t´ınh dS.. Chuyˆ e’n sang to.a dˆo.. Xem v´ı du.. khˆong tuyˆ e.t dˆo´i.. khi v`a chı’ khi t´ıch phˆan suy rˆo.ng.. nhu.ng chuˆo˜i phˆan k`y.. nhˆa´t cu’a chuˆo˜i du.. ’ du.ng dˆa´u hiˆe[r]
(1)B `AI T ˆA P
TO ´AN CAO C ˆA´P
Tˆa.p 3
Ph´ep t´ınh t´ıch phˆan L´y thuyˆe´t chuˆo˜i. Phu.o.ng tr`ınh vi phˆan
(2)10 T´ıch phˆan bˆa´t di.nh 4 10.1 C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan 10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa´t di.nh 10.1.2 Phu.o.ng ph´ap dˆo’i biˆe´n 12 10.1.3 Phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n a 21 10.2 C´ac l´o.p h`am kha’ t´ıch l´o.p c´ac h`am so cˆa´p 30 10.2.1 T´ıch phˆan c´ac h`am h˜u.u ty’ 30 10.2.2 T´ıch phˆan mˆo.t sˆo´ h`am vˆo ty’ do.n gia’n 37 10.2.3 T´ıch phˆan c´ac h`am lu.o ng gi´ac 48
11 T´ıch phˆan x´ac di.nh Riemann 57
(3)12 T´ıch phˆan h`am nhiˆ`u biˆe e´n 117
12.1 T´ıch phˆan 2-l´o.p 118
12.1.1 Tru.`o.ng ho p miˆe`n ch˜u nhˆa.t 118
12.1.2 Tru.`o.ng ho p miˆe`n cong 118
12.1.3 Mˆo.t v`ai ´u.ng du.ng h`ınh ho.c 121
12.2 T´ıch phˆan 3-l´o.p 133
12.2.1 Tru.`o.ng ho p miˆe`n h`ınh hˆo.p 133
12.2.2 Tru.`o.ng ho p miˆe`n cong 134
12.2.3 136
12.2.4 Nhˆa.n x´et chung 136
12.3 T´ıch phˆan d u.`o.ng 144
12.3.1 C´ac di.nh ngh˜ıa co ba’n 144
12.3.2 T´ınh t´ıch phˆan du.`o.ng 146
12.4 T´ıch phˆan m˘a.t 158
12.4.1 C´ac di.nh ngh˜ıa co ba’n 158
12.4.2 Phu.o.ng ph´ap t´ınh t´ıch phˆan m˘a.t 160
12.4.3 Cˆong th´u.c Gauss-Ostrogradski 162
12.4.4 Cˆong th´u.c Stokes 162
13 L´y thuyˆe´t chuˆo˜i 177 13.1 Chuˆo˜i sˆo´ du.o.ng 178
13.1.1 C´ac di.nh ngh˜ıa co ba’n 178
13.1.2 Chuˆo˜i sˆo´ du.o.ng 179
13.2 Chuˆo˜i hˆo.i tu tuyˆe.t dˆo´i v`a hˆo.i tu khˆong tuyˆe.t dˆo´i 191
13.2.1 C´ac di.nh ngh˜ıa co ba’n 191
13.2.2 Chuˆo˜i dan dˆa´u v`a dˆa´u hiˆe.u Leibnitz 192
13.3 Chuˆo˜i l˜uy th`u.a 199
13.3.1 C´ac di.nh ngh˜ıa co ba’n 199
13.3.2 D- iˆe`u kiˆe.n khai triˆe’n v`a phu.o.ng ph´ap khai triˆe’n 201 13.4 Chuˆo˜i Fourier 211
(4)13.4.2 Dˆa´u hiˆe.u du’ vˆe` su hˆo.i tu cu’a chuˆo˜i Fourier 212
14 Phu.o.ng tr`ınh vi phˆan 224 14.1 Phu.o.ng tr`ınh vi phˆan cˆa´p 225
14.1.1 Phu.o.ng tr`ınh t´ach biˆe´n 226
14.1.2 Phu.o.ng tr`ınh d ˘a’ng cˆa´p 231
14.1.3 Phu.o.ng tr`ınh tuyˆe´n t´ınh 237
14.1.4 Phu.o.ng tr`ınh Bernoulli 244
14.1.5 Phu.o.ng tr`ınh vi phˆan to`an phˆ` n 247a 14.1.6 Phu.o.ng tr`ınh Lagrange v`a phu.o.ng tr`ınh Clairaut255 14.2 Phu.o.ng tr`ınh vi phˆan cˆa´p cao 259
14.2.1 C´ac phu.o.ng tr`ınh cho ph´ep thˆa´p cˆa´p 260
14.2.2 Phu.o.ng tr`ınh vi phˆan tuyˆe´n t´ınh cˆa´p v´o.i hˆe. sˆo´ h˘a`ng 264
14.2.3 Phu.o.ng tr`ınh vi phˆan tuyˆe´n t´ınh thuˆ` n nhˆa´ta cˆa´p nnn (ptvptn cˆa´pnnn) v´o.i hˆe sˆo´ h˘a`ng 273
14.3 Hˆe phu.o.ng tr`ınh vi phˆan tuyˆe´n t´ınh cˆa´p v´o.i hˆe sˆo´ h˘a`ng290 15 Kh´ai niˆe.m vˆe` phu.o.ng tr`ınh vi phˆan da.o h`am riˆeng 304 15.1 Phu.o.ng tr`ınh vi phˆan cˆa´p tuyˆe´n t´ınh dˆo´i v´o.i c´ac da.o h`am riˆeng 306
15.2 Gia’i phu.o.ng tr`ınh d a.o h`am riˆeng cˆa´p d o.n gia’n nhˆa´t 310 15.3 C´ac phu.o.ng tr`ınh vˆa.t l´y to´an co ba’n 313
15.3.1 Phu.o.ng tr`ınh truyˆ`n s´ong 314e 15.3.2 Phu.o.ng tr`ınh truyˆ`n nhiˆe.t 317e 15.3.3 Phu.o.ng tr`ınh Laplace 320
(5)T´ıch phˆan bˆa´t di.nh
10.1 C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan 4
10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa´t di.nh 10.1.2 Phu.o.ng ph´ap dˆo’i biˆe´n 12 10.1.3 Phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n 21a
10.2 C´ac l´o.p h`am kha’ t´ıch l´o.p c´ac h`am so cˆa´p 30
10.2.1 T´ıch phˆan c´ac h`am h˜u.u ty’ 30 10.2.2 T´ıch phˆan mˆo.t sˆo´ h`am vˆo ty’ do.n gia’n 37 10.2.3 T´ıch phˆan c´ac h`am lu.o ng gi´ac 48
10.1 C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan
10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa´t di.nh
(6)ta.i mˆo˜i diˆe’m cu’a khoa’ng v`a F0(x) =f(x)
D- i.nh l´y 10.1.1. (vˆ` su tˆoe ` n ta.i nguyˆen h`am) Mo i h`am liˆen tu c trˆen doa n [a, b] dˆ`u c´e o nguyˆen h`am trˆen khoa’ng (a, b).
D- i.nh l´y 10.1.2. C´ac nguyˆen h`am bˆa´t k`y cu’a c`ung mˆo t h`am l`a chı’ kh´ac bo.’ i mˆo t h˘a`ng sˆo´ cˆo ng.
Kh´ac v´o.i da.o h`am, nguyˆen h`am cu’a h`am so cˆa´p khˆong pha’i bao gi`o c˜ung l`a h`am so cˆa´p Ch˘a’ng ha.n, nguyˆen h`am cu’a c´ac h`am e−x2, cos(x2), sin(x2),
lnx, cosx
x , sinx
x , l`a nh˜u.ng h`am khˆong so cˆa´p D- i.nh ngh˜ıa 10.1.2. Tˆa.p ho p mo.i nguyˆen h`am cu’a h`am f(x) trˆen khoa’ng (a, b) du.o c go.i l`a t´ıch phˆan bˆa´t di.nh cu’a h`amf(x) trˆen khoa’ng (a, b) v`a du.o..c k´y hiˆe.u l`a
Z
f(x)dx.
Nˆe´uF(x) l`a mˆo.t c´ac nguyˆen h`am cu’a h`amf(x) trˆen khoa’ng (a, b) th`ı theo di.nh l´y 10.1.2
Z
f(x)dx=F(x) +C, C ∈R
trong d´oC l`a h˘a`ng sˆo´ t`uy ´y v`a d˘a’ng th´u.c cˆ` n hiˆe’u l`a d˘a’ng th´a u.c gi˜u.a hai tˆa.p ho p.
C´ac t´ınh chˆa´t co ba’n cu’a t´ıch phˆan bˆa´t di.nh: 1) d
Z
f(x)dx
=f(x)dx. 2)
Z
f(x)dx
0
=f(x). 3)
Z
df(x) =
Z
f0(x)dx=f(x) +C.
(7)I
Z
0.dx=C. II
Z
1dx=x+C.
III
Z
xαdx = x α+1
α+ +C, α6=−1 IV
Z
dx
x = ln|x|+C, x6= V
Z
axdx= a x
lna +C (0 < a6= 1);
Z
exdx=ex+C. VI
Z
sinxdx=−cosx+C. VII
Z
cosxdx = sinx+C VIII
Z
dx
cos2x = tgx+C,x6=
π
2 +nπ,n ∈Z IX
Z dx
sin2x =−cotgx+C,x6=nπ, n∈Z X
Z
dx
√
1−x2 =
arc sinx+C,
−arc cosx+C
−1< x <1 XI
Z
dx +x2 =
arctgx+C,
−arccotgx+C. XII
Z
dx
√
x2±1 = ln|x+
√
x2±1|+C
(trong tru.`o.ng ho p dˆa´u tr`u th`ıx < −1 ho˘a.cx >1) XIII
Z
dx 1−x2 =
1 2ln
+1−xx
(8)
1)
Z
kf(x)dx=k
Z
f(x)dx, k6= 2)
Z
[f(x)±g(x)]dx=
Z
f(x)dx±
Z
g(x)dx.
3) Nˆe´u
Z
f(x)dx = F(x) +C v`a u = ϕ(x) kha’ vi liˆen tu.c th`ı
Z
f(u)du =F(u) +C.
C ´AC V´I DU.
V´ı du 1. Ch´u.ng minh r˘a`ng h`am y = signx c´o nguyˆen h`am trˆen khoa’ng bˆa´t k`y khˆong ch´u.a diˆe’mx= v`a khˆong c´o nguyˆen h`am trˆen mo.i khoa’ng ch´u.a diˆe’mx =
Gia’i. 1) Trˆen khoa’ng bˆa´t k`y khˆong ch´u.a diˆe’mx= h`amy= signx l`a h˘a`ng sˆo´ Ch˘a’ng ha.n v´o.i mo.i khoa’ng (a, b), 0< a < bta c´o signx = v`a d´o mo.i nguyˆen h`am cu’a n´o trˆen (a, b) c´o da.ng
F(x) =x+C, C ∈R
2) Ta x´et khoa’ng (a, b) m`a a < < b Trˆen khoa’ng (a,0) mo.i nguyˆen h`am cu’a signxc´o da.ngF(x) =−x+C1 c`on trˆen khoa’ng (0, b)
nguyˆen h`am c´o da.ng F(x) =x+C2 V´o.i mo.i c´ach cho.n h˘a`ng sˆo´C1
v`aC2 ta thu du.o c h`am [trˆen (a, b)] khˆong c´o da.o h`am ta.i diˆe’mx=
Nˆe´u ta cho.n C = C1 = C2 th`ı thu du.o c h`am liˆen tu.c y = |x| +C
nhu.ng khˆong kha’ vi ta.i diˆe’m x = T`u d´o, theo di.nh ngh˜ıa h`am signx khˆong c´o nguyˆen h`am trˆen (a, b),a <0< b. N
V´ı du 2. T`ım nguyˆen h`am cu’a h`am f(x) =e|x|trˆen to`
an tru.c sˆo´
Gia’i. V´o.i x > ta c´o e|x| = ex v`a d´o miˆ`ne x > mˆo.t c´ac nguyˆen h`am l`a ex Khi x < 0 ta c´o e|x| = e−x v`a vˆ
a.y miˆ`ne x < mˆo.t c´ac nguyˆen h`am l`a −e−x+C v´o.i h˘a`ng sˆo´C bˆa´t k`y
Theo di.nh ngh˜ıa, nguyˆen h`am cu’a h`am e|x| pha’i liˆ
(9)pha’i tho’a m˜an diˆ`u kiˆe.ne lim x→0+0e
x
= lim x→0−0(
−e−x+C) t´u.c l`a =−1 +C ⇒C =
Nhu vˆa.y
F(x) =
ex nˆe´u x > 0, nˆe´u x= 0,
−e−x+ nˆe´u x <
l`a h`am liˆen tu.c trˆen to`an tru.c sˆo´ Ta ch´u.ng minh r˘a`ngF(x) l`a nguyˆen h`am cu’a h`am e|x| trˆen to`an tru.c sˆo´ Thˆa.t vˆa.y, v´o.i x > ta c´o F0(x) = ex = e|x|, v´o.i x <0 th`ıF0(x) = e−x = e|x| Ta c`on cˆ` n pha’ia ch´u.ng minh r˘a`ng F0(0) =e0 = Ta c´o
F+0(0) = lim
x→0+0
F(x)−F(0)
x = limx→0+0
ex−1 x = 1, F−0(0) = lim
x→0−0
F(x)−F(0)
x = limx→0−0
−e−x+ 2−1 x = Nhu vˆa.y F+0(0) =F
0
−(0) =F
(0) = = e|x| T`u d´o c´o thˆe’ viˆe´t:
Z
e|x|dx=F(x) +C =
ex+C, x <0
−e−x+ +C, x <0. N
V´ı du 3. T`ım nguyˆen h`am c´o dˆ` thi qua diˆe’m (o −2,2) dˆo´i v´o.i h`am f(x) =
x, x∈(−∞,0)
Gia’i. V`ı (ln|x|)0 =
x nˆen ln|x| l`a mˆo.t c´ac nguyˆen h`am cu’a h`am f(x) =
x Do vˆa.y, nguyˆen h`am cu’a f l`a h`am F(x) = ln|x|+C, C ∈ R H˘a`ng sˆo´ C du.o c x´ac di.nh t`u diˆe`u kiˆe.n F(−2) = 2, t´u.c l`a ln2 +C = 2⇒C = 2−ln2 Nhu vˆa.y
F(x) = ln|x|+ 2−ln2 = ln
(10)
V´ı du 4. T´ınh c´ac t´ıch phˆan sau dˆay: 1)
Z 2x+1−5x−1
10x dx, 2)
Z 2x+ 3
3x+ 2dx.
Gia’i. 1) Ta c´o I =
Z
2 x
10x − 5x 5·10x
dx=
Z h
21 x − 1 xi dx =
Z 1
5
x
dx−1
5
Z 1
2 x dx = 1 x ln1
5 − 1 x ln1 +C
=−
5xln5 +
5·2xln2 +C. 2)
I =
Z 2x+
2
3x+
dx=
3
h
x+2 +5 i
x+2
dx
= 3x+
5 9ln
x+2
3
+C.N
V´ı du 5. T´ınh c´ac t´ıch phˆan sau dˆay: 1)
Z
tg2xdx, 2)
Z
1 + cos2x
1 + cos 2xdx, 3)
Z √
1−sin 2xdx
Gia’i. 1)
Z
tg2xdx=
Z
sin2x cos2xdx=
Z
1−cos2x cos2x dx
=
Z
dx cos2x −
Z
(11)2)
Z 1 + cos2x
1 + cos 2xdx=
Z 1 + cos2x
2 cos2x dx =
1
Z dx
cos2x+
Z
dx
=
2(tgx+x) +C. 3)
Z √
1−sin 2xdx =Z psin2x−2 sinxcosx+ cos2xdx
=Z p(sinx−cosx)2dx=
Z
|sinx−cosx|dx = (sinx+ cosx)sign(cosx−sinx) +C. N
B `AI T ˆA P
B˘a`ng c´ac ph´ep biˆe´n dˆo’i dˆo` ng nhˆa´t, h˜ay du.a c´ac t´ıch phˆan d˜a cho vˆ` t´ıch phˆan ba’ng v`a t´ınh c´ac t´ıch phˆan d´oe
1.
Z dx
x4−1 (DS
1 4ln
xx−+ 11−
2arctgx) 2.
Z 1 + 2x2
x2(1 +x2)dx. (DS arctgx−
1 x) 3.
Z √
x2+ +√1−x2
√
1−x4 dx. (DS arc sinx+ ln|x+
√
1 +x2|)
4.
Z √
x2+ 1−√1−x2
√
x4−1 dx (DS ln|x+
√
x2−1| −ln|x+√x2+ 1|)
5.
Z √
x4+x−4+ 2
x3 dx. (DS ln|x| −
1 4x4)
6.
Z
23x−1
ex−1 dx. (DS e2x
2 +e x+ 1)
1Dˆ
(12)7.
Z
22x−1
√
2x dx. (DS ln2
h23x
2
3 + −x i ) 8. Z dx
x(2 + ln2x) (DS √ 2arctg lnx √ 2) 9.
Z √3
ln2x
x dx. (DS 5ln
5/3
x)
10.
Z
ex+e2x
1−ex dx. (DS −e x−
2ln|ex−1|) 11.
Z
exdx
1 +ex (DS ln(1 +e x))
12.
Z
sin2x
2dx. (DS 2x−
sinx ) 13.
Z
cotg2xdx. (DS −x−cotgx) 14.
Z √
1 + sin 2xdx,x∈
0,π
(DS −cosx+ sinx) 15.
Z
ecosxsinxdx. (DS −ecosx) 16.
Z
excosexdx. (DS sinex) 17.
Z
1
1 + cosxdx. (DS tg x 2) 18.
Z
dx
sinx+ cosx (DS √ 2ln tg x + π ) 19. Z
1 + cosx
(x+ sinx)3dx. (DS −
2
2(x+ sinx)2)
20.
Z
sin 2x
p
1−4 sin2x
dx. (DS −1
2
p
1−4 sin2x) 21.
Z
sinx
p
2−sin2x
dx. (DS −ln|cosx+
√
(13)22.
Z sinxcosx p
3−sin4x
dx. (DS 2arc sin
sin2 x √ ) 23. Z arccotg3x
1 + 9x2 dx. (DS −
1 6arccotg 3x) 24. Z
x+√arctg2x
1 + 4x2 dx. (DS
1
8ln(1 + 4x
2) +
3arctg
3/22x)
25.
Z
arc sinx−arc cosx
√
1−x2 dx. (DS
1
2(arc sin
2
x+ arc cos2x))
26.
Z
x+ arc sin32x
√
1−4x2 dx. (DS −
1
√
1−4x2+1
8arc sin
4
2x)
27.
Z
x+ arc cos3/2x
√
1−x2 dx. (DS −
√
1−x2 −2
5arc cos
5/2
x)
28.
