. X

n>1

1

(186)

6. X n>1

1

(α+n)(α+n+ 1), α>0 (DS α+ 1) 7. X

n>3

1

n2−4 (DS

25 48) 8. X

n>1

2n+

n2(n+ 1)2 (DS 1)

9. X n>1

(√3

n+ 2−1√3

n+ +√3

n). (DS 1−√3

2)

10. X

n>1

1

n(n+ 3)(n+ 6) (DS 73 1080)

Su.’ du.ng diˆe`u kiˆe.n cˆa` n 2) dˆe’ x´ac di.nh xem c´ac chuˆo˜i sau dˆay chuˆo˜i n`ao phˆan k`y

11. X

n>1

(−1)n−1 (DS Phˆan k`y)

12. X

n>1

2n−1

3n+ (DS Phˆan k`y)

13. X

n>1

n

p

0,001 (DS Phˆan k`y)

14. X

n>1

1

2n (DS Dˆa´u hiˆe.u cˆa` n khˆong cho cˆau tra’ l`o.i)

15. X

n>1

2n

3n (DS Dˆa´u hiˆe.u cˆa` n khˆong cho cˆau tra’ l`o.i)

16. X

n>1

1

n

0,3 (DS Phˆan k`y)

17. X

n>1

1

n

n! (DS Phˆan k`y)

18. X

n>1

n2sin

(187)

19. X n>1

1 + n

n2

en (DS Phˆan k`y)

20. X

n>1

2n2+ 1

2n2+ 3

n2

(DS Phˆan k`y)

21. X

n>1

nn+n1

n+ n

n (DS Phˆan k`y)

22. X

n>1

n+

(n+ 1)√n (DS Dˆa´u hiˆe.u cˆa` n khˆong cho cˆau tra’ l`o.i)

23. X

n>1

(n+ 1)arctg

n+ (DS Phˆan k`y)

Trong c´ac b`ai to´an sau dˆay, h˜ay d`ung dˆa´u hiˆe.u so s´anh dˆe’ kha’o s´at su hˆo.i tu cu’a c´ac chuˆo˜i d˜a cho

24 X

n>1

1

n (DS Phˆan k`y)

25. X

n>1

1

nn (DS Hˆo.i tu.) Chı’ dˆa˜n. n

n>2nn>3.

26. X

n>1

1

lnn (DS Phˆan k`y) Chı’ dˆa˜n. So s´anh v´o.i chuˆo˜i diˆe`u h`oa

27. X

n>1

1

n3n−1 (DS Hˆo.i tu.)

28. X

n>1

1

3

n+ (DS Phˆan k`y)

29. X

n>1

1

2n+ 1 (DS Hˆo.i tu.)

30. X

n>1

n

(188)

31. X n>1

1

p

(n+ 2)(n2 + 1) (DS Hˆo.i tu.)

32. X

n>1

5n2−3n+ 10

3n5+ 2n+ 17 (DS Hˆo.i tu.)

33. X

n>1

5 + 3(−1)n

2n+3 (DS Hˆo.i tu.) Chı’ dˆa˜n. 265 + 3(−1)

n 68.

34. X

n>1

lnn

n (DS Phˆan k`y) Chı’ dˆa˜n. lnn >1 ∀n >2

35. X

n>1

lnn

n2 (DS Hˆo.i tu.)

Chı’ dˆa˜n. Su.’ du.ng hˆe th´u.c lnn < nαα >0 v`an du’ l´o.n

36. X

n>1

lnn

3

n (DS Phˆan k`y)

37. X

n>1

n5

5√n (DS Hˆo.i tu.)

38. X

n>1

1

nsin

n (DS Hˆo.i tu.)

39. X

n>1

n4+ 4n2+

2n (DS Hˆo.i tu.)

40. X

n>1

n2(√n

an+1√

a), a >0 (DS Phˆan k`y ∀a6= 1)

41. X

n>1

(n

2− n+1 √

2) (DS Hˆo.i tu.)