Z
x|x|dx. (DS |x|
3
3 ) 29.
Z
(2x−3)|x−2|dx. (DS F(x) =
−2 3x
3+
2x
2 −6x+C, x < 2
2 3x
3−
2x
2+ 6x+C, x>2
)
30.
Z
f(x)dx, f(x) =
1−x2, |x|61, 1− |x|, |x|>1 (DS F(x) =
x− x
3
3 +C nˆe´u|x|61 x− x|x|
2 +
6signx+C nˆe´u|x|>1 )
(14)1) H`am x=ϕ(t) x´ac di.nh v`a kha’ vi trˆen khoa’ngT v´o.i tˆa p ho..p gi´a tri l`a khoa’ng X.
2) H`am y=f(x)x´ac di.nh v`a c´o nguyˆen h`am F(x)trˆen khoa’ng X. Khi d´o h`am F(ϕ(t)) l`a nguyˆen h`am cu’a h`am f(ϕ(t))ϕ0(t) trˆen
khoa’ng T.
T`u di.nh l´y 10.1.1 suy r˘a`ng
Z
f(ϕ(t))ϕ0(t)dt=F(ϕ(t)) +C. (10.1) V`ı
F(ϕ(t)) +C = (F(x) +C)x=ϕ(t) =
Z
f(x)dxx=ϕ(t) cho nˆen d˘a’ng th´u.c (10.1) c´o thˆe’ viˆe´t du.´o.i da.ng
Z
f(x)dxx=ϕ(t)=
Z
f(ϕ(t))ϕ0(t)dt (10.2) D˘a’ng th´u.c (10.2) du.o c go.i l`a cˆong th´u.c dˆo’i biˆe´n t´ıch phˆan bˆa´t di.nh.
Nˆe´u h`am x = ϕ(t) c´o h`am ngu.o..c t = ϕ−1(x) th`ı t`u (10.2) thu
du.o c
Z
f(x)dx=
Z
f(ϕ(t))ϕ0(t)dtt=ϕ−1(x). (10.3)
Ta nˆeu mˆo.t v`ai v´ı du vˆe` ph´ep dˆo’i biˆe´n
i) Nˆe´u biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan c´o ch´u.a c˘an
√
a2−x2,a >0
th`ı su.’ du.ng ph´ep dˆo’i biˆe´nx=asint, t∈−π
2, π
ii) Nˆe´u biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan c´o ch´u.a c˘an
√
x2−a2,a >0
th`ı d`ung ph´ep dˆo’i biˆe´nx= a
cost, < t < π
2 ho˘a.cx=acht. iii) Nˆe´u h`am du.´o.i dˆa´u t´ıch phˆan ch´u.a c˘an th´u.c
√
a2+x2, a > 0
th`ı c´o thˆe’ d˘a.tx=atgt, t∈− π
2, π
ho˘a.cx =asht.
(15)C ´AC V´I DU. V´ı du 1. T´ınh
Z
dx cosx
Gia’i. Ta c´o
Z
dx cosx =
Z
cosxdx
1−sin2x (d˘a.t t = sinx, dt= cosxdx) =
Z
dt 1−t2 =
1 2ln
+1−tt
+C = ln
tg x + π
+C. N
V´ı du 2. T´ınh I =
Z
x3dx
x8−2
Gia’i. ta c´o
I =
Z
4d(x
4
) x8−2 =
Z √ d x4 √
−2h1−x
4
√
2
2i
D˘a.t t= x
4
√
2 ta thu du.o c I =−
√ ln √
2 +x4
√
2−x4
+C. N
V´ı du 3. T´ınh I =
Z
x2dx
p
(x2+a2)3 ·
Gia’i. D˘a.t x(t) =atgt⇒dx= adt
cos2t Do d´o
I =
Z
a3tg2t·cos3tdt a3cos2t =
Z
sin2t costdt =
Z
dt cost −
Z
costdt = ln
tgt
2 + π
−sint+C.
V`ıt= arctgx a nˆen I = ln
tg 1 2arctg x a + π −sin arctgx a +C =−√ x
x2+a2 + ln|x+
√
(16)Thˆa.t vˆa.y, v`ı sinα = cosα·tgα nˆen dˆ˜ d`ang thˆa´y r˘a`nge sin arctgx a
= √ x
x2+a2 ·
Tiˆe´p theo ta c´o sin1
2arctg x a + π
cos1 2arctg x a + π =
1−cosarctgx a + π sin arctgx a + π =
1 + sinarctgx a −cos arctgx a
= x+
√
a2+x2
a
v`a t`u d´o suy diˆ`u pha’i ch´e u.ng minh N
V´ı du 4. T´ınh I =
Z √
a2+x2dx.
Gia’i. D˘a.t x=asht Khi d´o I =
Z q
a2(1 + sh2
t)achtdt=a2
Z
ch2tdt =a2
Z
ch2t+ dt=
a2
2
1
2sh2t+t
+C = a
2
2(sht·cht+t) +C. V`ı cht = p1 + sh2t =
r
1 +x
2
a2 e
t
= sht+ cht = x+
√
a2+x2
a nˆen t= ln
x+
√
a2+x2
a
v`a d´o
Z √
a2+x2dx= x
2
√
a2+x2+a
2 ln|x+
√
a2+x2|+C. N
V´ı du 5. T´ınh 1) I1 =
Z
x2+
√
x6−7x4+x2dx, 2) I2 =
Z
3x+
√
(17)Gia’i. 1) Ta c´o
I1 =
Z +
x2
r
x2 −7 +
x2
dx=
Z d
x−
x
r
x−
x −5 = Z dt √
t2−5
= ln|t+
√
t2−5|+C = ln
x−
x +
r
x2−7 +
x2
+C.
2) Ta viˆe´t biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan du.´o.i da.ng f(x) =−3
2·
−2x+
√
−x2+ 6x−8 + 13·
1
√
−x2+ 6x−8
v`a thu du.o..c I2 =
Z
f(x)dx =−3
2
Z
(−x2+ 6x−8)−12d(−x2+ 6x−8) + 13
Z d(x−3)
p
1−(x−3)2
=−3
√
−x2+ 6x−8 + 13 arc sin(x−3) +C. N
V´ı du 6. T´ınh 1)
Z dx
sinx, 2) I2 =
Z sinxcos3x
1 + cos2xdx.
Gia’i
1) C´ach I Ta c´o
Z
dx sinx =
Z
sinx sin2xdx=
Z
d(cosx) cos2x−1 =
1 2ln
1−cosx + cosx +C.
C´ach II
Z
dx sinx =
Z d x sinx 2cos x = Z d x tgx ·cos
(18)2) Ta c´o
I2 =
Z
sinxcosx[(cos2x+ 1)−1]
1 + cos2x dx.
Ta d˘a.t t= + cos2x T`u d´o dt=−2 cosxsinxdx Do d´o
I2 =−
1
Z
t−1
t dt =− t
2 + ln|t|+C, d´o t= + cos2x. N
V´ı du 7. T´ınh 1) I1 =
Z
exdx
√
e2x+ 5 , 2) I2 =
Z
ex+ 1 ex−1dx.
Gia’i
1) D˘a.tex =t Ta c´oexdx =dt v`a I1 =
Z
dt
√
t2+ 5 = ln|t+
√
t2 + 5|+C = ln|ex +
√
e2x+ 5|+C. 2) Tu.o.ng tu , d˘a.t ex =t, exdx=dt,dx = dt
t v`a thu du.o c I2 =
Z t+ 1
t−1 dt
t =
Z 2dt
t−1−
Z dt
t = 2ln|t−1| −ln|t|+C = 2ln|ex−1| −lnex+c
= ln(ex−1)2 −x+C. N
B `AI T ˆA P
T´ınh c´ac t´ıch phˆan: 1.
Z
e2x
4
√
ex+ 1dx. (DS 21(3e
x− 4)p4
(ex+ 1)3)
(19)2.
Z
dx
√
ex+ 1 (DS ln
√
1 +ex−1
√
1 +ex+ 1
)
3.
Z
e2x
ex−1dx. (DS e x
+ ln|ex−1|) 4.
Z √
1 + lnx
x dx. (DS
p
(1 + lnx)3)
5.
Z √
1 + lnx xlnx dx. (DS
√
1 + lnx−ln|lnx|+ 2ln| √
1 + lnx−1|) 6.
Z
dx
ex/2+ex (DS −x−2e
−x2 + 2ln(1 +ex2)) 7.
Z
arctg√x
√
x
dx
1 +x (DS (arctg
√
x)2) 8.
Z √
e3x+e2xdx. (DS. 3(e
x+ 1)3/2)
9.
Z
e2x2+2x−1(2x+ 1)dx (DS 2e
2x2+2x−1
) 10.
Z
dx
√
ex−1 (DS 2arctg
√
ex−1) 11.
Z
e2xdx
√
e4x+ 1 (DS 2ln(e
2x+√e4x+ 1)) 12.
Z 2xdx
√
1−4x (DS
arc sin 2x ln2 ) 13.
Z
dx
1 +√x+ (DS 2[
√
x+ 1−ln(1 +√x+ 1)])
Chı’ dˆa˜n. D˘a.t x+ =t2 14.
Z
x+
x√x−2dx. (DS
√
x−2 +
√
2arctg
r
x−2 ) 15.
Z
dx
√
ax+b+m (DS a
√
ax+b−mln| √
(20)16.
Z
dx
3
√
x(√3x−1) (DS 3
√
x+ 3ln|√3x−1|)
17.
Z
dx
(1−x2)3/2 (DS tg(arc sinx))
Chı’ dˆa˜n. D˘a.t x= sint, t∈− π
2, π ) 18. Z dx
(x2+a2)3/2 (DS
1 a2 sin
arctgx a
)
Chı’ dˆa˜n. D˘a.t x=atgt, t∈− π
2, π 19. Z dx
(x2−1)3/2 (DS.−
1
cost, t= arc sin x)
Chı’ dˆa˜n. D˘a.t x= sint,−
π
2 < t <0, 0< t < π 20.
Z √
a2−x2dx. (DS. a
2arc sin x a +
x√a2−x2
2 )
Chı’ dˆa˜n. D˘a.t x=asint. 21.
Z √
a2+x2dx. (DS. x
2
√
a2+x2+a
2ln|x+
√
a2+x2|)
Chı’ dˆa˜n. D˘a.t x=asht. 22.
Z
x2
√
a2+x2dx. (DS
1
x
√
a2+x2−a2
ln(x+
√
a2+x2))
23.
Z
dx
x2√x2+a2 (DS −
√
x2+a2
a2x )
Chı’ dˆa˜n. D˘a.t x=
t ho˘a.c x=atgt, ho˘a.c x=asht. 24.
Z x2dx
√
a2−x2 (DS
a2
2arc sin x a −
x a
√
a2−x2)
Chı’ dˆa˜n. D˘a.t x=asint. 25.
Z
dx x
√
x2−a2 (DS −
1 aarc sin
(21)Chı’ dˆa˜n. D˘a.t x=
t, ho˘a.c x= a
cost ho˘a.c x=acht. 26.
Z √
1−x2
x2 dx. (DS −
√
1−x2
x −arc sinx) 27.
Z
dx
p
(a2+x2)3 (DS
x a2√x2+a2)
28.
Z dx
x2√x2−9 (DS
√
x2−9
9x ) 29.
Z
dx
p
(x2−a2)3 (DS −
x a2√x2−a2)
30.
Z
x2
√
a2 −x2dx.
(DS − x
4(a
2−
x2)3/2+a
2
8x
√
x2−a2+a
8arc sin x a)
31.
Z r
a+x
a−xdx. (DS −
√
a2−x2+ arc sinx
a)
Chı’ dˆa˜n. D˘a.t x=acos 2t 32.
Z r
x−a x+adx. (DS
√
x2−a2−2aln(√x−a+√x+a) nˆe´u x > a,
− √
x2−a2+ 2aln(√−x+a+√−x−a) nˆe´u x <−a)
Chı’ dˆa˜n. D˘a.t x= a cos 2t 33.
Z r
x−1 x+
dx
x2 (DS arc cos
1 x−
√
x2−1
x )
Chı’ dˆa˜n. D˘a.t x= t 34.
Z
dx
√
x−x2 (DS 2arc sin
√
(22)Chı’ dˆa˜n. D˘a.t x= sin2t. 35.
Z √
x2+ 1
x dx. (DS
√
x2+ 1−ln
+
√
x2+ 1
x
) 36.
Z
x3dx
√
2−x2 (DS −
x2
3
√
2−x2−
3
√
2−x2)
37.
Z p
(9−x2)2
x6 dx. (DS −
p
(9−x2)5
45x5 )
38.
Z
x2dx
√
x2−a2 (DS
x
√
x2−a2+a
2ln|x+
√
x2−a2|)
39.
Z
(x+ 1)dx
x(1 +xex) (DS ln
xex
1 +xex
)
Chı’ dˆa˜n. Nhˆan tu.’ sˆo´ v`a mˆ˜u sˆo´ v´o.ia ex rˆ` i d˘a.to xex=t. 40.
Z
dx
(x2+a2)2 (DS
1 2a3
h
arctgx a +
ax x2+a2
i
)
Chı’ dˆa˜n. D˘a.t x=atgt.
10.1.3 Phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` na Phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n du a trˆen di.nh l´y sau dˆay.a
D- i.nh l´y. Gia’ su.’ trˆen khoa’ngD c´ac h`am u(x)v`a v(x)kha’ vi v`a h`am
v(x)u0(x) c´o nguyˆen h`am Khi d´o h`am u(x)v0(x) c´o nguyˆen h`am trˆen D v`a
Z
u(x)v0(x)dx=u(x)v(x)−
Z
v(x)u0(x)dx (10.4) Cˆong th´u.c (10.4) du.o c go.i l`a cˆong th´u.c t´ınh t´ıch phˆan t`u.ng phˆa` n V`ıu0(x)dx=du v`a v0(x)dx=dv nˆen (10.4) c´o thˆe’ viˆe´t du.´
o.i da.ng
Z
udv=uv−
Z
vdu. (10.4*)
(23)Nh´om Igˆ` m nh˜o u.ng t´ıch phˆan m`a h`am du.´o.i dˆa´u t´ıch phˆan c´o ch´u.a th`u.a sˆo´ l`a mˆo.t c´ac h`am sau dˆay: lnx, arc sinx, arc cosx, arctgx, (arctgx)2, (arc cosx)2, lnϕ(x), arc sinϕ(x),
Dˆe’ t´ınh c´ac t´ıch phˆan n`ay ta ´ap du.ng cˆong th´u.c (10.4*) b˘a`ng c´ach d˘a.tu(x) b˘a`ng mˆo.t c´ac h`am d˜a chı’ c`ondv l`a phˆ` n c`on la.i cu’aa biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan
Nh´om II gˆ` m nh˜o u.ng t´ıch phˆan m`a biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan c´o da.ng P(x)eax, P(x) cosbx,P(x) sinbxtrong d´o P(x) l`a da th´u.c, a, bl`a h˘a`ng sˆo´
Dˆe’ t´ınh c´ac t´ıch phˆan n`ay ta ´ap du.ng (10.4*) b˘a`ng c´ach d˘a.tu(x) = P(x), dv l`a phˆ` n c`on la.i cu’a biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan Sau mˆo˜ia lˆ` n t´ıch phˆan t`a u.ng phˆ` n bˆa.c cu’a da th´u.c s˜e gia’m mˆo.t do.n vi a
Nh´om III gˆ` m nh˜o u.ng t´ıch phˆan m`a h`am du.´o.i dˆa´u t´ıch phˆan c´o da.ng: eaxsinbx, eaxcosbx, sin(lnx), cos(lnx), Sau hai lˆ` n t´ıch phˆana t`u.ng phˆ` n ta la.i thu du.o c t´ıch phˆan ban dˆaa ` u v´o.i hˆe sˆo´ n`ao d´o D´o l`a phu.o.ng tr`ınh tuyˆe´n t´ınh v´o.i ˆa’n l`a t´ıch phˆan cˆ` n t´ınh.a
Du.o.ng nhiˆen l`a ba nh´om v`u.a nˆeu khˆong v´et hˆe´t mo.i t´ıch phˆan t´ınh du.o c b˘a`ng t´ıch phˆan t`u.ng phˆa` n (xem v´ı du 6)
Nhˆa n x´et. Nh`o c´ac phu.o.ng ph´ap dˆo’i biˆe´n v`a t´ıch phˆan t`u.ng phˆ` na ta ch´u.ng minh du.o c c´ac cˆong th´u.c thu.`o.ng hay su.’ du.ng sau dˆay:
1)
Z
dx x2+a2 =
1 aarctg
x
a +C, a6= 2)
Z
dx a2−x2 =
1 2aln
a+x
a−x
+C, a6= 3)
Z
dx
√
a2−x2 = arc sin
x
a +C, a 6= 4)
Z
dx
√
x2±a2 = ln|x+
√
(24)C ´AC V´I DU. V´ı du 1. T´ınh t´ıch phˆan I =
Z √
xarctg√xdx.
Gia’i. T´ıch phˆan d˜a cho thuˆo.c nh´om I Ta d˘a.t u(x) = arctg√x,
dv =√xdx. Khi d´o du=
1 +x · dx 2√x, v=
2 3x
3
2 Do d´o
I = 3x
3 2arctg
√
x−
3
Z x
1 +xdx =
3x
3 2arctg
√
x−
3
Z h
1−
1 +x
i
dx =
3x
3 arctg
√
x−
3(x−ln|1 +x|) +C. N V´ı du 2. T´ınh I =
Z
arc cos2xdx.
Gia’i. Gia’ su.’ u= arc cos2x, dv=dx Khi d´o
du=−2arc cos√ x
1−x2 dx, v=x.
Theo (10.4*) ta c´o
I =xarc cos2x+
Z xarc cosx
√
1−x2 dx.
Dˆe’ t´ınh t´ıch phˆan o.’ vˆe´ pha’i d˘a’ng th´u.c thu du.o..c ta d˘a.t u = arc cosx,dv= √xdx
1−x2 Khi d´o
du=−√ dx
1−x2 , v=−
Z
d(
√
1−x2) =−
√
1−x2+C
v`a ta chı’ cˆ` n lˆa´ya v =− √
1−x2:
Z
xarc cosx
√
21−x2dx=−
√
1−x2arc cosx−
Z
dx =−
√
(25)Cuˆo´i c`ung ta thu du.o..c I =xarc cos2x−2
√
1−x2arc cosx−2x+C. N
V´ı du 3. T´ınh I =
Z
x2sin 3xdx
Gia’i. T´ıch phˆan d˜a cho thuˆo.c nh´om II Ta d˘a.t u(x) = x2,
dv = sin 3xdx Khi d´o du= 2xdx, v=−1
3cos 3x v`a I =−1
3x
2
cos 3x+2
Z
xcos 3xdx =−1
3x
2
cos 3x+ 3I1.
Ta cˆ` n t´ınha I1 D˘a.t u = x, dv = cos 3xdx Khi d´o du = 1dx,
v=
3sin 3x T`u d´o I =−1
3x
2
cos 3x+
h1
3xsin 3x−
Z
sin 3xdx
i
=−1
3x
2
cos 3x+
9xsin 3x+
27cos 3x+C. N
Nhˆa n x´et. Nˆe´u d˘a.t u = sin 3x, dv = x2dx th`ı lˆ` n t´ıch phˆan t`a u.ng phˆ` n th´a u nhˆa´t khˆong du.a dˆe´n t´ıch phˆan do.n gia’n ho.n
V´ı du 4. T´ınh I =
Z
eaxcosbx; a, b6=
Gia’i. Dˆay l`a t´ıch phˆan thuˆo.c nh´om III Ta d˘a.t u = eax, dv = cosbxdx Khi d´o du=aeaxdx,v =
bsinbx v`a I =
be ax
sinbx− a
b
Z
eaxsinbxdx= be
ax
sinbx− a
bI1.
Dˆe’ t´ınh I1 ta d˘a.t u = eax, dv = sinbxdx Khi d´o du = aeaxdx,
v=−1
bcosbxv`a I1 =−
1 be
ax
cosbx+a b
Z
(26)Thˆe´I1 v`ao biˆe’u th´u.c dˆo´i v´o.i I ta thu du.o c
Z
eaxcosbxdx= be
ax
sinbx+ a
b2 cosbx−
a2
b2
Z
eaxcosbxdx. Nhu vˆa.y sau hai lˆa` n t´ıch phˆan t`u.ng phˆ` n ta thu du.o c phu.o.nga tr`ınh tuyˆe´n t´ınh v´o.i ˆa’n l`aI Gia’i phu.o.ng tr`ınh thu du.o c ta c´o
Z
eaxcosbxdx=eaxacosbx+bsinbx
a2+b2 +C. N
V´ı du 5. T´ınh I =R sin(ln x)dx
Gia’i. D˘a.t u = sin(lnx), dv = dx Khi d´o du =
xcos(lnx)dx, v=x Ta thu du.o c
I =xsin(lnx)−
Z
cos(lnx)dx=xsin(lnx)−I1.
Dˆe’ t´ınh I1 ta la.i d˘a.t u = cos(lnx), dv = dx. Khi d´o du =
−1
xsin(lnx)dx,v =x v`a
I1 =xcos(lnx) +
Z
sin(lnx)dx
Thay I1 v`ao biˆe’u th´u.c dˆo´i v´o.i I thu du.o c phu.o.ng tr`ınh
I =x(sin lnx−cos lnx)−I v`a t`u d´o
I = x
2(sin lnx−cos lnx) +C. N
(27)V´ı du 6. T´ınh 1) I =
Z
xdx
sin2x; 2) In =
Z
dx
(x2+a2)n, n ∈N
Gia’i. 1) R˜o r`ang t´ıch phˆan n`ay khˆong thuˆo.c bˆa´t c´u nh´om n`ao ba nh´om d˜a nˆeu Thˆe´ nhu.ng b˘a`ng c´ach d˘a.tu =x,dv = dx
sin2x v`a ´ap du.ng cˆong th´u.c t´ıch phˆan t`u.ng phˆa` n ta c´o
I =−xcotgx+
Z
cotgxdx =−xcotgx+
Z
cosx sinxdx =−xcotgx+
Z
d(sinx)
sinx =−xcotgx+ ln|sinx|+C. 2) T´ıch phˆan In du.o..c biˆe’u diˆe˜n du.´o.i da.ng
In= a2
Z
x2+a2−x2
(x2+a2)n dx= a2
h Z dx
(x2+a2)n−1 −
Z
x2dx
(x2 +a2)n
i
=
a2In−1−
1 2a2
Z
x 2xdx (x2+a2)n·
Ta t´ınh t´ıch phˆan o.’ vˆe´ pha’i b˘a`ng phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n D˘a.ta u = x, dv = 2xdx
(x2+a2)n =
d(x2+a2)
(x2+a2)n Khi d´o du = dx, v =−
(n−1)(x2+a2)n−1 v`a
1 2a2
Z
x 2xdx (x2+a2)n =
−x
2a2(n−1)(x2+a2)n−1 +
1
2a2(n−1)In−1
T`u d´o suy r˘a`ng In=
a2In−1+
x
2a2(n−1)(x2 +a2)n−1 −
1
2a2(n−1)In−1
hay l`a
In= x
2a2(n−1)(x2+a2)n−1 +
2n−3
(28)Ta nhˆa.n x´et r˘a`ng t´ıch phˆanInkhˆong thuˆo.c bˆa´t c´u nh´om n`ao ba nh´om d˜a chı’
Khi n = ta c´o I1 =
Z
dx x2+a2 =
1 aarctg
x a +C. ´
Ap du.ng cˆong th´u.c truy hˆo` i (*) ta c´o thˆe’ t´ınhI2 qua I1 rˆ` io I3 qua
I2, N
V´ı du 7. T´ınh I =
Z
xeaxcosbxdx.
Gia’i. D˘a.t u=x, dv=eaxcosbxdx Khi d´o du=dx, v=eaxacosbx+bsinbx
a2+b2
(xem v´ı du 4) Nhu vˆa.y I =xeaxacosbx+bsinbx
a2+b2 −
1 a2+b2
Z
eax(acosbx+bsinbx)dx =xeaxacosbx+bsinbx
a2+b2 −
a a2+b2
Z
eaxcosbxdx
− b
a2+b2
Z
eaxsinbxdx.
T´ıch phˆan th´u nhˆa´t o.’ vˆe´ pha’i du.o c t´ınh v´ı du 4, t´ıch phˆan th´u hai du.o c t´ınh tu.o.ng tu v`a b˘a`ng
Z
eaxsinbxdx=eaxasinbx−bcosbx a2+b2 ·
Thay c´ac kˆe´t qua’ thu du.o..c v`ao biˆe’u th´u.c dˆo´i v´o.i I ta c´o I = e
ax
a2+b2
h
x− a
a2+b2
(acosbx+bsinbx)
− b
a2+b2(asinbx−bcosbx)
i
+C N
(29)1.
Z
x2xdx. (DS
x(xln 2−1) ln22 ) 2.
Z
x2e−xdx. (DS −x2e−x−2xe−x−2e−x) 3.
Z
x3e−x2dx. (DS −1
2(x
2 + 1)e−x2
) 4.
Z
(x3+x)e5xdx. (DS 5e
5x x3−
5x
2
+31 25x−
31 125 ) 5. Z
arc sinxdx. (DS xarc sinx+√1−x2)
6.
Z
xarc sinxdx. (DS 4(2x
2−
1)arc sinx+ 4x
√
1−x2)
7.
Z
x2arc sin 2xdx (DS x
3
3arc sin 2x+
2x2+ 1
36
√
1−4x2)
8.
Z
arctgxdx (DS xarctgx−
2ln(1 +x
2))
9.
Z
arctg√xdx. (DS (1 +x)arctg√x−√x) 10.
Z
x3arctgxdx (DS x
4−
1
4 arctgx− x3 12 + x 4) 11. Z
(arctgx)2xdx (DS. x
2+ 1
2 (arctgx)
2−xarctgx+
2ln(1 +x
2))
12.
Z
(arc sinx)2dx. (DS x(arc sinx)2+ 2arc sinx
√
1−x2−2x)
13.
Z
arc sinx
√
x+ 1dx. (DS
√
x+ 1arc sinx+ 4√1−x) 14.
Z
arc sinx
x2 dx. (DS −
arc sinx x −ln
+
√
1−x2
x ) 15. Z xarctgx √
1 +x2dx. (DS
√
(30)16.
Z
arc sin√x
√
1−x dx. (DS 2(
√
x−√1−xarc sin√x)) 17.
Z
lnxdx. (DS x(lnx−1)) 18.
Z √
xln2xdx. (DS 3x
3/2ln2
x−
3lnx+
) 19.
Z
ln(x+
√
16 +x2)dsx (DS. xln(x+√16 +x2)−√16 +x2)
20.
Z
xln(x+
√
1 +x2)
√
1 +x2 dx. (DS
√
1 +x2ln(x+√1 +x2)−x)
21.
Z
sinxln(tgx)dx (DS lntgx
−cosxln(tgx)) 22.
Z
x2ln(1 +x)dx. (DS (x
3+ 1) ln(x+ 1)
3 −
x3
9 + x2
6 − x 3) 23.
Z
x2sin 2xdx (DS 1−2x
2
4 cos 2x+ x
2sin 2x) 24.
Z
x3cos(2x2)dx (DS 8(2x
2
sin 2x2+ cos 2x2)) 25.
Z
exsinxdx. (DS e
x(sinx−cosx)
2 )
26.
Z
3xcosxdx. (DS sinx+ (ln 3) cosx + ln23
x)
27.
Z
e3x(sin 2x−cos 2x)dx (DS e
3x
13(sin 2x−5 cos 2x)) 28.
Z
xe2xsin 5xdx
(DS e
2x 29
h
2x+ 21 29
sin 5x+−5x+20 29
cos 5xi)
29.
Z
x2exsinxdx. (DS
(31)
30.
Z
x2excosxdx. (DS (x−1)
2
sinx+ (x2−1) cosx
2 e
x ) 31.
Z
x2sin(lnx)dx. (DS [3 sinx(lnx)−cos(lnx)]x
3
10 )
32. T`ım cˆong th´u.c truy hˆ` i dˆo´i v´o.i mˆo˜i t´ıch phˆano In du.o c cho du.´o.i dˆay:
1) In =
Z
xneaxdx, a6= (DS In= ax
n
eax− n
aIn−1) 2) In =
Z
lnnxdx. (DS In=xlnnx−nIn−1)
3) In=
Z
xαlnnxdx,α 6=−1 (DS In= x α+1
lnnx α+ −
n
α+ 1In−1) 4)In =
Z
xndx
√
x2+a,n >2 (DS.In=
xn−1√x2+a
n −
n−1 n aIn−2) 5)In=
Z
sinnxdx,n >2 (DS.In=−cosxsin
n−1
x
n +
n−1 n In−2) 6) In =
Z
cosnxdx, n >2 (DS In= sinxcos n−1x
n +
n−1 n In−2) 7) In=
Z
dx
cosnx, n >2 (DS.In =
sinx
(n−1) cosn−1x+
n−2 n−1In−2) 10.2 C´ac l´o.p h`am kha’ t´ıch l´o.p c´ac
h`am so cˆa´p
10.2.1 T´ıch phˆan c´ac h`am h˜u.u ty’ 1) Phu.o.ng ph´ap hˆe sˆo´ bˆa´t di.nh H`am da.ng
(32)trong d´oPm(x) l`a da th´u.c bˆa.cm,Qn(x) l`a da th´u.c bˆa.cn du.o..c go.i l`a h`am h˜u.u ty’ (hay phˆan th´u.c h˜u.u ty’) Nˆe´u m > n th`ıPm(x)/Qn(x) du.o c go.i l`a phˆan th´u.c h˜u.u ty’ khˆong thu c su ; nˆe´u m < n th`ı Pm(x)/Qn(x) du.o c go.i l`a phˆan th´u.c h˜u.u ty’ thu c su
Nˆe´u R(x) l`a phˆan th´u.c h˜u.u ty’ khˆong thu c su th`ı nh`o ph´ep chia da th´u.c ta c´o thˆe’ t´ach phˆ` n nguyˆena W(x) l`a da th´u.c cho
R(x) = Pm(x)
Qn(x) =W(x) + Pk(x)
Qn(x) (10.5) d´o k < nv`aW(x) l`a da th´u.c bˆa.cm−n.
T`u (10.5) suy r˘a`ng viˆe.c t´ınh t´ıch phˆan phˆan th´u.c h˜u.u ty’ khˆong thu c su du.o c quy vˆe` t´ınh t´ıch phˆan phˆan th´u.c h˜u.u ty’ thu c su v`a t´ıch phˆan mˆo.t da th´u.c.
D- i.nh l´y 10.2.1. Gia’ su.’ Pm(x)/Qn(x) l`a phˆan th´u.c h˜u.u ty’ thu c su v`a
Q(x) = (x−a)α· · ·(x−b)β(x2+px+q)γ· · ·(x2+rx+s)δ
trong d´o a, , b l`a c´ac nghiˆe.m thu c, x2 +px+q, , x2+rx+s l`a nh˜u.ng tam th´u.c bˆa c hai khˆong c´o nghiˆe.m thu..c Khi d´o
P(x) Q(x) =
Aα
(x−a)α +· · ·+ A1
x−a +· · ·+ Bβ (x−b)β +
Bβ−1
(x−b)β−1 +· · ·+
+ B1 x−b+
Mγx+Nγ
(x2 +px+q)γ +· · ·+
M1x+N1
x2+px+q +· · ·+
+ Kδx+Lδ
(x2+rx+s)δ +· · ·+
K1x+L1
x2+rx+s, (10.6)
trong d´o Ai, Bi, Mi, Ni, Ki v`a Li l`a c´ac sˆo´ thu..c.
C´ac phˆan th´u.c o.’ vˆe´ pha’i cu’a (10.6) du.o c go.i l`a c´ac phˆan th´u.c do.n gia’n hay c´ac phˆan th´u.c co ba’n v`a d˘a’ng th´u.c (10.6) du.o c go.i l`a khai triˆe’n phˆan th´u.c h˜u.u ty’ thu c su P(x)/Q(x) th`anh tˆo’ng c´ac phˆan th´u.c co ba’n v´o.i hˆe sˆo´ thu..c
(33)Phu.o.ng ph´ap I. Quy dˆ` ng mˆa˜u sˆo´ d˘a’ng th´o u.c (10.6) v`a sau d´o cˆan b˘a`ng c´ac hˆe sˆo´ cu’a l˜uy th`u.a c`ung bˆa.c cu’a biˆe´nxv`a di dˆe´n hˆe phu.o.ng tr`ınh dˆe’ x´ac di.nh Ai, , Li (phu.o.ng ph´ap hˆe sˆo´ bˆa´t di.nh).
Phu.o.ng ph´ap II. C´ac hˆe sˆo´Ai, , Li c˜ung c´o thˆe’ x´ac di.nh b˘a`ng c´ach thayxtrong (10.6) (ho˘a.c d˘a’ng th´u.c tu.o.ng du.o.ng v´o.i (10.6)) bo.’i c´ac sˆo´ du.o..c cho.n mˆo.t c´ach th´ıch ho p
T`u (10.6) ta c´o
D- i.nh l´y 10.2.2. T´ıch phˆan bˆa´t di.nh cu’a mo.i h`am h˜u.u ty’ dˆe`u biˆe’u diˆ˜n du.o c qua c´ac h`am so cˆa´p m`a cu thˆe’ l`a qua c´ac h`am h˜u.u ty’, h`ame lˆogarit v`a h`am arctang.
C ´AC V´I DU. V´ı du 1. T´ınh I =
Z
xdx (x−1)(x+ 1)2
Gia’i. Ta c´o x
(x−1)(x+ 1)2 =
A x−1 +
B1
x+ + B2
(x+ 1)2
T`u d´o suy r˘a`ng
x=A(x+ 1)2+B1(x−1)(x+ 1) +B2(x−1) (10.7)
Ta x´ac di.nh c´ac hˆe sˆo´A,B1,B2 b˘a`ng c´ac phu.o.ng ph´ap sau dˆay
Phu.o.ng ph´ap I. Viˆe´t d˘a’ng th´u.c (10.7) du.´o.i da.ng x≡(A+B1)x2+ (2A+B2)x+ (A−B1−B2)
Cˆan b˘a`ng c´ac hˆe sˆo´ cu’a l˜uy th`u.a c`ung bˆa.c cu’a x ta thu du.o..c
A+B1=
2A+B2 =
A−B1−B2 =
T`u d´o A=
4, B1 =−
(34)Phu.o.ng ph´ap II. Thayx = v`ao (10.7) ta c´o =A·4⇒A= Tiˆe´p theo, thay x = −1 v`ao (10.7) ta thu du.o c: −1 = −B2 ·2 hay
l`a B2 =
1
2 Dˆe’ t`ım B1 ta thˆe´ gi´a tri x = v`ao (10.7) v`a thu du.o c =A−B1−B2 hay l`aB1 =A−B2 =−
1 Do d´o
I =
Z
dx x−1−
1
Z
dx x+ +
1
Z
dx (x+ 1)2
=−
2(x+ 1) + 4ln
xx−+ 11+C. N
V´ı du 2. T´ınh I =
Z
3x+ x(1 +x2)2dx.
Gia’i. Khai triˆe’n h`am du.´o.i dˆa´u t´ıch phˆan th`anh tˆo’ng c´ac phˆan th´u.c co ba’n
3x+ x(1 +x2)2 =
A x +
Bx+C +x2 +
Dx+F (1 +x2)2
T`u d´o
3x+ 1≡(A+B)x4+Cx3+ (2A+B+D)x2+ (C+F)x+A. Cˆan b˘a`ng c´ac hˆe sˆo´ cu’a c´ac l˜uy th`u.a c`ung bˆa.c cu’a x ta thu du.o c
A+B = C =
2A+B+D = ⇒A = 1, B =−1, C = 0, D =−1, F = C +F =
A= T`u d´o suy r˘a`ng
I =
Z
dx x −
Z
xdx +x2 −
Z
xdx
(1 +x2)2 +
Z
dx (1 +x2)2
= ln|x| −1
2ln(1 +x
2
)−1
2(1 +x
2
)−2d(1 +x2) +
Z
dx (1 +x2)2
= ln|x| −1
2ln(1 +x
2
) +
(35)Ta t´ınh I2 =
Z
dx
(1 +x2)2 b˘a`ng cˆong th´u.c truy hˆ` i thu du.o c trongo
10.1 Ta c´o I2 =
1 2·
x +x2 +
1 2I1 =
x 2(1 +x2)+
1
Z dx
1 +x2
= x
2(1 +x2)+
1
2arctgx+C. Cuˆo´i c`ung ta thu du.o c
I = ln|x| −
2ln(1 +x
2
) + 3x+ 2(1 +x2)+
3
2arctgx+C. N
B `AI T ˆA P T´ınh c´ac t´ıch phˆan (1-12)
1.
Z
xdx
(x+ 1)(x+ 2)(x−3) (DS
4ln|x+ 1| −
5ln|x+ 2|+
20|x−3|) 2.
Z 2x4 + 5x2−2
2x3 −x−1 dx.
DS x
2
2 + ln|x−1|+ ln(2x
2
+ 2x+ 1) + arctg(2x+ 1)) 3.
Z
2x3+x2+ 5x+ (x2+ 3)(x2−x+ 1)dx.
DS √1
3arctg x
√
3+ ln(x
2
−x+ 1) + √2
3arctg
2x−1
√
3 ) 4.
Z
x4+x2+ x(x−2)(x+ 2)dx.
(DS x
2
2 −
4ln|x|+ 21
8 ln|x−2|+ 21
(36)5.