42. X

n>1

1

1 +an,a >0 (DS Hˆo.i tu khia >1 Phˆan k`y < a61)

43. X

n>1

sin πn

n2√n+n+ 1 (DS Hˆo.i tu.)

(189)

44. X n>1

sinπ n

p

, p > (DS Hˆo.i tu nˆe´u p > 1, phˆan k`y nˆe´u p61)

45. X

n>1

tgp π

n+ 2, p >0 (DS Hˆo.i tu p >1, phˆan k`y p61)

46. X

n>1

sin np ·tg

1

nq, p >0, q >0

(DS Hˆo.i tu khi p+q >1, phˆan k`y p+q 61)

47. X

n>1

1−cos np

, p >0

(DS Hˆo.i tu khi p >

2, phˆan k`y khip6 2)

48. X

n>1

(

n+ 1−√n)pln2n+ 2n+

(DS Hˆo.i tu khi p >0, phˆan k`y p60)

Trong c´ac b`ai to´an sau dˆay, h˜ay kha’o s´at su hˆo.i tu cu’a chuˆo˜i d˜a cho nh`o dˆa´u hiˆe.u du’ D’Alembert

49. X

n>1

n

2n (DS Hˆo.i tu.)

50. X

n>1

2n−1

nn (DS Hˆo.i tu.)

51. X

n>1

2n−1

(n−1)! (DS Hˆo.i tu.)

52. X

n>1

n!

2n+ 1 (DS Phˆan k`y)

53. X

n>1

4nn!

nn (DS Phˆan k`y)

54. X

n>1

3n

(190)

55. X n>1

1·3· · ·(2n−1)

3nn! (DS Hˆo.i tu.)

56. X

n>1

n2sin π

2n (DS Hˆo.i tu.)

57. X

n>1

n(n+ 1)

3n (DS Hˆo.i tu.)

58. X

n>1

73n

(2n−5)! (DS Hˆo.i tu.)

59. X

n>1

(n+ 1)!

2nn! (DS Hˆo.i tu.)

60. X

n>1

(2n−1)!!

n! (DS Phˆan k`y)

61. X

n>1

n!(2n+ 1)!

(3n)! (DS Hˆo.i tu.)

62. X

n>1

nnsin π 2n

n! (DS Phˆan k`y)

63. X

n>1

nn

n!3n (DS Hˆo.i tu.)

64. X

n>1

n!an

nn ,a6=e,a >0 (DS Hˆo.i tu khia < e, phˆan k`y khia > e) Trong c´ac b`ai to´an sau dˆay, h˜ay kha’o s´at su. hˆo.i tu cu’a chuˆo˜i d˜a cho nh`o dˆa´u hiˆe.u du’ Cauchy

65. X

n>1

n

2n+

n

(DS Hˆo.i tu.)

66. X

n>1

arc sin1 n

n

(DS hˆo.i tu.)

67. X

n>1

1 3n

n+ 1

n

n2

(191)

68. X n>1

n53n+ 4n+

n

(DS Hˆo.i tu.)

69. X

n>1

3n

n+

nn+ 2

n+

n2

(DS Phˆan k`y)

70. X

n>1

n!

nn (DS Phˆan k`y)

Chı’ dˆan. Su.’ du.ng cˆong th´u.c Stirlingn!

n

e

n

2πn, n → ∞

71. X

n>1

n−1

n+

n(n−1)

(DS Hˆo.i tu.)

72. X

n>1

n2

+ n2+ 4

n3+1

(DS Hˆo.i tu.)

73. X

n>1

3n n n+

n2

(DS Phˆan k`y)

74. X

n>10

arctgn

3n+

n+ (DS Phˆan k`y)

75. X

n>1

an

n+

n

, a >0

(DS Hˆo.i tu 0 < a <1, phˆan k`y a>1)

76. X

n>1

ln(n+ 1)n/2

, α >0 (DS Hˆo.i tu. ∀α)

77. X

n>1

5 + (−1)n

4n+1 (DS Hˆo.i tu.)

78. X

n>1

2(−1)n+n (DS Phˆan k`y)

79. X

n>1

2(−1)nn (DS Hˆo.i tu.)

80. X

n>1

[5−(−1)n]n

(192)

81. X n>1

[5 + (−1)n]n

n27n (DS Hˆo.i tu.)

82. X

n>1

[3 + (−1)n]

3n (DS Hˆo.i tu.)

83. X

n>1

n4[√5 + (−1)n]n

4n (DS Hˆo.i tu.)

84. X

n>1

2 + (−1)n

5 + (−1)n+1 · (DS Hˆo.i tu.)

13.2 Chuˆo˜i hˆo.i tu tuyˆe.t dˆo´i v`a hˆo.i tu. khˆong tuyˆe.t dˆo´i

13.2.1 ac di.nh ngh˜ıa co ba’n Chuˆo˜i v´o.i c´ac sˆo´ ha.ng c´o dˆa´u kh´ac

a1+a2+· · ·+an+· · ·=

X

n>1

an (13.2)

du.o c go.i l`a chuˆo˜i hˆo.i tu tuyˆe.t dˆo´i nˆe´u chuˆo˜i sˆo´ du.o.ng

|a1|+|a2|+· · ·+|an|+· · ·=

X

n>1

|an| (13.3) hˆo.i tu Chuˆo˜i (13.2) du.o c go.i l`a chuˆo˜ihˆo i tu c´o diˆ`u kiˆe.n (khˆong tuyˆe.te dˆo´i) nˆe´u n´o hˆo.i tu c`on chuˆo˜i (13.3) phˆan k`y.

D- i.nh l´y 13.2.1. Mo i chuˆo˜i hˆo.i tu tuyˆe.t dˆo´i dˆe`u hˆo.i tu., t´u.c l`a su hˆo.i tu cu’a chuˆo˜i (13.3) k´eo theo su hˆo.i tu cu’a chuˆo˜i (13.2)

(193)

13.2.2 Chuˆo˜i dan dˆa´u v`a dˆa´u hiˆe.u Leibnitz Chuˆo˜i da.ng

X

n>1

(−1)n−1an=a1−a2+a3−a4+· · ·+ (−1)n−1an+ ,

an>0∀n ∈N (13.4)

du.o c go.i l`a chuˆo˜i dan dˆa´u

Dˆa´u hiˆe.u Leibnitz. Nˆe´u lim

n→∞an = v`a an >an+1 >0

n ∈N th`ı chuˆo˜i dan dˆa´u (13.4) hˆo.i tu v`a

|SSn|6an+1 (13.5)

trong d´o S l`a tˆo’ng cu’a chuˆo˜i (13.4), Sn l`a tˆo’ng riˆeng th´u.n cu’a n´o Nhu vˆa.y dˆe’ kha’o s´at su hˆo.i tu cu’a chuˆo˜i dan dˆa´u ta cˆa` n kiˆe’m tra hai diˆ`u kiˆe.ne

i)an>an+1 >0 ∀n∈N,

ii) lim

n→∞an=

Hˆe th´u.c (13.5) ch´u.ng to’ r˘a`ng sai sˆo´ g˘a.p pha’i thay tˆo’ng S cu’a chuˆo˜i dan dˆa´u hˆo.i tu bo.’i tˆo’ng cu’a mˆo.t sˆo´ sˆo´ ha.ng dˆa` u tiˆen cu’a n´o l`a khˆong vu.o t qu´a gi´a tri tuyˆe.t dˆo´i cu’a sˆo´ ha.ng th´u nhˆa´t cu’a chuˆo˜i du. bi c˘a´t bo’