Z
dx
x(x−1)(x2−x+ 1)2
(DS ln
x−1
x − 10 √ 3arctg
2x−1
√
3
−
3
2x−1 x2−x+ 1)
6.
Z
x4 −x2+ 1
(x2−1)(x2+ 4)(x2−2)dx.
(DS −
10ln
xx−+ 11
+ 20arctg x 2+ √ 2ln x− √ x+ √ ) 7. Z
3x2+ 5x+ 12 (x2+ 3)(x2+ 1)dx.
(DS −
4ln(x
2
+ 3)− √ arctg x √ + 4ln(x
+ 1) +9
2arctgx) 8.
Z
(x4+ 1)dx x5+x4 −x3−x2
(DS ln|x|+ x+
1
2ln|x−1| −
2ln|x+ 1|+ x+ 1) 9.
Z
x3+x+ x4−1 dx.
(DS
4ln|x−1|+
4ln|x+ 1| −
2arctgx) 10.
Z
x4
1−x4dx.
(DS −x+ ln
xx+ 1−1
+1 2arctgx) 11. Z
3x+
(x2+ 2x+ 2)2dx.
(DS 2x−1
(37)12.
Z
x4−2x2+ (x2−2x+ 2)2dx.
(DS x+ 3−x
x2−2x+ 2 + ln(x
−2x+ 2) + arctg(x−1)) 13.
Z
x2+ 2x+ 7
(x−2)(x2+ 1)3dx.
(DS 5ln|x
2
−2| −
10ln|x
2
+ 1|+ 1−x x2+ 1 −
11
5 arctgx) 14.
Z
x2
(x+ 2)2(x+ 1)dx.
(DS
x+ + ln|x+ 1|) 15.
Z x2+ 1
(x−1)3(x+ 3)dx.
(DS −
4(x−1)2 −
3 8(x−1) +
5 32ln
x−1
x+
)
16.
Z
dx x5−x2
(DS x +
1 6ln
(x−1)2
x2+x+ 1 +
1
√
3arctg 2x+
√
3 ) 17.
Z
3x2+ 8
x3+ 4x2 + 4xdx.
(DS ln|x|+ ln|x+ 2|+ 10 x+ 2) 18.
Z
2x5+ 6x3+ 1
x4+ 3x2 dx.
(DS x2−
3x −
√
3arctg x
√
(38)19.
Z
x3+ 4x2−2x+ x4+x dx.
(DS ln|x|(x
2−x+ 1)
(x+ 1)2 +
2
√
3arctg
2x−1
√
3 ) 20.
Z
x3−3
x4+ 10x2+ 25dx.
(DS 2ln(x
2
+ 5) + 25−3x 10(x2 + 5)−
3 10
√
5arctg x
√
5)
Chı’ dˆa˜n. x4+ 10x2+ 25 = (x2+ 5)2
10.2.2 T´ıch phˆan mˆo t sˆo´ h`am vˆo ty’ do.n gia’n Mˆo.t sˆo´ t´ıch phˆan h`am vˆo ty’ thu.`o.ng g˘a.p c´o thˆe’ t´ınh du.o c b˘a`ng phu.o.ng ph´ap h˜u.u ty’ h´oa h`am du.´o.i dˆa´u t´ıch phˆan Nˆo.i dung cu’a phu.o.ng ph´ap n`ay l`a t`ım mˆo.t ph´ep biˆe´n dˆo’i du.a t´ıch phˆan d˜a cho cu’a h`am vˆo ty’ vˆe` t´ıch phˆan h`am h˜u.u ty’ Trong tiˆe´t n`ay ta tr`ınh b`ay nh˜u.ng ph´ep dˆo’i biˆe´n cho ph´ep h˜u.u ty’ h´oa dˆo´i v´o.i mˆo.t sˆo´ l´o.p h`am vˆo ty’ quan tro.ng nhˆa´t Ta quy u.´o.c k´y hiˆe.u R(x1, x2, ) hay r(x1, x2, ) l`a h`am h˜u.u
ty’ dˆo´i v´o.i mˆo˜i biˆe´nx1, x2, , xn.
I.T´ıch phˆan c´ac h`am vˆo ty’ phˆan tuyˆe´n t´ınh. T´ıch phˆan da.ng
Z
Rx,ax+b cx+d
p1
, ,ax+b cx+d
pn
dx (10.8)
trong d´o n ∈ N; p1, , pn ∈ Q; a, b, c∈ R; ad−bc 6= du.o c h˜u.u ty’
h´oa nh`o ph´ep dˆo’i biˆe´n
ax+b cx+d =t
m
o.’ dˆay m l`a mˆa˜u sˆo´ chung cu’a c´ac sˆo´ h˜u.u ty’ p1, , pn.
II T´ıch phˆan da ng
Z
R(x,
√
(39)c´o thˆe’ h˜u.u ty’ h´oa nh`o ph´ep thˆe´ Euler: (i)
√
ax2+bx+c=±√ax±t, nˆe´u a >0;
(ii)
√
ax2+bx+c=±xt±√c, nˆe´uc >0;
(iii)√ax2+bx+c=±(x−x 1)t
√
ax2+bx+c=±(x−x 2)t
trong d´ox1 v`ax2 l`a c´ac nghiˆe.m thu c kh´ac cu’a tam th´u.c bˆa.c hai
ax2+nbx+c (Dˆa´u o.’ c´ac vˆe´ pha’i cu’a d˘a’ng th´u.c c´o thˆe’ lˆa´y theo tˆo’ ho p t`uy ´y)
III T´ıch phˆan cu’a vi phˆan nhi th´u.c D´o l`a nh˜u.ng t´ıch phˆan da.ng
Z
xm(axn+b)pdx (10.10) d´o a, b∈R,m, n, p ∈Qv`aa= 0,6 b6= 0, n6= 0,p6= 0; biˆe’u th´u.c xm(zxn+b)p
du.o c go.i l`a vi phˆan nhi th´u.c
T´ıch phˆan vi phˆan nhi th´u.c (10.10) du.a du.o c vˆe` t´ıch phˆan h`am h˜u.u ty’ ba tru.`o.ng ho p sau dˆay:
1) p l`a sˆo´ nguyˆen, 2) m+
n l`a sˆo´ nguyˆen, 3) m+
n +p l`a sˆo´ nguyˆen
D- i.nh l´y (Trebu.s´ep) T´ıch phˆan vi phˆan nhi th´u.c (10.10) biˆe’u diˆ˜ne du.o..c du.´o.i da.ng h˜u.u ha.n nh`o c´ac h`am so cˆa´p (t´u.c l`a du.a du.o c vˆe` t´ıch phˆan h`am h˜u.u ty’ hay h˜u.u ty’ h´oa du.o c) v`a chı’ ´ıt nhˆa´t mˆo.t trong ba sˆo´p, m+
n ,
m+
n +p l`a sˆo´ nguyˆen. 1) Nˆe´up l`a sˆo´ nguyˆen th`ı ph´ep h˜u.u ty’ h´oa s˜e l`a
x=tN
trong d´o N l`a mˆa˜u sˆo´ chung cu’a c´ac phˆan th´u.c m v`a n. 2) Nˆe´u m+
(40)trong d´o M l`a mˆa˜u sˆo´ cu’ap. 3) Nˆe´u m+
n +pl`a sˆo´ nguyˆen th`ı d˘a.t a+bx−n=tM d´o M l`a mˆa˜u sˆo´ cu’ap.
C ´AC V´I DU. V´ı du 1. T´ınh
1) I1 =
Z
x+
√
x2+√6x
x(1 +√3 x) dx , 2) I2=
Z
dx
3
p
(2 +x)(2−x)5·
Gia’i. 1) T´ıch phˆan d˜a cho c´o da.ng I, d´o p1 = 1, p2 =
1 3, p3 =
1
6 Mˆa˜u sˆo´ chung cu’a p1, p2, p3 l`a m = Do d´o ta d˘a.t x = t
6
Khi d´o:
I =
Z
t6+t4+t t6(1 +t2)t
5
dt=
Z
t5+t3+ 1 +t2 dt
=
Z
t3dt+
Z
dt +t2 =
3
3
√
x2+ 6arctg√6
x+C. 2) B˘a`ng ph´ep biˆe´n dˆo’i so cˆa´p ta c´o
I2=
Z
3
r
2−x +x
dx (2−x)2 ·
D´o l`a t´ıch phˆan da.ng I Ta d˘a.t 2−x +x =t
3
v`a thu du.o c
x= 21−t
3
1 +t3, dx=−12
t2dt
(41)T`u d´o I2 =−12
Z
t3(t3+ 1)2dt
16t6(t3+ 1)2 =−
3
Z
dt t3 =
3
3
r2 +x
2−x
2
+C. N
V´ı du 2. T´ınh c´ac t´ıch phˆan 1) I1=
Z dx
x
√
x2+x+ 1 , 2) I2 =
Z dx
(x−2)
√
−x2+ 4x−3,
3) I3=
Z
dx (x+ 1)
√
1 +x−x2 ,·
Gia’i. 1) T´ıch phˆan I1 l`a t´ıch phˆan da.ng II v`a a= >0 nˆen ta su.’
du.ng ph´ep thˆe´ Euler (i)
√
x2+x+ =x+t, x2 +x+ =x2+ 2tx+t2
x= t
2−
1 1−2t,
√
x2+x+ =x+t= −t
+t−1 1−2t dx= 2(−t
2
+t−1) (1−2t)2 dt.
T`u d´o I1 =
Z
dt
t2−1 = ln
11 +−tt
+C = ln
1 +x−
√
x2 +x+ 1
1−x+
√
x2 +x+ 1
+C.
2) Dˆo´i v´o.i t´ıch phˆan I2 (da.ng II) ta c´o
−x2+ 4x−3 =−(x−1)(x−3) v`a d´o ta su.’ du.ng ph´ep thˆe´ Euler (iii):
√
−x2+ 4x−3 =t(x−1).
Khi d´o
−(x−1)(x−3) =t2(x−1)2, −(x−3) =t2(x−1), t =
r
3−x x−1, x= t
2+ 3
t2+ 1,
√
−x2+ 4x−3 =t(x−1) = 2t
t2+ 1
(42)v`a thu du.o..c I2 =
Z
dt
t2−1 = ln
11 +−tt+C = ln
√
x−1−√3−x
√
x−1 +√3−x
+C.
3) Dˆo´i v´o.i t´ıch phˆan I3 (da.ng III) ta c´o C = > Ta su.’ du.ng
ph´ep thˆe´ Euler (ii) v`a
√
1 +x−x2 =tx−1, 1 +x−x2
=t2x2−2tx+ 1, x= 2t+
t2+ 1 ,
√
1 +x−x2=tx−1 = t
2+t−1
t2+ 1 ,
t= +
√
1 +x−x2
x , dx =
−2(t2+t−1)
(t2+ 1)2 ·
Do d´o I3 =−2
Z
dt
t2+ 2t+ 2 =−2
Z
d(t+ 1)
1 + (t+ 1)2 =−2arctg(t+ 1) +C
=−2arctg1 +x+
√
1 +x−x2
x +C. N V´ı du 3. T´ınh c´ac t´ıch phˆan
1) I1 =
Z √
x
(1 +√3x)2dx, x>0; 2) I2 =
Z √
x4
s
1−√1
x3
dx; 3) I3 =
Z
dx x2p3
(1 +x3)5 ·
Gia’i. 1) Ta c´o
I1=
Z
x12 +x
3−2dx,
trong d´o m = 2, n =
1
3, p = −2, mˆa˜u sˆo´ chung cu’a m v`a n b˘a`ng V`ıp=−2 l`a sˆo´ nguyˆen, ta ´ap du.ng ph´ep dˆo’i biˆe´nx=t6 v`
a thu du.o c I1 =
Z
t8
(1 +t2)2dt =
Z
t4 −2t2+ 3− 4t
2+ 3
(1 +t2)2
dt =
5t
5
−4t3+ 18t−18
Z
dt +t2 −6
Z
t2
(43)V`ı
Z
t2dt
(1 +t2)2 =−
1
Z
td 1 +t2
=− t
2(1 +t2) +
1 2arctgt nˆen cuˆo´i c`ung ta thu du.o c
I1 =
6 5x
5/6
−4x1/2+ 18x1/6+ 3x
1/6
1 +x1/3 −21arctgx 1/6
+C. 2) Ta viˆe´tI2 du.´o.i da.ng
I2 =
Z
x12 1−x−
2
1
4dx.
O’ dˆay m =
2, n=− 2, p=
1 v`a
m+
n =−1 l`a sˆo´ nguyˆen v`a ta c´o tru.`o.ng ho..p th´u hai Ta su.’ du.ng ph´ep dˆo’i biˆe´n
1− √1
x3 =t
.
Khi d´o x= (1−t4)−23, dx=
8 3(1−t
4
)−53t3dt v`a vˆa.y
I2 =
8
Z
t4
(1−t4)2dt=
2
Z
td 1−t4
=
h t
1−t4 −
Z
dt 1−t2
i
= 2t 3(1−t4) −
1
Z h 1
1−t2 +
1 +t2
i
dt = 2t
3(1−t4) −
1 6ln
1 +1−tt−
3arctgt+C, d´o t= 1−x−3/21/4.
3) Ta viˆe´tI3 du.´o.i da.ng
I3 =
Z
x−2(1 +x3)−53dx.
O’ dˆay m =−2, n = 3, p=−5
3 v`a
m+
n +p=−2 l`a sˆo´ nguyˆen Do vˆa.y ta c´o tru.`o.ng ho p th´u ba Ta thu c hiˆe.n ph´ep dˆo’i biˆe´n
(44)T`u d´o
x3 =
t3−1, +x
= t
3
t3−1, x= (t −
1)−13
dx=−t2(t3−1)−43dt, x−2 = (t3−1)
3.
Do vˆa.y I3 =−
Z
(t3−1)2/3
t3
t3−1
−5/3
t2(t3−1)−43dt=
Z 1−t3
t3 dt
=
Z
t−3dt−
Z
dt = t −2
−2−t+C =C−
1 + 2t3
2t3
=C− + 3x
3
2xp3
(45)B `AI T ˆA P
T´ınh c´ac t´ıch phˆan (1-15) 1.
Z
dx
√
2x−1−√3
2x−1 (DS u3+3
2u
2
+ 3u+ ln|u−1|, u6 = 2x−1) 2.
Z xdx
(3x−1)√3x−1
(DS
3x−2
√
3x−1) 3.
Z r
1−x +x
dx x
(DS 1−
√
1−x2
x −arc sinx) 4.
Z
3
r
x+ x−1
dx x+ (DS −1
2ln
(1−t)2
1 +t+t2 +
√
3arctg2t√+
3 , t=
3
r
x+ x−1) 5.
Z √
x+ 1−√x−1
√
x+ +√x−1dx. (DS
2(x
2−
x
√
x2−1 + ln|x+√x2−1|)
6.
Z
xdx
√
x+ 1−√3
x+ (DS
h1
9u
9
+1 8u
8
+1 7u
7
+1 6u
6
+1 5u
5
+ 4u
4i
(46)7.
Z
(x−2)
r
1 +x 1−xdx.
(DS 1−1
2x
√
1−x2−
2arc sinx) 8.
Z
3
r
x+ x−1
dx (x−1)3
(DS 16
3
rx+ 1
x−1
4
−
28
3
rx+ 1
x−1
3 ) 9. Z dx p
(x−1)3(x−2) (DS
r
x−2 x−1)
Chı’ dˆa˜n. Viˆe´t p(x−1)3(x−2) = (x− 1)(x −2)
r
x−1 x−2, d˘a.t t=
r
x−1 x−2 10.
Z
dx
3
p
(x−1)2(x+ 1)
(DS 2ln
u2+u+ 1
u2−2u+ 1 −
√
3arctg2u√+
3 , u
3
= x+ x−1) 11.
Z
dx
3
p
(x+ 1)2(x−1)4 (DS
3
3
r
1 +x x−1) 12.
Z
dx
4
p
(x−1)3(x+ 2)5 (DS
4
4
r
x−1 x+ 2) 13.
Z
dx
3
p
(x−1)7(x+ 1)2 (DS
3 16
3x−5 x−1
3
r
x+ x−1) 14.
Z
dx
6
p
(x−7)7(x−5)5 (DS −3
6
r
x−5 x−7) 15.
Z
dx
n
p
(x−a)n+1(x−b)n−1, a 6=b. (DS
n b−a
n
r
(47)16.
Z √
x+ 1−√x−1
√
x+ +√x−1dx. (DS x
2
3 −
x√x2−1
2 +
1
2ln|x+
√
x2−1|)
Su.’ du.ng c´ac ph´ep thˆe´ Euler dˆe’ t´ınh c´ac t´ıch phˆan sau dˆay (17-22) 17.
Z
dx x
√
x2+x+ 1 (DS ln
1 +x−
√
x2+x+ 1
1−x+
√
x2+x+ 1
) 18. Z dx
(x−2)√−x2+ 4x−3 (DS ln
√
x−1−√3−x
√
x−1 +√3−x
) 19. Z dx
(x+ 1)√1 +x−x2 (DS.−2arctg
1 +x+
√
1 +x−x2
x )
20.
Z
dx
(x−1)√x2+x+ 1
(DS
√
3 ln
x−1
3 + 3x+ 2p3(x2 +x+ 1)
)
21.
Z
(x−1)dx
(x2+ 2x)√x2+ 2x (DS
1 + 2x
√
x2+ 2x)
22.
Z
5x+
√
x2+ 2x+ 5dx.
(DS
√
x2+ 2x+ 5−lnx+ +
√
x2+ 2x+ 5)
Chı’ dˆa˜n. C´o thˆe’ dˆo’i biˆe´n t= 2(x
2+ 2x+ 5)0 =x+ 1. T´ınh c´ac t´ıch phˆan cu’a vi phˆan nhi th´u.c
23.
Z
x−13(1−x1/6)−1dx. (DS 6x
6 + 3x
1
3 + 2x
1
2 + lnx
6 −1)
24.
Z
x−23(1 +x
3)−3dx. (DS −3
2(1 +x
1
3)−2)
25.
Z
x−12(1 +x
4)−10dx. (DS
9(1 +x
1
4)−9−
2(1 +x
1
(48)26.
Z
x
p
1 +
√
x2
dx. (DS
t5
5 − 2t3
3 +t
, t=
√
1 +x2/3)
27.
Z
x3(1 + 2x2)−23dx. (DS x
2+ 1
2
√
2x2+ 1)
28.
Z
dx
x4√1 +x2 (DS
1 3x
−3(2x2−1)√x2+ 1)
29.
Z
dx
x2(1 +x3)5/3 (DS −
1 8x
−1(3x+ 4)(2 +x3)−23) 30.
Z
dx
√
x3p3 1 +√4
x3
(DS −23
q
(x−3
4 + 1)2)
31.
Z
dx
3
√
x2(√3 x+ 1)3 (DS −
3 2(√3x+ 1)2)
32.
Z √3x
p
3
√
x+ 1dx. (DS u7 − 5u
+u3−u2, u2= √3
x+
)
33.