Dˆe’x´ac lˆa p su hˆo.i tu.cu’a chuˆo˜i v´o.i c´ac sˆo´ ha.ng c´o dˆa´u kh´ac ta c´o thˆe’ su.’ du.ng c´ac dˆa´u hiˆe.u hˆo.i tu cu’a chuˆo˜i du.o.ng v`a di.nh l´y 13.1.1. Nˆe´u chuˆo˜i P

n>1

|an| phˆan k`y th`ı su hˆo.i tu cu’a chuˆo˜i P n>1

an tro.’ th`anh vˆa´n dˆ` dˆe’ mo.e ’ ngoa.i tr`u tru.`o.ng ho p su.’ du.ng dˆa´u hiˆe.u D’Alembert v`a dˆa´u hiˆe.u Cauchy v`ı c´ac dˆa´u hiˆe.u n`ay x´ac lˆa.p su phˆan k`y cu’a chuˆo˜i chı’ du a trˆen su ph´a v˜o diˆe`u kiˆe.n cˆa` n

Nhˆa n x´et. Chuˆo˜i dan dˆa´u tho’a m˜an dˆa´u hiˆe.u Leibnitz go.i l`a chuˆo˜i Leibnitz

(194)

V´ı du 1. Kha’o s´at su hˆo.i tu v`a d˘a.c t´ınh hˆo.i tu cu’a chuˆo˜i P n>1

(−1)n−1

n

Gia’i. D˜ay sˆo´

1

n

do.n diˆe.u gia’m dˆa` n dˆe´n n→ ∞ Do d´o theo dˆa´u hiˆe.u Leibnitz n´o hˆo.i tu Dˆe’ kha’o s´at d˘a.c t´ınh hˆo.i tu (tuyˆe.t dˆo´i hay khˆong tuyˆe.t dˆo´i) ta x´et chuˆo˜i du.o.ng P

n>1

1

n Chuˆo˜i n`ay phˆan k`y Do vˆa.y chuˆo˜i d˜a cho hˆo.i tu c´o diˆe`u kiˆe.n. N

V´ı du 2. Kha’o s´at su. hˆo.i tu v`a d˘a.c t´ınh hˆo.i tu cu’a chuˆo˜i

X

n>1

(−1)n−1ln

2

n n ·

Gia’i. Dˆe’ kha’o s´at d´ang diˆe.u cu’a d˜ay

ln2

n n

ta x´et h`am ϕ(x) = ln2x

x R˜o r`ang l`a limx→∞ϕ(x) = v`a ϕ

0(x) = lnx

x2 (2−lnx) T`u d´o suy

ra x > e2 th`ı ϕ0(x) < 0 Do d´o d˜ay (an) = ln

2

n

n tho’a m˜an dˆa´u hiˆe.u Leibnitz v´o.in > e2 V`ı vˆ

a.y chuˆo˜i d˜a cho hˆo.i tu Dˆe˜ d`ang thˆa´y r˘a`ng chuˆo˜i sˆo´ du.o.ng P

n>1

ln2n

n phˆan k`y nˆen chuˆo˜i dan dˆa´u d˜a cho hˆo.i tu c´o diˆe`u kiˆe.n N

V´ı du 3. C˜ung ho’i nhu trˆen v´o.i chuˆo˜i

X

n>1

cos 2n ·

Gia’i. Dˆay l`a chuˆo˜i dˆo’i dˆa´u X´et chuˆo˜i du.o.ng

X

n>1

|cos|

2n (*)

V`ı|cosαn| 2n

1

(195)