Z
dx x6√x2−1
(DS u
5
5 − 2u3
3 +u, u=
√
1−x−2)
34.
Z
dx x√3
1 +x5
(DS 10 ln
u
2 −2u+ 1
u2+u+ 1
+ √ arctg
2u+
√
3 , u
3
= +x5)
35.
Z
x7
√
1 +x2dx.
(DS u 9 − 3u7 + 3u5 − u3
3 , u
2
(49)36.
Z
dx
3
√
1 +x3
(DS 6ln
u
2+u+ 1
u2−2u+ 1
− √1
3arctg 2u+
√
3 , u
3
= +x−3)
37.
Z
dx
4
√
1 +x4
(DS 4ln
uu+ 1−1
−
2arctgu, u
4
= +x−4) 38.
Z
3
√
x−x3dx.
(DS u 2(u3+ 1) −
1 12ln
u2+ 2u+ 1
u2−u+ 1 −
1
√
3arctg
2u−1
√
3 , u
3
=x−2−1) 10.2.3 T´ıch phˆan c´ac h`am lu.o..ng gi´ac
I T´ıch phˆan da.ng
Z
R(sinx,cosx)dx (10.11) d´o R(u, v) l`a h`am h˜u.u ty’ cu’a c´ac biˆe´nu b`a v luˆon luˆon c´o thˆe’ h˜u.u ty’ h´oa du.o c nh`o ph´ep dˆo’i biˆe´n t = tgx
2, x∈(−π, π) T`u d´o sinx= 2t
1 +t2, cosx=
1−t2
1 +t2, dx=
2dt +t2 ·
Nhu.o c diˆe’m cu’a ph´ep h˜u.u ty’ h´oa n`ay l`a n´o thu.`o.ng du.a dˆe´n nh˜u.ng t´ınh to´an rˆa´t ph´u.c ta.p.
V`ı vˆa.y, nhiˆe`u tru.`o.ng ho p ph´ep h˜u.u ty’ h´oa c´o thˆe’ thu c hiˆe.n du.o c nh`o nh˜u.ng ph´ep dˆo’i biˆe´n kh´ac
II Nˆe´u R(−sinx,cosx) = −R(sinx,cosx) th`ı su.’ du.ng ph´ep dˆo’i biˆe´n
(50)v`a l´uc d´o
dx =−√ dt
1−t2
III Nˆe´u R(sinx,−cosx) = −R(sinx,cosx) th`ı su.’ du.ng ph´ep dˆo’i biˆe´n
t= sinx, dx = √ dt
1−t2, x∈
− π
2, π
.
IV Nˆe´u R(−sinx,−cosx) = R(sinx,cosx) th`ı ph´ep h˜u.u ty’ h´oa s˜e l`a t= tgx, x∈
− π
2, π
: sinx = √ t
1 +t2, cosx=
1
√
1 +t2, x= arctgt, dx=
dt +t2·
V Tru.`o.ng ho p riˆeng cu’a t´ıch phˆan da.ng (10.11) l`a t´ıch phˆan
Z
sinmxcosnxdx, m, n∈Z (10.12) (i) Nˆe´u sˆo´m le’ th`ı d˘a.tt = cosx, nˆe´un le’ th`ı d˘a.t sinx=t.
(ii) Nˆe´umv`anl`a nh˜u.ng sˆo´ ch˘a˜n khˆong ˆam th`ı tˆo´t ho.n hˆe´t l`a thay sin2x v`a cos2x theo c´ac cˆong th´u.c
sin2x=
2(1−cos 2x), cos
2
x=
2(1 + cos 2x)
(iii) Nˆe´um v`a n ch˘a˜n, d´o c´o mˆo.t sˆo´ ˆam th`ı ph´ep dˆo’i biˆe´n s˜e l`a tgx =t hay cotgx=t.
(iv) Nˆe´u m+n = −2k, k ∈ N th`ı viˆe´t biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan bo.’ i da.ng phˆan th´u.c v`a t´ach cos2x (ho˘
a.c sin2x) kho’i mˆa˜u sˆo´ Biˆe’u th´u.c dx
cos2x (ho˘a.c
dx
sin2x) du.o c thay bo.’i d(tgx) (ho˘a.c d(cotgx)) v`a ´ap du.ng ph´ep dˆo’i biˆe´n t = tgx (ho˘a.c t= cotgx)
VI T´ıch phˆan da.ng
Z
(51)B˘a`ng ph´ep dˆo’i biˆe´n sin2x=t ta thu du.o..c I =
2
Z
tα−21(1−t)
β−1
2 dt
v`a b`ai to´an du.o c quy vˆe` t´ıch phˆan cu’a vi phˆan nhi th´u.c. C ´AC V´I DU.
V´ı du 1. T´ınh t´ıch phˆan I =
Z
dx
3 sinx+ cosx+
Gia’i. D˘a.t t = tgx
2, x∈(−π, π) Khi d´o I =
Z dt
t2 + 6t+ 9 =
Z
(t+ 3)−2dt =−
t+ +C =− + tgx
2
+C. N
V´ı du 2. T´ınh
J =
Z
dx
(3 + cos 5x) sin 5x
Gia’i. D˘a.t 5x=t Ta thu du.o..c J =
5
Z
dt (3 + cost) sint
v`a (tru.`o.ng ho p II) d´o b˘a`ng c´ach d˘a.t ph´ep dˆo’i biˆe´n z = cost ta c´o J =
5
Z
dz
(z+ 3)(z2−1) =
1
Z h A
z−1+ B z−1+
C z+
i
dz =
5
Z h 1
8(z−1) − 4(z+ 1) +
1 8(z+ 3)
i
dz =
5
h1
8ln|z−1| −
4ln|z+ 1|+
8ln|z+ 3|
i
+C =
40 ln
(z−(z1)(z+ 1)+ 3)2
+C
= 40 ln
cos
2x+ cos 5x−3
(cos 5x+ 1)2
(52)
V´ı du 3. T´ınh
J =
Z
2 sinx+ cosx sin2xcosx+ cos3xdx
Gia’i. H`am du.´o.i dˆa´u t´ıch phˆan c´o t´ınh chˆa´t l`a R(−sinx,−cosx) = R(sinx,cosx). Do d´o ta su.’ du.ng ph´ep dˆo’i biˆe´n t = tgx, x∈
− π
2, π
Chia tu.’ sˆo´ v`a mˆa˜u sˆo´ cu’a biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan cho cos3x ta c´o
J =
Z
2tgx+
tg2x+ 9d(tgx) =
Z
2t+ t2+ 9dt
= ln(t2+ 9) + arctgt
+C = ln(tg2x+ 9) + arctg
tgx
3
+C. N
V´ı du 4. T´ınh
J =
Z
dx sin6x+ cos6x
Gia’i. Ap du.ng cˆong th´u´ c
cos2x=
2(1 + cos 2x), sin
2
x=
2(1−sin 2x) ta thu du.o c
cos6x+ sin6x=
4(1 + cos
2
2x) D˘a.t t = tg2x, ta t`ım du.o c
J =
Z
4dx
1 + cos22x =
Z
dt t2+ 4
= arctgt
2+C = arctg tg2x
(53)V´ı du 5. T´ınh
J =
Z
sin32 xcos
2 xdx.
Gia’i. D˘a.t z = sin2x ta thu du.o c J =
2
Z
z1/4(1−z)−14dx.
D´o l`a t´ıch phˆan cu’a vi phˆan nhi th´u.c v`a m+
n +p= 4+
1 −
1 = Do vˆa.y ta thu..c hiˆe.n ph´ep dˆo’i biˆe´n
1
z −1 =t
4
, −dz
z2 = 4t
dt, z2 = (t4+ 1)2
v`a d´o
J =−2
Z
t2
(t4+ 1)2dt.
D˘a.t t =
y ta thu du.o c J =
Z y4
(1 +y4)2dy.
Thu c hiˆe.n ph´ep t´ıch phˆan t`u.ng phˆa`n b˘a`ng c´ach d˘a.t u=y, dv= y
3
(1 +y4)2dy⇒du=dy, v=−
1 4(1 +y2)
ta thu du.o c
J = 2h− y
4(1 +y4) +
1
Z
dy +y4
i
=− y
2(1 +y4)+
(54)Dˆe’ t´ınh J1 ta biˆe’u diˆ˜n tu.e ’ sˆo´ cu’a biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan
nhu sau:
1 =
(y2+ 1)−(y2−1) v`a d´o
J1 =
1
Z
y2+ 1
y4+ 1dy−
1
Z
y2−1
y4+ 1dy
=
Z +
y2
dy y2+
y2
−
2
Z 1−
y2
dy y2+
y2
=
Z d
y+ y
y−
y + −1 Z d
y+ y
y+1 y −2 = √ 2arctg y−
y √ − √ 2ln
y+ y −
√
2 yb+1
y +
√
2
+C.
Cuˆo´i c`ung ta thu du.o..c
J =− y
2(1 +y4) +
1
√
2arctg y−
4 √ − √ 2ln y+ y − √ y+
y +
√
2
+C
trong d´o
y=
t , t =
4
r
1
z −1, z = sin
2
x. N
B `AI T ˆA P
(55)1.
Z
sin3xdx. (DS.−cosx+ cos
3
x ) 2.
Z
cos4xdx. (DS 3x + sin 2x + sin 4x 32 ) 3. Z
sin5xdx. (DS 3cos
3x− cos 5x
5 −cosx) 4.
Z
cos7xdx. (DS sinx−sin3x+3 sin
5
x
5 −
sin7x ) 5.
Z
cos2xsin2xdx. (DS x −
sin 4x 32 ) 6.
Z
sin3xcos2xdx. (DS cos
5x
5 −
cos3x
3 ) 7.
Z
cos3xsin5xdx. (DS sin
6
x
6 −
sin8x ) 8.
Z
dx
sin 2x (DS
2ln|tgx|) 9.
Z
dx cosx
3
(DS ln
tgπ
4 + x ) 10. Z
sinx+ cosx
sin 2x dx. (DS h ln tgx + ln tgπ
4 + x i ) 11. Z
sin2x
cos6xdx. (DS
tg5x
5 + tg3x
3 )
Chı’ dˆa˜n. D˘a.t t= tgx 12.
Z
sin 3xcosxdx. (DS −1
8(cos 4x+ cos 2x)) 13.
Z
sinx 3cos
2x
3 dx. (DS 2cos
x −
1 2cosx) 14.
Z
cos3x
sin2xdx. (DS −
sinx −sinx) 15.
Z
sin3x
cos2xdx. (DS
1
(56)16.
Z
cos3x
sin5xdx. (DS −
cotg4x ) 17.
Z
sin5x
cos3xdx. (DS
1
2 cos2x + ln|cosx| −
cos2x ) 18.
Z
tg5xdx. (DS tg
4x
4 − tg2x
2 −ln|cosx|)
Trong c´ac b`ai to´an sau dˆay h˜ay ´ap du.ng ph´ep dˆo’i biˆe´n t= tgx
2, sinx= 2t
1 +t2, cosx=
1−t2
1 +t2, x= 2arctgt, dx =
2dt +t2
19.
Z
dx
3 + cosx (DS 4ln
2 + tgx 2−tgx ) 20. Z dx
sinx+ cosx (DS
√
2ln
tgx
2 + π ) 21. Z
3 sinx+ cosx sinx+ cosxdx.
(DS
13(12x−5 ln|2tgx+ 3| −5 ln|cosx|) 22.
Z
dx
1 + sinx+ cosx (DS ln
1 + tgx ) 23. Z dx
(2−sinx)(3−sinx) (DS √2
3arctg 2tgx
2 −1
√
3
−√1
2arctg 3tgx
2 −1
√
2 ) T´ınh c´ac t´ıch phˆan da.ng
Z
sinmxcosnxdx, m, n∈N 24.
Z
sin3xcos5xdx. (DS 8cos
8x−1
6cos
(57)25.
Z
sin2xcos4xdx. (DS 16 x−
1
4sin 4x+ 3sin
2
2x) 26.
Z
sin4xcos6xdx.
(DS
211sin 8x−
1
28 sin 4x+
1 5·26 sin
5
2x+ 28x)
27.
Z
sin4xcos2xdx. (DS x 16 −
sin 4x 64 −
sin22x 48 ) 28.
Z
sin4xcos5xdx. (DS 5sin
5
x−
7sin
7
x+1 9sin
9
x) 29.
Z
sin6xcos3xdx. (DS 7sin
7
x−
9sin
9
x) T´ınh c´ac t´ıch phˆan da.ng
Z
sinαxcosβxdx, α, β ∈Q 30.
Z
sin3x
cosx√3cosxdx. (DS
3 5cosx
3
√
cos2x+
3
√
cosx)
Chı’ dˆa˜n. D˘a.t t= cosx. 31.
Z
dx
3
√
sin11xcosx (DS
− 3(1 + 4tg
2x)
8tg2x·p3
tg2x)
Chı’ dˆa˜n. D˘a.t t= tgx 32.
Z
sin3x
3
√
cos2xdx. (DS
3
√
cosx 7cos
2x−1)
33.
Z
3
√
cos2xsin3
xdx. (DS −3
5cos
5/3x+
11cos 11 x) 34. Z dx √
sin3xcos5x (DS
4
√
tgx) 35.
Z
sin3x
5
√
cosxdx. (DS 14cos
14
5 x−
4cos
4
(58)T´ıch phˆan x´ac di.nh Riemann
11.1 H`am kha’ t´ıch Riemann v`a t´ıch phˆan x´ac di.nh 58
11.1.1 D- i.nh ngh˜ıa 58 11.1.2 D- iˆe`u kiˆe.n dˆe’ h`am kha’ t´ıch 59 11.1.3 C´ac t´ınh chˆa´t co ba’n cu’a t´ıch phˆan x´ac di.nh 59
11.2 Phu.o.ng ph´ap t´ınh t´ıch phˆan x´ac d i.nh 61 11.3 Mˆo.t sˆo´ ´u.ng du ng cu’ a t´ıch phˆan x´ac d i.nh 78
11.3.1 Diˆe.n t´ıch h`ınh ph˘a’ng v`a thˆe’ t´ıch vˆa.t thˆe’ 78 11.3.2 T´ınh dˆo d`ai cung v`a diˆe.n t´ıch m˘a.t tr`on xoay 89
11.4 T´ıch phˆan suy rˆo.ng 98
(59)11.1 H`am kha’ t´ıch Riemann v`a t´ıch phˆan x´ac di.nh
11.1.1 D- i.nh ngh˜ıa
Gia’ su.’ h`am f(x) x´ac di.nh v`a bi ch˘a.n trˆen doa.n [a, b] Tˆa.p ho p h˜u.u ha.n diˆe’mxk nk=0:
a=x0 < x1 < x2 <· · ·< xn−1 < xn=b
du.o c go.i l`a ph´ep phˆan hoa.ch doa.n [a, b] v`a du.o..c k´y hiˆe.u l`a T[a, b] hay do.n gia’n l`aT
D- i.nh ngh˜ıa 11.1.1. Gia’ su.’ [a, b] ⊂ R, T[a, b] = {a = x0 < x1 <
· · ·< xn =b}l`a ph´ep phˆan hoa.ch doa.n [a, b] Trˆen mˆo˜i doa.n [xj−1, xj],
j = 1, , n ta cho.n mˆo.t c´ach t`uy ´y diˆe’m ξj v`a lˆa.p tˆo’ng S(f, T, ξ) =
n
X
j=1
f(ξj)∆xj, ∆xj =xj −xj−1
go.i l`a tˆo’ng t´ıch phˆan (Riemann) cu’a h`am f(x) theo doa.n [a, b] tu.o.ng ´
u.ng v´o.i ph´ep phˆan hoa.ch T v`a c´ach cho.n diˆe’m ξj,j = 1, n Nˆe´u gi´o.i ha.n
lim
d(T)→0S(f, T, ξ) = limd(T)→0
n
X
j=1
f(ξj)∆xj (11.1)
tˆ` n ta.i h˜u.u ha.n khˆong phu thuˆo.c v`ao ph´ep phˆan hoa.cho T v`a c´ach cho.n c´ac diˆe’m ξj, j = 1, n th`ı gi´o.i ha.n d´o du.o c go.i l`a t´ıch phˆan x´ac di.nh cu’a h`am f(x).
(60)11.1.2 D- iˆ`u kiˆe e.n dˆe’ h`am kha’ t´ıch
D- i.nh l´y 11.1.1. Nˆe´u h`amf(x)liˆen tu c trˆen doa n[a, b]th`ıf ∈ R[a, b].
Hˆe qua’. Mo i h`am so cˆa´p dˆ`u kha’ t´ıch trˆen doa.n bˆa´t k`y n˘a`m tro.ne trong tˆa p ho p x´ac di.nh cu’a n´o.
D- i.nh l´y 11.1.2. Gia’ su.’ f : [a, b] →R l`a h`am bi ch˘a.n v`a E ⊂ [a, b]
l`a tˆa p ho p c´ac diˆe’m gi´an doa.n cu’a n´o H`am f(x) kha’ t´ıch Riemann trˆen doa n [a, b] khi v`a chı’ tˆa p ho..p E c´o dˆo - khˆong, t´u.c l`a E
tho’a m˜an diˆ`u kiˆe.n:e ∀ε >0, tˆ` n ta.i hˆe dˆe´m du.o c (hay h˜u.u ha.n) c´aco khoa’ng (ai, bi) sao cho
E ⊂
∞
[
i=1
(ai, bi), ∞
X
i=1
(bi−ai) = lim N→∞
N
X
i=1
(bi−ai)< ε.
Nˆe´u c´ac diˆ`u kiˆe.n cu’a di.nh l´y 11.1.2 (go.i l`a tiˆeu chuˆa’n kha’ t´ıche Lo.be (Lebesgue)) du.o c tho’a m˜an th`ı gi´a tri cu’a t´ıch phˆan
b
Z
a
f(x)dx khˆong phu thuˆo.c v`ao gi´a tri cu’a h`amf(x) ta.i c´ac diˆe’m gi´an doa.n v`a ta.i c´ac diˆe’m d´o h`am f(x) du.o..c bˆo’ sung mˆo.t c´ach t`uy ´y nhu.ng pha’i ba’o to`an t´ınh bi ch˘a.n cu’a h`am trˆen [a, b].
11.1.3 C´ac t´ınh chˆa´t co ba’n cu’a t´ıch phˆan x´ac di.nh
1) a
Z
a
f(x)dx=
2) b
Z
a
f(x)dx=−
a
Z
b
f(x)dx.
(61)4) Nˆe´uf ∈ R[a, b] th`ı|f(x)| ∈ R[a, b] v`a
b
Z
a
f(x)dx
6
b
Z
a
|f(x)|dx, a < b. 5) Nˆe´uf, g ∈ R[a, b] th`ıf(x)g(x)∈ R[a, b]
6) Nˆe´uf g ∈ D[a, b] v`a ]c, d]⊂[a, b] th`ıf(x)g(x)∈ R[c, d]
7) Nˆe´u f ∈ R[a, c], f ∈ R[c, b] th`ıf ∈ R[a, b], d´o diˆe’m c c´o thˆe’ s˘a´p xˆe´p t`uy ´y so v´o.i c´ac diˆe’m a v`a b.