V´ı du 4. C˜ung ho’i nhu trˆen dˆo´i v´o.i chuˆo˜i

X

n>1

(−1)n n(n+ 1)·

Gia’i. Dˆ˜ d`ang thˆa´y r˘a`ng d˜aye

n(n+ 1) do.n diˆe.u gia’m dˆa` n dˆe´n khin → ∞ Do d´o theo dˆa´u hiˆe.u Leibnitz n´o hˆo.i tu Ta x´et su hˆo.i tu. cu’a chuˆo˜i du.o.ng P

n>1

1

n(n+ 1) Chuˆo˜i n`ay hˆo.i tu., ch˘a’ng ha.n theo dˆa´u hiˆe.u t´ıch phˆan

Z

1

dx

x(x+ 1) = limA→∞ A

Z

1

dx+

x+1

2

4

= lim A→∞ln

x x+

A

1

= ln

Do d´o chuˆo˜i d˜a cho hˆo.i tu tuyˆe.t dˆo´i. N

V´ı du 5. Cˆ` n lˆa´y bao nhiˆeu sˆo´ ha.ng cu’a chuˆo˜ia P n>1

(−1)n−1

n2 dˆe’ tˆo’ng

cu’a ch´ung sai kh´ac v´o.i tˆo’ng cu’a chuˆo˜i d˜a cho khˆong qu´a 0,01 ? 0,001 ?

Gia’i. 1+ Chuˆo˜i d˜a cho l`a chuˆo˜i Leibnitz Do d´o phˆa` n du cu’a n´o tho’a m˜an diˆ`u kiˆe.ne

|Rn|< an+1 ⇒ |Rn| <

1 (n+ 1)2 ·

Dˆe’ t´ınh tˆo’ng cu’a chuˆo˜i d˜a cho v´o.i su sai kh´ac khˆong qu´a 0,01 ta cˆa` n d`oi ho’i l`a

|Rn|<0,01 ⇒

(n+ 1)2 <0,01⇔n > 10

Nhu vˆa.y dˆe’ t´ınh tˆo’ng cu’a chuˆo˜i v´o.i sai sˆo´ khˆong vu.o t qu´a 0,01 ta chı’ cˆ` n t´ınh tˆo’ng mu.`o.i sˆo´ ha.ng dˆaa ` u l`a du’

(196)

Nhˆa n x´et. Ta thˆa´y r˘a`ng chuˆo˜i Leibnitz l`a cˆong cu t´ınh to´an tiˆe.n ho.n so v´o.i chuˆo˜i du.o.ng Ch˘a’ng ha.n dˆe’ t´ınh tˆo’ng cu’a chuˆo˜i P

n>1

1 n2

v´o.i sai sˆo´ khˆong vu.o..t qu´a 0,001 ta cˆa` n pha’i lˆa´y 1001 sˆo´ ha.ng m´o.i du’. Thˆa.t vˆa.y ta c´o thˆe’ ´ap du.ng dˆa´u hiˆe.u t´ıch phˆan Ta c´o

Z

n+1

f(x)dx < Rn<

Z

n

f(x)dx.

T`u d´o

Rn<

Z

n dx x2 =−

1 x

n

= n· T`ımndˆe’

n <0,001 Gia’i bˆa´t phu.o.ng tr`ınh dˆo´i v´o.in ta c´on >1000, t´u.c l`a R1001 < 0,001 Vˆa.y ta cˆa` n lˆa´y 1001 sˆo´ ha.ng dˆa` u dˆe’ t´ınh tˆo’ng

m´o.i c´o du.o..c sai sˆo´ khˆong qu´a 0,001 V´ı du 6. Ch´u.ng to’ r˘a`ng chuˆo˜i

2 +5 −

7

+10 −

26 27

+· · ·+n

2

+ n2 −

n3−1 n3

+ . (*) hˆo.i tu., c`on chuˆo˜i

2 + −

7 +

10 −

26

27 +· · ·+

n2+ n2 −

n3 −1

n3 + . (**)

thu du.o c t`u chuˆo˜i d˜a cho sau bo’ c´ac dˆa´u ngo˘a.c do.n l`a chuˆo˜i phˆan k`y

Gia’i. Sˆo´ ha.ng tˆo’ng qu´at cu’a chuˆo˜i (*) c´o da.ng an = n

2+ 1

n2 −

n3−1

n3 =

n+ n3 ·

Do d´o ∀n >1 ta c´o

n+ n3 =

1 n2 +

(197)

v`a chuˆo˜i P n>1

1

hˆo.i tu ∀α >1 nˆen chuˆo˜i d˜a cho hˆo.i tu

Bˆay gi`o x´et chuˆo˜i (**) R˜o r`ang sˆo´ ha.ng tˆo’ng qu´at cu’a (**) khˆong dˆ` n dˆe´n khia n → ∞, d´o chuˆo˜i (**) phˆan k`y N

B `AI T ˆA P

Su.’ du.ng dˆa´u hiˆe.u Leibnitz dˆe’ ch´u.ng minh c´ac chuˆo˜i sau dˆay hˆo.i tu c´o diˆe`u kiˆe.n

1. X n>4

(−1)n+1

n2−4n+ 1

2. X n>1

(−1)n+1n9

n20+ 4n3+ 1

3. X n>1

(−1)nn (n+ 1)√3

n+ 4. X

n>1

(−1)nn n+ 20 5. X

n>1

(−1)n

4

n

6. X n>1

(−1)nlnn n 7. X

n>1

(−1)n+1 2n+ n(n+ 1)

8. X n>1

(−1)ncos π n n 9. X

n>1

(−1)n(n

2−1)

10. X

n>1

(−1)nn−1 n+

1

100√n

Kha’o s´at su hˆo.i tu v`a d˘a.c t´ınh hˆo.i tu cu’a c´ac chuˆo˜i

11. X

n>1

(−1)n2n+ 3n−2

n

(DS Hˆo.i tu tuyˆe.t dˆo´i)

12. X

n>1

(−1)n

3n+ 1

3n−2

5n+2

(DS Phˆan k`y)

13. X

n>1

(−1)n2 + (−1) n

n (DS Phˆan k`y)

14. X

n>1

(−1)n−1 n sin

n

(198)

15. X n>1

(−1)n+1arctgln(n+ 1)

(n+ 1)2 (DS Hˆo.i tu tuyˆe.t dˆo´i)

Chı’ dˆa˜n. Su.’ du.ng bˆa´t d˘a’ng th´u.c ln(n+ 1)<n+ 1,n >2

16. X

n>1

(−1)n+1

n−ln3n (DS Hˆo.i tu c´o diˆe`u kiˆe.n)

Trong c´ac b`ai to´an sau dˆay h˜ay x´ac di.nh gi´a tri cu’a tham sˆo´p dˆe’ chuˆo˜i sˆo´ hˆo.i tu tuyˆe.t dˆo´i ho˘a.c hˆo.i tu c´o diˆe`u kiˆe.n

17. X

n>1

(−1)n−1

(2n−1)p, p >0

(DS Hˆo.i tu tuyˆe.t dˆo´i khip >1; hˆo.i tu c´o diˆe`u kiˆe.n 0 < p61)

18. X

n>1

(−1)n−1tgp

nn, p >0 (DS Hˆo.i tu tuyˆe.t dˆo´i khip >

3; hˆo.i tu c´o diˆe`u kiˆe.n 0< p 3)

19. X

n>1

(−1)n−1sinp 5n+

n2√n+ 3,p >0

(DS Hˆo.i tu tuyˆe.t dˆo´i khip >

3; hˆo.i tu c´o diˆe`u kiˆe.n 0< p 3)

20. X

n>1

(−1)n−1

n

lnn+ n+

p

, p >0

(DS Hˆo.i tu tuyˆe.t dˆo´i khip >

2; hˆo.i tu c´o diˆe`u kiˆe.n 0< p 2) Kha’o s´at d˘a.c t´ınh hˆo.i tu cu’a c´ac chuˆo˜i (21-32):

21. X

n>1

(−1)n+1

n√3 n (DS Hˆo.i tu tuyˆe.t dˆo´i)

22. X

n>1

(−1)n+1

(199)

23. X n>1

(−1)n−1 (2n+ 1)!!