Trong c´ac t´ınh chˆa´t sau dˆay ta luˆon luˆon xem a < b. 8) Nˆe´uf ∈ R[a, b] v`a f >0 th`ı
b
Z
a
f(x)dx>0 9) Nˆe´uf, g ∈ R[a, b] v`af(x)>g(x)∀x∈[a, b] th`ı
b
Z
a
f(x)dx>
b
Z
a
g(x)dx.
10) Nˆe´uf ∈ C[a, b],f(x)> 0,f(x) 6≡0 trˆen [a, b] th`ı∃K >0 cho
b
Z
a
f(x)dx>K.
11) Nˆe´uf, g∈ R[a, b],g(x)>0 trˆen [a, b] M = sup
[a,b]
f(x), m= inf
[a,b]f(x)
th`ı
m b
Z
a
g(x)dx6
b
Z
a
f(x)g(x)dx≤M b
Z
a
(62)11.2 Phu.o.ng ph´ap t´ınh t´ıch phˆan x´ac di.nh
Gia’ su.’ h`am f(x) kha’ t´ıch trˆen doa.n [a, b] H`am
F(x) = x
Z
a
f(x)dt, a 6x 6b
du.o c go.i l`a t´ıch phˆan v´o.i cˆa.n trˆen biˆe´n thiˆen
D- i.nh l´y 11.2.1. H`am f(x) liˆen tu c trˆen doa n [a, b]l`a c´o nguyˆen h`am trˆen doa n d´o Mˆo t c´ac nguyˆen h`am cu’a h`am f(x) l`a h`am
F(x) = x
Z
a
f(t)dt. (11.2)
T´ıch phˆan v´o.i cˆa.n trˆen biˆe´n thiˆen du.o c x´ac di.nh dˆo´i v´o.i mo.i h`am f(x) kha’ t´ıch trˆen [a, b] Tuy nhiˆen, dˆe’ h`amF(x) da.ng (11.2) l`a nguyˆen h`am cu’a f(x) diˆ`u cˆo´t yˆe´u l`ae f(x) pha’i liˆen tu.c.
Sau dˆay l`a di.nh ngh˜ıa mo.’ rˆo.ng vˆe` nguyˆen h`am
D- i.nh ngh˜ıa 11.2.1. H`am F(x) du.o c go.i l`a nguyˆen h`am cu’a h`am f(x) trˆen doa.n [a, b] nˆe´u
1) F(x) liˆen tu.c trˆen [a, b].
2) F0(x) =f(x) ta.i c´ac diˆe’m liˆen tu.c cu’af(x)
Nhˆa n x´et. H`am liˆen tu.c trˆen doa.n [a, b] l`a tru.`o.ng ho..p riˆeng cu’a h`am liˆen tu.c t`u.ng doa.n Do d´o dˆo´i v´o.i h`am liˆen tu.c di.nh ngh˜ıa 11.2.1 vˆ` nguyˆen h`am l`a tr`e ung v´o.i di.nh ngh˜ıa c˜u tru.´o.c dˆay v`ıF0(x) =f(x)
(63)nguyˆen h`am l`a
F(x) = x
Z
a
f(t)dt.
D- i.nh l´y 11.2.3. (Newton-Leibniz) Dˆo´i v´o.i h`am liˆen tu c t`u.ng doa n trˆen [a, b] ta c´o cˆong th´u.c Newton-Leibniz:
b
Z
a
f(x)dx=F(b)−F(a) (11.3)
trong d´o F(x) l`a nguyˆen h`am cu’a f(x) trˆen [a, b] v´o.i ngh˜ıa mo.’ rˆo ng.
D- i.nh l´y 11.2.4 (Phu.o.ng ph´ap dˆo’i biˆe´n) Gia’ su.’ :
(i) f(x) x´ac di.nh v`a liˆen tu.c trˆen [a, b],
(ii) x = g(t) x´ac di.nh v`a liˆen tu.c c`ung v´o.i da.o h`am cu’a n´o trˆen doa n [α, β], d´o g(α) =a, g(β) =bv`a a6g(t)6b.
Khi d´o
b
Z
a
f(x)dx= β
Z
α
f(g(t))g0(t)dt (11.4) D- i.nh l´y 11.2.5 (Phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n).a Nˆe´u f(x) v`a
g(x) c´o da o h`am liˆen tu c trˆen [a, b]th`ı
b
Z
a
f(x)g0(x)dx=f(x)g(x)ba−
b
Z
a
f0(x)g(x)dx (11.5)
C ´AC V´I DU. V´ı du 1. Ch´u.ng to’ r˘a`ng trˆen doa.n [−1,1] h`am
f(x) = signx=
1 v´o.i x > 0,
0 v´o.i x= 0, x∈[−1,1]
(64)a) kha’ t´ıch, b) khˆong c´o nguyˆen h`am, c) c´o nguyˆen h`am mo.’ rˆo.ng.
Gia’i. a) H`am f(x) kha’ t´ıch v`ı n´o l`a h`am liˆen tu.c t`u.ng doa.n b) Ta ch´u.ng minh h`am f(x) khˆong c´o nguyˆen h`am theo ngh˜ıa c˜u Thˆa.t vˆa.y mo.i h`am da.ng
F(x) =
−x+C1 x <0
x+C2 x>0
dˆ`u c´o da.o h`am b˘a`ng signe x ∀x 6= 0, d´o C1 v`a C2 l`a c´ac sˆo´ t`uy
´
y Tuy nhiˆen, thˆa.m ch´ı h`am “tˆo´t nhˆa´t” sˆo´ c´ac h`am n`ay F(x) =|x|+C
(nˆe´u C1 = C2 = C) c˜ung khˆong c´o da.o h`am ta.i diˆe’m x = Do d´o
h`am signx (v`a d´o mo.i h`am liˆen tu.c t`u.ng doa.n) khˆong c´o da.o h`am trˆen khoa’ng bˆa´t k`y ch´u.a diˆe’m gi´an doa.n.
c) Trˆen doa.n [−1,1] h`am signx c´o nguyˆen h`am mo.’ rˆo.ng l`a h`am F(x) =|x|v`ı n´o liˆen tu.c trˆen doa.n [−1,1] v`aF0(x) =f(x) khix6=
N
V´ı du 2. T´ınh a
Z
0
√
a2−x2dx, a >0.
Gia’i. D˘a.t x= asint Nˆe´u t cha.y hˆe´t doa.n h0,π
i
th`ıx cha.y hˆe´t doa.n [0, a] Do d´o
a
Z
0
√
a2−x2dx=
π/2
Z
0
a2cos2tdt=a2 π/2
Z
0
1 + cos 2t dt
= a
2
2 π/2
Z
0
dt+a
2
2 π/2
Z
0
cos 2tdt= a
2π
4 · N V´ı du 3. T´ınh t´ıch phˆan
I = √
2/2
Z
0
r
(65)Gia’i. Ta thu..c hiˆe.n ph´ep dˆo’i biˆe´n x = cost Ph´ep dˆo’i biˆe´n n`ay tho’a m˜an c´ac diˆ`u kiˆe.n sau:e
(1) x=ϕ(t) = cost liˆen tu.c∀t ∈R (2) Khit biˆe´n thiˆen trˆen doa.n
hπ
4, π
i
th`ıxcha.y hˆe´t doa.n
h
0,
√
2
i
(3) ϕ
π
4
=
√
2 , ϕ
π
2
= (4) ϕ0(t) = −sint liˆ
en tu.c ∀t∈hπ
4, π
i
Nhu vˆa.y ph´ep dˆo’i biˆe´n tho’a m˜an di.nh l´y 11.2.4 v`a d´o x= cost, dx=−sintdt,
ϕ
π
2
= 0, ϕ
π
4
=
√
2 · Nhu vˆa.y
I =
π
4
Z
−π2
cotgt
2(−sint)dt=
π
2
Z
π
4
(1 + cost)dt
=t+ sintπ/π/24 = π + 1−
√
2 ·. N V´ı du 4. T´ınh t´ıch phˆan
I = √
3/2
Z
1/2
dx x
√
1−x2·
Gia’i. Ta thu c hiˆe.n ph´ep dˆo’i biˆe´n
x= sint⇒dx= costdt v`a biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan c´o da.ng
costdt sint
√
cos2t =
dt
sint nˆe´u cost > 0,
− dt
(66)C´ac cˆa.n α v`a β cu’a t´ıch phˆan theot du.o c x´ac di.nh bo.’i
2 = sint ⇒α= π 6,
√
3
2 = sint ⇒β = π 3· (Ta c˜ung c´o thˆe’ lˆa´y α1 =
5π
6 v`a β1 = 2π
3 ) Trong ca’ hai tru.`o.ng ho p biˆe´n x= sint dˆ`u cha.y hˆe´t doa.n [e a, b] =
h1
2,
√
3
i
Ta s˜e thˆa´y kˆe´t qua’ t´ıch phˆan l`a nhu nhau Thˆa.t vˆa.y tru.`o.ng ho p th´u nhˆa´t ta c´o cost >0 v`a
I = π/3
Z
π/6
dt
sint = ln tg t
π/3
Z
π/6
= ln2 +
√
3 · Trong tru.`o.ng ho p th´u hait∈h5π
6 , 2π
3
i
ta c´o cost <0 v`a
I =−
2π/3
Z
5π/6
dt
sint =−ln tg t
2π/3 5π/6
= ln2 +
√
3
3 · N
V´ı du 5. T´ınh t´ıch phˆan
I = π/3
Z
0
xsinx cos2xdx.
Gia’i. Ta t´ınh b˘a`ng phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n.a D˘a.t
u=x⇒du=dx, dv = sinxdx
cos2x ⇒v=
(67)Do d´o
I =x·
cosx π/3 − π/3 Z dx cosx =
π cosπ
3
−ln tgx + π π/3 = 2π
3 −ln tg
π
6 + π
+ ln tgπ =
2π
3 −ln tg 5π 12 · N V´ı du 6. T´ınh t´ıch phˆan
I =
1
Z
0
x2(1−x)3dx.
Gia’i. Ta d˘a.t
u=x2, dv= (1−x)3dx⇒
du= 2xdx, v=−(1−x)
4
4 ·
Do d´o
I =−x2(1−x)
4 0+ Z
2x(1−x)
4
4 dx
| {z }
I1
= +I1.
T´ınh I1 T´ıch phˆan t`u.ng phˆ` na I1 ta c´o
I1 =
1
1
Z
0
x(1−x)4dx=−1
2x
(1−x)5
5 0+ Z
(1−x)5 dx = 0−
10
(1−x)6
6 =
60 ⇒I = 60 · N
V´ı du 7. Ap du.ng cˆong th´u.c Newton-Leibnitz dˆe’ t´ınh t´ıch phˆan´
1) I1 = 100π
Z
0
√
1−cos 2xdx, 2) I2=
Z
0
(68)Gia’i. Ta c´o
√
1−cos 2x=
√
2|sinx| Do d´o
100π
Z
0
√
1−cos 2xdx=
√
2
100π
Z
0
|sinx|dx =
√
2h π
Z
0
sinxdx−
2π
Z
π
sinxdx+
3π
Z
2π
sinxdx− . +· · ·+
100Z π
99π
sinxdx
i
=− √
2[2 + +· · ·+ 2] = 200
√
2
2) Thu c hiˆe.n ph´ep dˆo’i biˆe´n t=e−x, sau d´o ´ap du.ng phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n Ta c´oa
Z
exarc sin(e−x)dx=−
Z
arc sint t2 dt
=
tarc sint−
Z
dt t
√
1−t2
=
tarc sint+I1.
I1 =−
Z
dt t√1−t2 =
Z d1
t
r1
t
2
−1
= ln1 t +
r
1 t2 −1
+C.
Do d´o
Z
exarc sine−xdx= arc sint t + ln
1
t +
r1
t2 −1
+C =exarc sine−x+ ln(ex+
√
e2x−1) +C Nguyˆen h`am v`u.a thu du.o c c´o gi´o.i ha.n h˜u.u ha.n ta.i diˆe’m x = d´o theo cˆong th´u.c (11.3) ta c´o
1
Z
0
exarc sine−xdx=earc sine−1 −π
2 + ln(e+
√
(69)V´ı du 8. T´ınh t´ıch phˆan Dirichlet π/2
Z
0
sin(2n−1)x
sinx dx, n∈N
Gia’i. Ta c´o cˆong th´u.c +
n−1
X
k=1
cos 2kx= sin(2n−1)x sinx · T`u d´o v`a lu.u ´y r˘a`ng
π/2
Z
0
cos 2kxdx= 0, k= 1,2, , n−1 ta c´o π/2
Z
0
sin(2n−1)x sinx dx=
π 2· N B `AI T ˆA P
T´ınh c´ac t´ıch phˆan sau dˆay b˘a`ng phu.o.ng ph´ap dˆo’i biˆe´n (1-14) 1.
5
Z
0
xdx
√
1 + 3x (DS 4)
2.
ln
Z
ln
dx
ex−e−x (DS ln3
2 )
3. √
3
Z
1
(x3+ 1)dx
x2√4−x2 (DS
7
√
3 −1) D˘a.t x= sint. 4.
π/2
Z
0
dx
2 + cosx (DS π
√
(70)5.
1
Z
0
x2dx
(x+ 1)4 (DS
1 24)
6.
ln
Z
0
√
ex−1dx. (DS. 4−π )
7. √
7
Z
√
3
x3dx
3
p
(x2+ 1)2 (DS 3)
Chı’ dˆa˜n. D˘a.t t=x2+ 1.
8. e
Z
1
4
√
1 + lnx
x dx. (DS 0,8(2
4
√
2−1))
Chı’ dˆa˜n. D˘a.t t= + lnx.
9.
+√3
Z
−3
x2
√
9−x2dx. (DS. 81π
8 )
chı’ dˆa˜n. D˘a.t x= cost.
10.
3
Z
0
r
x
6−xdx. (DS
3(π−2)
2 )
Chı’ dˆa˜n. D˘a.t x= sin2t. 11.
π
Z
0
sin6x
2dx. (DS 5π 16)
Chı’ dˆa˜n. D˘a.t x= 2t
12. π/4
Z
0
cos72xdx (DS 35)
(71)13. √
2/2
Z
0
r
1 +x
1−xdx. (DS π
4 + 1−
√
2 )
Chı’ dˆa˜n. D˘a.t x= cost. 14.
29
Z
3
3
p
(x−2)2
3 +p3
(x−2)2dx. (DS +
3
√
3 π)
T´ınh c´ac t´ıch phˆan sau dˆay b˘a`ng phu.o.ng ph´ap t´ıch phˆan t`u.ng phˆ` n (15-32).a
15.
1
Z
0
x3arctgxdx (DS 6)
16. e
Z
1/e
|lnx|dx. (DS 2(1−1/e)) 17.
π
Z
0
exsinxdx. (DS 2(e
π + 1))
18.
1
Z
0
x3e2xdx. (DS e
2+ 3
8 )
19.
1
Z
0
arc sinx
√
1 +xdx. (DS π
√
2−4) 20.
π/4
Z
0
ln(1 + tgx)dx (DS πln )
21. π/b
Z
0
eaxsinbxdx. (DS b a2+b2 e
πa b + 1)
22.
1
Z
0
e−xln(ex+ 1)dx (DS −1 +e
(72)23. π/2
Z
0
sin 2x·arctg(sinx)dx. (DS π −1) 24.
2
Z
1
sin(lnx)dx. (DS sin(ln 2)−cos(ln 2) + 2)
25. π
Z
0
x3sinxdx. (DS π3−6π)
26.
2
Z
1
xlog2xdx. (DS 2−
4 ln 2)
27. a
√
7
Z
0
x3
3
√
a2+x2dx. (DS
141a3√3 a
20 )
28. a
Z
0
√
a2−x2dx. (DS. πa
4 )
29. π/2
Z
π/6
x+ sinx
1 + cosxdx. (DS π
6(1 +
√
3))
30. π/2
Z
0
sinmxcos(m+ 2)xdx (DS −
cos mπ m+ )
31. π/2
Z
0
cosmxcos(m+ 2)xdx (DS 0)
32. π/2
Z
0
cosxcos 2nxdx (DS π 4n(−1)
(73)33. T´ınh
2
Z
0
f(x)dx, d´o
f(x) =
x2 khi 06x61
2−x 16x62
b˘a`ng hai phu.o.ng ph´ap; a) su.’ du.ng nguyˆen h`am cu’a f(x) trˆen doa.n [0,2]; b) chia doa.n [0,2] th`anh hai doa.n [0,1] v`a [1,2] (DS
6) 34. Ch´u.ng minh r˘a`ng nˆe´u f(x) liˆen tu.c trˆen doa.n [−`, `] th`ı
(i) `
Z
−`
f(x)dx = `
Z
0
f(x)dx f(x) l`a h`am ch˘a˜n;
(ii) `
Z
−`
f(x)dx = f(x) l`a h`am le’
35. Ch´u.ng minh r˘a`ng ∀m, n ∈ Z c´ac d˘a’ng th´u.c sau dˆay du.o c tho’a m˜an:
(i) π
Z
−π
sinmxcosnxdx=
(ii) π
Z
−π
cosmxcosnxdx= 0, m 6=n. (iii)
π
Z
−π
sinmxsinnxdx= 0, m 6=n. 36. Ch´u.ng minh d˘a’ng th´u.c
b
Z
a
f(x)dx= b
Z
a
f(a+b−x)dx.
(74)37. Ch´u.ng minh d˘a’ng th´u.c π/2
Z
0
f(cosx)dx= π/2
Z
0
f(sinx)dx.
Chı’ dˆa˜n. D˘a.t t= π −x.
38. Ch´u.ng minh r˘a`ng nˆe´u f(x) liˆen tu.c khi x>0 th`ı a
Z
0
x3f(x2)dx=
a2
Z
0
xf(x)dx
39. Ch´u.ng minh r˘a`ng nˆe´u f(t) l`a h`am le’ th`ı x
Z
a
f(t)dt l`a h`am ch˘a˜n, t´u.c l`a
−x
Z
a
f(t)dt = x
Z
a
f(t)dt
Chı’ dˆa˜n. D˘a.t t=−xv`a biˆe’u diˆe˜n −x
Z
−a
f(t)dt= a
Z
−a +
−x
Z
a
v`a su.’ du.ng t´ınh ch˘a˜n le’ cu’a h`am f.
T´ınh c´ac t´ıch phˆan sau dˆay (40-65) b˘a`ng c´ach ´ap du.ng cˆong th´u.c Newton-Leibnitz
40.
5
Z
0
xdx
√
1 + 3x (DS 4)
41.
ln
Z
ln
dx
ex−e−x (DS
(75)42. √
3
Z
0
(x3+ 1)dx
x2√4−x2 (DS
7
√
3
−1) 43.