2·5·8· · ·(3n−1) (DS Hˆo.i tu tuyˆe.t dˆo´i)

24. X

n>1

(−1)n+11−cos√π

n

(DS Hˆo.i tu c´o diˆe`u kiˆe.n)

25. X

n>1

(−1)nsinπ n

n (DS Hˆo.i tu tuyˆe.t dˆo´i)

26. X

n>1

(−1)n

n+ (DS Hˆo.i tu c´o diˆe`u kiˆe.n)

27. X

n>1

(−1)n

n

n (DS Phˆan k`y)

28. X

n>1

(−1)n+1

n−lnn (DS Hˆo.i tu c´o diˆe`u kiˆe.n)

29. X

n>1

(−1)n−1

(n+ 1)a2n

(DS Hˆo.i tu tuyˆe.t dˆo´i khi |a| >1, hˆo.i tu c´o diˆe`u kiˆe.n khi |a|= 1, phˆan k`y |a|<1)

30. X

n>1

(−1)n

(n+ 1)(√n+ 1−1) (DS Hˆo.i tu tuyˆe.t dˆo´i)

31. X

n>1

(−1)n+12 +

n

n

5n (DS Hˆo.i tu tuyˆe.t dˆo´i)

32. X

n>1

(−1)ntg π

3n (DS Hˆo.i tu tuyˆe.t dˆo´i)

Trong c´ac b`ai to´an sau dˆay, h˜ay t`ım sˆo´ sˆo´ ha.ng cu’a chuˆo˜i d˜a cho cˆ` n lˆa´y dˆe’ tˆo’ng cu’a ch´a ung v`a tˆo’ng cu’a chuˆo˜i tu.o.ng ´u.ng sai kh´ac mˆo.t da.i lu.o ng khˆong vu.o t qu´a sˆo´δ cho tru.´o.c

33. X

n>1

(−1)n−1

(200)

34. X n>1

cos(nπ)

n! ,δ = 0,001 (DS N o= 5)

35. X

n>1

(−1)n−1

n2+ 1,δ = 10

−6. (DS. N o= 106)

36. X

n>1

cos

2n(n+ 1), δ= 10

−6. (DS. N o= 15)

37. X

n>1

(−1)n2n

(4n+ 1)5n, δ= 0,1?; δ = 0,01? (DS.N o = 2, N o= 3)

38. X

n>1

(−1)n

n! , δ= 0,1;δ = 0,001? (DS.N o = 4, N o= 6)

13.3 Chuˆo˜i l˜uy th`u.a 13.3.1 ac di.nh ngh˜ıa co ba’n

Chuˆo˜i l˜uy th`u.a dˆo´i v´o.i biˆe´n thu c x l`a chuˆo˜i da.ng

X

n>0

anxn =a0+a1x+a2x2+· · ·+anxn+ . (13.6)

hay

X

n>0

an(xa)n=a0+a1(x−a) +· · ·+an(xa)

n

+ . (13.7)

trong d´o c´ac hˆe sˆo´a0, a1, , an, l`a nh˜u.ng h˘a`ng sˆo´ B˘a`ng ph´ep dˆo’i

biˆe´n x bo.’ i xa t`u (13.6) thu du.o c (13.7) Do d´o dˆe’ tiˆe.n tr`ınh b`ay ta chı’ cˆ` n x´et (13.6) l`a du’ (t´a u.c l`a xem a= 0)

Chuˆo˜i (13.6) luˆon hˆo.i tu ta.i diˆe’mx= 0, c`on (13.7) hˆo.i tu ta.ix=a. Do d´o tˆa.p ho p diˆe’m m`a chuˆo˜i l˜uy th`u.a hˆo.i tu luˆon luˆon 6=∅

Ngày đăng: 24/04/2021, 09:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w