π/2
Z
0
dx
2 + cosx (DS π
√
3)
44.
ln
Z
0
√
ex−1dx. (DS. 4−π )
45. √
7
Z
√
3
x3dx
3
p
(x2+ 1)2 (DS 3)
46. e
Z
1
4
√
1 + lnx
x dx. (DS 0,8(2
4
√
2−1)) 47.
3
Z
−3
x2
√
9−x2dx. (DS. 81π
8 )
48.
3
Z
0
r
x
6−xdx. (DS
3(π−2)
2 )
Chı’ dˆa˜n. D˘a.t x= sin2t. 49.
4
Z
3
x2+ 3
x−2dx. (DS 11
2 + 7ln2)
50. −1
Z
−2
x+
x2(x−1)dx. (DS ln
4 −
1 2)
51.
1
Z
0
(x2+ 3x)dx
(x+ 1)(x2+ 1) (DS
(76)52.
1
Z
0
dx
√
x2+ 2x+ 2 (DS ln
2 +
√
5 +
√
2)
53.
4
Z
0
dx
1 +√2x+ (DS 2−ln 2) 54.
2
Z
1
e1x
x3dx. (DS
1 2(e−e
1
4))
55. e
Z
1
dx
x(1 + ln2x) (DS π 4)
56. e
Z
1
cos(lnx)
x dx. (DS sin 1)
57.
1
Z
0
xe−xdx. (DS 1−2
e)
58. π/3
Z
π/4
xdx
sin2x (DS
π(9−4
√
3) 36 )
59.
3
Z
1
lnxdx. (DS ln 3−2) 60.
2
Z
1
xlnxdx. (DS ln 2−
4)
61.
1/2
Z
0
arc sinxdx. (DS π 12 +
√
3 −1) 62.
π
Z
0
(77)63. π/2
Z
0
e2xcosxdx. (DS e π −
2 )
64.
2
Z
0
|1−x|dx. (DS 1) 65.
b
Z
a
|x|
x dx. (DS |b| − |a|) T´ınh c´ac t´ıch phˆan sau dˆay
66. a/b
Z
0
dx a2+b2x =
π 4ab
67.
1
Z
0
x2dx
√
4 + 2x =
√
6− 64
15
68.
2
Z
0
dx
x2+ 5x+ 4 =
1 3ln
5
69.
1
Z
0
dx
x2−x+ 1 =
2π 3√3 70.
1
Z
0
(x2+ 1)
x4+x2+ 1dx=
π 2√2 71.
pi/2
Z
0
dx
1 + cosx =
72.
1
Z
0
√
x2+ 1dx= √1
2+
2ln(1 +
√
(78)73.
1
Z
0
1− √
x23/2dx = 3π
32 D˘a.t x= sin3ϕ.
74. a
Z
0
x2
r
a−x a+xdx=
π
4 −
a2, a >0 D˘a.t x=acosϕ.
75.
2a
Z
0
√
2ax−x2dx= πa
2 D˘a.t x= 2asin2ϕ.
76.
1
Z
0
ln(1 +x) +x2 dx=
π 8ln
Chı’ dˆa˜n. D˘a.t x= tgt rˆ` i ´ap du.ng cˆong th´u.co sint+ cost =
√
2 cosπ −t
77. π
Z
0
xsinx
1 + cos2xdx =
π2
4
Chı’ dˆa˜n. Biˆe’u diˆ˜ne π
Z
0
= π/2
Z
0
+ π
Z
π/2
rˆ` i thu c hiˆe.n ph´ep dˆo’i biˆe´n trongo t´ıch phˆan t`u.π/2 dˆe´n π.
78. π
Z
−π
3
√
sinxdx=
79. π
Z
−π
(79)80. π/2
Z
−π/2
(cos2x+x2sinx)dx= π
81.
1
Z
−1
(ex+e−x)tgxdx=
82. pi/2
Z
0
sinxsin 2x sin 3xdx =
83. e
Z
1/e
|lnx|dx = 2(1−e−1) 84.
π
Z
0
excos2xdx= 5(e
π− 1)
85. e
Z
1
(1 + lnx)2dx= 2e−1
Chı’ dˆa˜n. T´ıch phˆan t`u.ng phˆ` n.a
11.3 Mˆo.t sˆo´ ´u.ng du ng cu’ a t´ıch phˆan x´ac di.nh
11.3.1 Diˆe.n t´ıch h`ınh ph˘a’ng v`a thˆe’ t´ıch vˆa.t thˆe’ 1Diˆe.n t´ıch h`ınh ph˘a’ng
(80)x=a, x=bv`a tru.c Ox du.o..c t´ınh theo cˆong th´u.c
SD = b
Z
a
f(x)dx. (11.6)
Nˆe´u f(x)60 ∀x∈[a, b] th`ı SD =−
b
Z
a
f(x)dx (11.6*)
Nˆe´u d´ay h`ınh thang cong n˘a`m trˆen tru.cOy th`ı
SD = d
Z
c
g(y)dy, x=g(y), y ∈[c, d] 2+Nˆe´u du.`o.ng congL
du.o c cho bo.’i phu.o.ng tr`ınh tham sˆo´x=ϕ(t), y=ψ(t),t∈[α, β] th`ı
SD = β
Z
α
ψ(t)ϕ0(t)dt (11.7)
3+ Diˆ
e.n t´ıch cu’a h`ınh qua.t gi´o.i ha.n bo.’i du.`o.ng cong cho du.´o.i da.ng to.a dˆo cu cρ=f(ϕ) v`a c´ac tiaϕ=ϕ0 v`aϕ=ϕ1 du.o c t´ınh theo cˆong
th´u.c
SQ=
ϕ1
Z
ϕ0
[f(ϕ)]2dϕ. (11.8)
4+ Nˆe´u miˆ`ne D ={(x, y) :a6x6b;f1(x)6y 6f2(x)} th`ı
SD = b
Z
a
(81)2 Thˆe’ t´ıch vˆa t thˆe’
1+Nˆe´u biˆe´t du.o..c diˆe.n t´ıchS(x) cu’a thiˆe´t diˆe.n ta.o nˆen bo’ i vˆ a.t thˆe’ v`a m˘a.t ph˘a’ng vuˆong g´oc v´o.i tru.c Ox ta.i diˆe’m c´o ho`anh dˆo. x th`ı xthay dˆo’i mˆo.t da.i lu.o ng b˘a`ng dx th`ı vi phˆan cu’a thˆe’ t´ıch b˘a`ng
dv=S(x)dx,
v`a thˆe’ t´ıch to`an vˆa.t thˆe’ du.o c t´ınh theo cˆong th´u.c
V = b
Z
a
S(x)dx (11.10)
trong d´o [a, b] l`a h`ınh chiˆe´u vuˆong g´oc cu’a vˆa.t thˆe’ lˆen tru.c Ox. 2+ Nˆe´u vˆ
a.t thˆe’ du.o c ta.o nˆen ph´ep quay h`ınh thang cong gi´o.i ha.n bo.’i du.`o.ng cong y = f(x), f(x) > ∀x ∈ [a, b], tru.c Ox v`a c´ac du.`o.ng th˘a’ng x =a, x =b xung quanh tru.c Ox th`ı diˆe.n t´ıch vˆa t thˆe’ tr`on xoay d´o du.o c t´ınh theo cˆong th´u.c
Vx =π b
Z
a
[f(x)]2dx. (11.11)
Nˆe´u quay h`ınh thang cong xung quanh tru.c Oy th`ı vˆa.t tr`on xoay thu du.o c c´o thˆe’ t´ıch
Vy =π d
Z
c
[x(y)]2dy, x=x(y); [c, d] =prOyV. (11.12)
3+ Nˆe´u h`am y=f(x
) du.o c cho bo.’i c´ac phu.o.ng tr`ınh tham sˆo´ x=x(t)
(82)tho’a m˜an nh˜u.ng diˆ`u kiˆe.n n`ao d´o th`ı thˆe’ t´ıch vˆa.t thˆe’ ta.o nˆen bo.’ie ph´ep quay h`ınh thang cong xung quanh tru.c Ox b˘a`ng
Vx =π β
Z
α
y2(t)x0(t)dt (11.13)
4+ Nˆ
e´u h`ınh thang cong du.o c gi´o.i ha.n bo.’i c´ac du.`o.ng cong
y1(x) 6y2(x) ∀x ∈[a, b], d´o y1(x) v`a y2(x) liˆen tu.c trˆen [a, b]
th`ı thˆe’ t´ıch vˆa.t thˆe’ ta.o nˆen ph´ep quay h`ınh thang d´o xung quanh tru.c Oxb˘a`ng
Vx =π b
Z
a
(y2(x))2−(y1(x))2
dx. (11.14)
5+ Dˆo´i v´o.i vˆa.t thˆe’ thu du.o c bo.’i ph´ep quay h`ınh thang cong xung quanh tru.c Oy v`a tho’a m˜an mˆo.t sˆo´ diˆe`u kiˆe.n tu.o.ng tu ta c´o
Vy =π β
Z
α
x2(t)y0(t)dt (11.15)
Vy =π d
Z
c
(x2(y))2−(x1(y))2
dy. (11.16)
C ´AC V´I DU.
V´ı du 1. T`ım diˆe.n t´ıch h`ınh ph˘a’ng gi´o.i ha.n bo.’i du.`o.ng astroid x=acos3t, y=asin3t.
(83)c´ac tru.c to.a dˆo (h˜ay v˜e h`ınh !) nˆen
S = 4S1 =
Z
π/2
asin3t·3acos2t(−sint)dt = 12a2
π/2
Z
0
sin4tcos2tdt
= 2a
2
π/2
Z
0
(1−cos 2t)(1−cos22t)dt = 3πa
3
8 N
V´ı du 2. Trˆen hypecbon x2−y2 =a2 cho diˆe’m M(x0, y0) x0 > 0,
y0 >0 T´ınh diˆe.n t´ıch h`ınh ph˘a’ng gi´o.i ha.n bo.’i tru.c Ox, hypecbˆon v`a
tiaOM
Gia’i. Ta chuyˆe’n sang to.a dˆo cu c theo cˆong th´u.c x = rcosϕ, y=rsinϕ Khi d´o phu.o.ng tr`ınh hypecbˆon c´o da.ng
r2 = a
2
cos2ϕ−sin2
ϕ = a2 cos 2ϕ· D˘a.t tgα= y0
x0
v`a lu.u ´y r˘a`ng x2
0 −y02 =a2 ta thu du.o c
S =
α
Z
0
r2dϕ= a
2
2 α
Z
0
dϕ cos 2ϕ =
a2
4 ln
1 + tgα 1−tgα = a
2
4 ln
(x0+y0)2
a2 =
a2 ln
x0+y0
a · O’ dˆay ta d˜a su.’ du.ng cˆong th´u.c
Z
dt cost = ln
tgt
2 + π
(84)V´ı du 3. T´ınh diˆe.n t´ıch h`ınh ph˘a’ng gi´o.i ha.n bo.’i c´ac du.`o.ng c´o phu.o.ng tr`ınhx2
+y2 = 2y, x2+y2 = 4y; y=x v`ay =−x.
Gia’i. Du.a phu.o.ng tr`ınh du.`o.ng tr`on vˆ` da.ng ch´ınh t˘a´c ta c´o:e x2+ (y−1)2 = v`ax2+ (y−2)2 = D´o l`a hai du.`o.ng tr`on tiˆe´p x´uc
trong ta.i tiˆe´p diˆe’m O(0,0) T`u d´o miˆ`n ph˘a’nge D gi´o.i ha.n bo.’i c´ac du.`o.ng d˜a cho dˆo´i x´u.ng qua tru.c Oy L`o.i gia’i s˜e du.o c do.n gia’n ho.n nˆe´u ta chuyˆe’n sang to.a dˆo cu c (v´o.i tru.c cu c tr`ung v´o.i hu.´o.ng du.o.ng cu’a tru.c ho`anh):
x=rcosϕ y =rsinϕ ⇒
(
x2+y2 = 2y⇒r= sinϕ,
x2+y2 = 4y⇒r= sinϕ,
v`a
D =
n
(r, ϕ) : π
4 6ϕ6 3π
4 ; sinϕ6r64 sinϕ
o
.
K´y hiˆe.uS∗ l`a diˆe.n t´ıch phˆa` n h`ınh tr`on gi´o.i ha.n bo.’i du.`o.ng tr`onx2+ y2 = 4y (t´u.c l`a r = sinϕ) v`a hai tia ϕ = π
4 v`a ϕ = 3π
4 ; S l`a diˆe.n t´ıch phˆan h`ınh tr`on gi´o.i ha.n bo’ i x2+y2 = 2y (t´u.c l`ar = sinϕ) v`a hai tia d˜a nˆeu Khi d´o
SD =S∗−S = 2h1
π/2
Z
π/4
(4 sinϕ)2dϕ−1
2 π/2
Z
π/4
(2 sinϕ)2dϕi
= 12 π/2
Z
π/4
sin2ϕdϕ= 3π
2 + N
V´ı du 4. T´ınh thˆe’ t´ıch vˆa.t tr`on xoay ta.o nˆen ph´ep quay h`ınh thang cong gi´o.i ha.n bo’ i c´ ac du.`o.ng y=±b, x
2
a2 −
y2
b2 = xung quanh
tru.c Oy.
(85)l`a du’ Ta c´o
V = 2V1 = 2π
b
Z
0
x2dy= 2πa2 b
Z
0
1 + y
2
b2
dy
= 2πa2y+ y
3
3b2
b
0
= 3πa
2
b. N
V´ı du 5. T´ınh thˆe’ t´ıch vˆa.t thˆe’ lˆa.p nˆen quay astroid x=acos3t,
y=asin3t, 06t62π xung quanh tru.cOx.
Gia’i. Du.`o.ng astroid dˆo´i x´u.ng dˆo´i v´o.i c´ac tru.c Oxv`a Oy Do d´o Vx =π
a
Z
−a
y2dx= 2π a
Z
0
y2dx
y2 =a2sin6t, dx=−3acos2tsintdt t= π
2 khix= 0, t= khix=a. Do d´o
V = 2π a
Z
0
y2dx=−6a3π
0
Z
π/2
sin6tcos2tsintdt
= 6a3π
0
Z
π/2
(1−cos2t)3cos2t(−sintdt) = 6a3π
0
Z
π/2
(cos2t−3 cos4t+ cos6t−cos8t)(d(cost) =· · ·= 32
105πa
3
. N
V´ı du 6. T´ınh thˆe’ t´ıch vˆa.t thˆe’ gi´o.i ha.n bo.’i hypecboloid mˆo.t tˆa` ng x2
a2 +
y2
b2 −
z2
(86)v`a c´ac m˘a.t ph˘a’ng z = 0, z =h (h >0)
Gia’i. Ta s˜e ´ap du.ng cˆong th´u.c (11.10), d´o ta x´et c´ac thiˆe´t diˆe.n ta.o nˆen bo.’i c´ac m˘a.t ph˘a’ng vuˆong g´oc v´o.i tru.cOz Khi d´o (11.10) c´o da.ng
V = h
Z
0
S(z)dz,
trong d´oS(z) l`a diˆe.n t´ıch cu’a thiˆe´t diˆe.n phu thuˆo.c v`ao z Khi c˘a´t vˆa.t thˆe’ bo.’ i m˘a.t ph˘a’ng z= const ta thu du.o c elip v´o.i phu.o.ng tr`ınh
x2
a2 +
y2
b2 = +
z2
c2
z = const
⇔
x2
a21 + z
c2
+ y
2
b21 + z
c2
=
z= const T`u d´o suy r˘a`ng
a1 =
r
a21 +z
c2
, b1 =
r
b21 +z
c2
l`a c´ac b´an tru.c cu’a elip Nhu.ng ta biˆe´t r˘a`ng diˆe.n t´ıch h`ınh elip v´o.i b´an tru.ca1,b1 l`aπa1b1 (c´o thˆe’ t´ınh b˘a`ng cˆong th´u.c (11.7) dˆo´i v´o.i elip
c´o phu.o.ng tr`ınh tham sˆo´x=a1cost, y=b1sint, t∈[0,2π])
Nhu vˆa.y
S(z) =πab1 +z
2
c2
, z ∈[0, h] T`u d´o theo cˆong th´u.c (11.10) ta c´o
V = h
Z
0
πab1 + z
2
c2
dz =πabh1 + h
2
3c2
. N
(87)Gia’i. Vˆa.t tr`on xoay thu du.o c c´o t´ınh chˆa´t l`a mo.i thiˆe´t diˆe.n ta.o bo.’ i m˘a.t ph˘a’ng vuˆong g´oc v´o.i tru.c quay dˆe`u l`a v`anh tr`on gi´o.i ha.n bo.’i c´ac du.`o.ng tr`on dˆ` ng tˆam X´et thiˆe´t diˆe.n c´ach gˆo´c to.a dˆo khoa’ng b˘a`ngo y (0 6y64) Ta c´o
S =πR2−πr2 =π[(3 +x)2−(3−x)2] = 12πx= 12πp4−y v`ıx l`a ho`anh dˆo cu’a diˆe’m trˆen parabˆon d˜a cho Khi y thay dˆo’i da.i lu.o ng dy th`ı vi phˆan thˆe’ t´ıch
dv =S(y)dy = 12πp4−ydy. Do d´o thˆe’ t´ıch to`an vˆa.t b˘a`ng
V = 12π
4
Z
0
p
4−ydy= 8π(4−y)3/2
0
= 64π N
V´ı du 8. T`ım thˆe’ t´ıch vˆa.t thˆe’ gi´o.i ha.n bo.’i c´ac m˘a.t x2+y2 = R2; y= 0, z = 0, x
R + z
h−1 = 0, x R −
z
h −1 =
Gia’i. Do t´ınh dˆo´i x´u.ng (h˜ay v˜e h`ınh) cu’a vˆa.t thˆe’ dˆo´i v´o.i m˘a.t ph˘a’ng x = nˆen ta chı’ cˆ` n t´ınh thˆe’ t´ıch phˆaa ` n n˘a`m g´oc phˆa` n t´am th´u nhˆa´t Mo.i thiˆe´t diˆe.n ta.o nˆen bo.’i c´ac m˘a.t ph˘a’ng ⊥Ox dˆ`ue l`a h`ınh ch˜u nhˆa.t ABCD v´o.iOA=x Khi d´o
S(x) =SABCD =AB·AD= h
R(R−x)·
√
R2−x2.
T`u d´o thu du.o..c
V = R
Z
0
S(x)dx= 2h R
R
Z
0
(R−x)
√
R2−x2dx (d˘a.tx=Rsint)
= 2hR2 π/2
Z
0
(1−sint) cos2tdt= hR
2(3π−4)
(88)B `AI T ˆA P
Trong c´ac b`ai to´an sau dˆay (1-17) t´ınh diˆe.n t´ıch c´ac h`ınh ph˘a’ng gi´o.i ha.n bo’ i c´ ac du.`o.ng d˜a chı’
1. y= 6x−x2 −7, y=x−3. (DS.
2) 2. y= 6x−x2, y = (DS 36)
3. 4y= 8x−x2, 4y=x+ 6. (DS 5
24) 4. y= 4−x2,y=x2−2x. (DS 9)
5. 6x=y3−16y, 24x=y3−16y (DS 16) 6. y= 1−ex,x= 2, y = 0. (DS. e2−3)
7. y=x2−6x+ 10,y= 6x−x2; x=−1 (DS 211
3) 8. y= arc sinx,y=±π
2, x= (DS 2) 9. y=ex,y =e−x, x= 1. (DS. (e−1)
2
e ) 10. y2 = 2px, x2 = 2py (DS
3p
2
)
11. x2+y2+ 6x−2y+ = 0, y=x2+ 6x+ 10
(DS S1 =
3π+
6 , S2 =
9π−2 )
12. x=a(t−sint),y=a(1−cost),t ∈[0,2π] (DS 3πa2)
Chı’ dˆa˜n. Dˆay l`a phu.o.ng tr`ınh tham sˆo´ cu’a du.`o.ng xycloid 13. x=acos3t, y=asin3
t,t ∈[0,2π] (DS 3πa
2
8 ) 14. x=acost,y =bsint,t∈[0,2π] (DS πab)
15. Du.`o.ng lemniscate Bernoulliρ2 =a2cos 2ϕ (DS. a2)
16. Du.`o.ng h`ınh tim (Cacdioid)ρ=a(1 + cosϕ). (DS 3πa
2
(89)17∗ C´ac du.`o.ng tr`on ρ=
√
3acosϕ, ρ= 2asinϕ. (DS a25
6π−
√
3)
Trong c´ac b`ai to´an sau (18-22) h˜ay t´ınh thˆe’ t´ıch vˆa.t thˆe’ theo diˆe.n t´ıch c´ac thiˆe´t diˆe.n song song.
18. Thˆe’ t´ıch h`ınh elipxoid x
2
a2 +
y3 b2 +
z2
c2 = (DS
4 3πabc)
19. Thˆe’ t´ıch vˆa.t thˆe’ gi´o.i ha.n bo.’i m˘a.t tru x2+y2 =a2,y2+z2 =a2 (DS 16
3 a
3)
Chı’ dˆa˜n. Do t´ınh dˆo´i x´u.ng, chı’ cˆ` n t´ınh thˆe’ t´ıch mˆo.t phˆaa ` n t´am vˆa.t thˆe’ v´o.ix > 0,y > 0, z >0 l`a du’ C´o thˆe’ lˆa´y c´ac thiˆe´t diˆe.n song song v´o.i m˘a.t ph˘a’ng xOz D´o l`a c´ac h`ınh vuˆong
20. Thˆe’ t´ıch vˆa.t thˆe’ h`ınh n´on v´o.i b´an k´ınh d´ay R v`a chiˆ`u caoe h. (DS πR
2h
3 )
Chı’ dˆa˜n. Di.ch chuyˆe’n h`ınh n´on vˆe` vi tr´ı v´o.i dı’nh ta.i gˆo´c to.a dˆo.
v`a tru.c dˆo´i x´u.ng l`aOx Thiˆe´t diˆe.n cˆa` n t`ım l`a h`ınh tr`on v´o.i b´an k´ınh r(x) = R
xx (?)
21. Thˆe’ t´ıch vˆa.t thˆe’ gi´o.i ha.n bo.’i c´ac m˘a.t n´on (z−2)2 = x
2
3 + y2
2 v`a m˘a.t ph˘a’ngz = (DS 8π
√
6 )
22. Thˆe’ t´ıch vˆa.t thˆe’ gi´o.i ha.n bo.’i m˘a.t tru partabolic z = 4−y2, c´ac
m˘a.t ph˘a’ng to.a dˆo v`a m˘a.t ph˘a’ng x=a. (DS 16a )
Trong c´ac b`ai to´an sau dˆay (23-34) h˜ay t´ınh thˆe’ t´ıch cu’a vˆa.t tr`on xoay thu du.o c bo.’i ph´ep quay h`ınh ph˘a’ng D gi´o.i ha.n bo’ i du.` o.ng (c´ac du.`o.ng) cho tru.´o.c xung quanh tru.c cho tru.´o.c
23. D :y2= 2px,x=a
(90)24. D : x
2
a2 +
y2
b2 61 (b < a) xung quanh tru.c Oy (DS.
4π a
2
b) 25. D : x
2
a2 +
y2
b2 61 (b < a) xung quanh tru.c Ox (DS.
4π ab
2
) 26. D : 2y=x2; 2x+ 2y−3 = xung quanh tru.cOx (DS 18
15π) 27. D :x2+y2 = 1; x+y= xung quanh tru.c Ox (DS. π
3) 28. D :x2+y2 = 4, x=−1,x= 1, y >
0 xung quanh tru.cOx. (DS 8π)
29. D :y= sinx, 0 6x6π, y= xung quanh tru.c Ox (DS. π
2
2 ) 30. D : x
2
a2 −
y2
b2 = 1, y = 0,y=bxung quanh tru.c Oy (DS.
4 3πa
2
b) 31. D :y2+x−4 = 0, x= xung quanh tru.cOy (DS 34
15π) 32. D :xy= 4,y = 0, x= 1, x= xung quanh tru.c Ox (DS 12π) 33. D :x2+ (y−b)2 6R2 (0 < R6b) xung quanh tru.c Ox.
(DS 2π2bR2)
Chı’ dˆa˜n. H`ınh tr`on D c´o thˆe’ xem nhu hiˆe.u cu’a hai thang cong D1 =
(x, y) :−R6 x6R,06y 6− √
R2−x2 v`a
D2 =
(x, y) :−R6 x6R,06y 6+
√
R2−x2 .
34∗. D = (x, y) : 0 6 y 6 √R2−x2 xung quanh du.`o.ng th˘a’ng
y=R.
(DS 3π−4 πR
3
)
Chı’ dˆa˜n. Chuyˆe’n gˆo´c to.a dˆo vˆe` diˆe’m (0, R)
11.3.2 T´ınh dˆo d`ai cung v`a diˆe.n t´ıch m˘a.t tr`on xoay
(91)y=ψ(t) th`ı vi phˆan dˆo d`ai cung du.o c biˆe’u diˆe˜n bo.’i cˆong th´u.c d=p1 + (y0
x)2dx=
q
1 + (x0
y)2dy =
q
x0 t
2
+y0 t
2
dt (11.17) v`a dˆo d`ai cu’a du.`o.ng cong L(A, B) du.o..c t´ınh bo.’i cˆong th´u.c
`(A, B) = xZB=b
xA=a
p
1 + (y0)2dx=
yB
Z
yA
q
1 + (x0 y)2dy
= tB
Z
tA
q
x0 t
2
+y0 t
2
dt. (11.18)
Nˆe´u du.`o.ng cong du.o..c cho bo.’i phu.o.ng tr`ınh to.a dˆo cu cρ=ρ(ϕ) th`ı
d` =
q
ρ2+ ρ0 ϕ
2
dϕ v`a
`(A, B) = ϕB
Z
ϕA
q
ρ2 + ρ0 ϕ
2
dϕ. (11.19)
2+ Nˆe´u m˘a.t σ thu du.o c quay du.`o.ng cong cho trˆen [a, b] bo.’ i h`am khˆong ˆam y = f(x) > 0 xung quanh tru.c Ox th`ı vi phˆan diˆe.n t´ıch m˘a.t
ds= 2π·y+ (y+dy)
2 d`=π(2y+dy)d`≈ 2πyd` v`a diˆe.n t´ıch m˘a.t tr`on xoay du.o c t´ınh theo cˆong th´u.c
Sx= 2π b
Z
a
f(x)p1 + (f0
(92)Nˆe´u quay du.`o.ng cong L(A, B) xung quanh tru.cOy th`ıds≈2πx(y)d` v`a
Sy = 2π yB
Z
yA
x(y)
q
1 + (x0
y)2dy. (11.21) Nˆe´u du.`o.ng congL(A, B) du.o..c cho bo.’i phu.o.ng tr`ınh tham sˆo´x=ϕ(t), y=ψ(t)>0 (t∈[α, β]) th`ı
Sx = 2π β
Z
α ψ(t)
q
ϕ02
+ψ02dt. (11.22)
Tu.o.ng tu ta c´o
Sy = 2π β
Z
α ϕ(t)
q
ϕ02
+ψ02dt, ϕ(t)>0. (11.23)
C ´AC V´I DU. V´ı du 1. T´ınh dˆo d`ai du.`o.ng tr`on b´an k´ınh R.
Gia’i. Ta c´o thˆe’ xem du.`o.ng tr`on d˜a cho c´o tˆam ta.i gˆo´c to.a dˆo Phu.o.ng tr`ınh du.`o.ng tr`on du.´o.i da.ng tham sˆo´ c´o da.ng x = Rcost, y=Rsint,t∈[0,2π] Ta chı’ cˆ` n t´ınh dˆo d`ai cu’a mˆo.t phˆaa ` n tu du.`o.ng tr`on ´u.ng v´o.i 6t6 π
2 l`a du’ Theo cˆong th´u.c (11.18) ta c´o
`= π/2
Z
0
p
(−Rsint)2+ (Rcost)2dt= 4Rt
π/2
0 = 2πR N
V´ı du 2. T´ınh dˆo d`ai cu’a v`ong th´u nhˆa´t cu’a du.`o.ng xo˘a´n ˆo´c Archimedesρ=aϕ.
Gia’i. Theo di.nh ngh˜ıa, du.`o.ng xo˘a´n ˆo´c Archimedes l`a du.`o.ng cong
(93)t`u gˆo´c-cu..c m`a tia n`ay la.i quay xung quanh gˆo´c cu c v´o.i vˆa.n tˆo´c g´oc cˆo´ di.nh V`ong th´u nhˆa´t cu’a du.`o.ng xo˘a´n ˆo´c Archimedes du.o c ta.o nˆen g´oc cu c ϕ biˆe´n thiˆen t`u dˆe´n 2π Do d´o theo cˆong th´u.c (11.19) ta c´o
` =
2π
Z
0
p
a2ϕ2+a2dϕ=a 2π
Z
0
p
ϕ2+ 1dϕ.
T´ıch phˆan t`u.ng phˆ` n b˘a`ng c´ach d˘a.ta u=pϕ2+ 1, dv=dϕta c´o
`=ahϕpϕ2+ 12π
−
2π
Z
0
ϕ2
p
ϕ2+ 1dϕ
i
=a
h
ϕpϕ2+ 1
2π
0
−
2π
Z
0
ϕ2+ 1−1
p
ϕ2+ 1 dϕ
i
=ah1 2ϕ
p
ϕ2 + +1
2ln(ϕ+
p
ϕ2+ 1)i
2π
0
=ahπ
√
4π2+ +
2 2π+
√
4π2+ 1i.N
V´ı du 3. T´ınh diˆe.n t´ıch m˘a.t cˆa` u b´an k´ınh R.
Gia’i. C´o thˆe’ xem m˘a.t cˆa` u c´o tˆam ta.i gˆo´c to.a dˆo v`a thu du.o c bo.’i ph´ep quay nu.’ a du.`o.ng tr`on y=
√
R2−x2 xung quanh tru.c Ox.
Phu.o.ng tr`ınh du.`o.ng tr`on c´o da.ng x2 + y2 = R2 Do d´o y0 =
−√ x
R2−x2 Theo cˆong th´u.c (11.20) ta c´o
Sx = 2π R
Z
−R
√
R2−x2·
s
1 + x
2
R2 −x2dx= 2π
R
Z
−R
√
R2 −x2+x2dx
= 2πRx
R
−R = 4πR
2
. N
(94)Gia’i. Biˆe´n ρ chı’ nhˆa.n gi´a tri thu..c cos 2ϕ > t´u.c l`a
−π/46ϕ6π/4 (nh´anh bˆen pha’i) hay 3π/46ϕ65π/4 (nh´anh bˆen tr´ai) Vi phˆan cung cu’a lemniscat b˘a`ng
d`=
q
ρ2+ρ02
dϕ=
s
a2cos 2ϕ+ (−√asin 2ϕ
cos 2ϕ
2
dϕ = √adϕ
cos 2ϕ·
Ngo`ai ray =ρsinϕ=a√cos 2ϕ·sinϕ T`u d´o diˆe.n t´ıch cˆa` n t`ım b˘a`ng hai lˆ` n diˆe.n t´ıch cu’a m˘a.t thu du.o c bo.’i ph´ep quay nh´anh pha’i Do d´oa theo (11.20)
S = 2·2π π/4
Z
0
yds= 4π π/4
Z
0
a√cos 2ϕ·sinϕ·adϕ
√
cos 2ϕ
= 4π π/4
Z
0
a2sinϕdϕ= 2πa2(2− √
2) N
V´ı du 5. T`ım diˆe.n t´ıch m˘a.t ta.o nˆen bo.’i ph´ep quay cung parabˆon y= x
2
2 , 06x6
√
3 xung quanh tru.cOy.
Gia’i. Ta c´o x = √2y, x0 = √1
2y Do d´o, ´ap du.ng cˆong th´u.c (11.18) ta thu du.o c
S = 2π
3/2
Z
0
p
2y
r
1 +
2ydy = 2π
3/2
Z
0
p
2y+ 1dy
= 2π· (2y+ 1)
3/2
3
3/2
= 14π · N
V´ı du 6. T`ım diˆe.n t´ıch m˘a.t ta.o nˆen bo.’i ph´ep quay elipx2+ 4y2 = 26
xung quanh: a) tru.cOx; b) tru.c Oy.
Gia’i. Nu.’ a trˆen cu’a elip d˜a cho c´o thˆe’ xem nhu dˆ` thi cu’a h`amo y=
2
√
(95)c`on trˆen khoa’ng (−6,6) da.o h`am khˆong bi ch˘a.n Do vˆa.y khˆong thˆe’ t´ınh b˘a`ng cˆong th´u.c (11.20) to.a dˆo Dˆe` c´ac du.o c.
Dˆe’ kh˘a´c phu.c kh´o kh˘an d´o, ta d`ung ph´ep tham sˆo´ h´oa du.`o.ng elip: x = cost, y= sint, 06t62π
1+Ph´ep quay xung quanh tru.cOx Ta x´et nu.’ a trˆen cu’a elip tu.o.ng ´
u.ng v´o.i 06t6π Theo cˆong th´u.c (11.22) du.´o.i da.ng tham sˆo´ ta c´o
Sx = 2π π
Z
0
3 sint·p36 sin2t+ cos2tdt.
D˘a.t cost = √2
3sinϕ ta c´o
Sx= 24
√
3π π/3
Z
−π/3
cos2ϕdϕ=
√
3π(4π+
√
3)
2+ Ph´
ep quay xung quanh tru.c Oy Ta x´et nu.’ a bˆen pha’i cu’a elip (tu.o.ng ´u.ng v´o.it ∈−π
2, π
i
Tu.o.ng tu nhu trˆen ta ´ap du.ng (11.23) v`a thu du.o c
Sy = 2π π/2
Z
−π/2
6 cost·p36 sin2t+ cos2tdt D˘a.t sint = √1
3shϕ
= 24
√
3π
arcshZ √3
−arcsh√3
ch2ϕdϕ= 24
√
3π
√
3 + ln(2 +
√
3). N
B `AI T ˆA P T´ınh dˆo d`ai cung cu’a du.`o.ng cong 1. y=x3/2 t`u.x= dˆe´n x= (DS
27(10
√
(96)2. y=x2−1 t`u.x=−1 dˆe´n x= (DS. √5 +
2ln(2 +
√
5)) 3. y= a
2 e
x/a+e−x/a t`u.x= dˆe´n x=a (DS. a(e
2−1)
2e ) 4. y= ln cosx t`u.x= dˆe´n x= π
6 (DS 2ln 3) 5. y= ln sinx t`u.x = π
3 dˆe´nx = 2π
3 (DS ln 3) 6. x=etsint,y =etcost, 06t 6 π
2 (DS
√
2(eπ/2−1))
7. x=a(t−sint),y=a(1−cost); 06t62π (DS 8a) 8. x=acos3t,y=asin3
t; 06t62π (DS 6a)
Chı’ dˆa˜n. V`ıpx0 t
2
+y0 t
2
= 3a
1 |sin 2t|v`a h`am|sin 2t|c´o chu k`yπ/2 nˆen `=
π/2
Z
0
d`.
9. x=etcost, y=etsint t`u.t = dˆe´nt = lnπ (DS.
√
2(π−1)) 10. x = sint+ cost, y= sint−8 cost t`u.t = dˆe´n t= π
2 (DS 5π)
11. ρ=aekθ (du.`o.ng xo˘´n ˆo´c lˆoga) t`a u.θ = dˆe´nθ =T. (DS a
k
√
1 +k2(ekT −1))
12. ρ=a(1−cosϕ),a >0, 06ϕ62π (du.`o.ng h`ınh tim) (DS 8a) 13∗. ρϕ = t`u diˆe’m A2,1
2
dˆe´n diˆe’m B1 2,2
- du.`o.ng xo˘a´n ˆo´c hypecbon
(DS
√
5 + ln
3 +
√
5 )
T´ınh diˆe.n t´ıch c´ac m˘a.t tr`on xoay thu du.o c quay cung du.`o.ng cong hay du.`o.ng cong xung quanh tru.c cho tru.´o.c.
14. Cung cu’a du.`o.ng y = x3 t`u.x= −2
3 dˆe´n x =
(97)(DS 2π 27
125
27 −1
) 15. Du.`o.ng x=acos3t, y=asin3
t xung quanh tru.cOx. (DS 12
5 πa
2
) 16. x
2
a2 +
y2
b2 = 1, a > b xung quanh tru.c Ox.
(DS 2πb
b+a
εarc sinε
, ε l`a tˆam sai cu’a elip)
Chı’ dˆa˜n. Da.o h`am hai vˆe´ phu.o.ng tr`ınh elip rˆo`i r´ut yy0 =
−bx
2
a2 , c`on biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan du.o c viˆe´t y
p
1 +y02
dx =
p
y2+ (yy0)3dx.
17. Cung du.`o.ng tr`on x2 + (y−b)2 = R (khˆong c˘a´t tru.c Oy) t`u.y
dˆe´n y2 xung quanh tru.cOy (DS 2πR(y2−y1))
Chı’ dˆa˜n. M˘a.t thu du.o c l`a d´o.i cˆ` ua
18. y= sinxt`u.x= dˆe´n x=π xung quanh tru.cOx. (DS 2π
√
2 + ln(1 +
√
2)) 19. y= x
3
3 t`u.x=−2 dˆe´n x= xung quanh tru.c Ox. (DS 34
√
17−2
9 π)
20. Cung bˆen tr´ai du.`o.ng th˘a’ng x = cu’a du.`o.ng cong y2 = +x, xung quanh tru.cOx (DS. 62π
3 ) 21. y= a
2 e
x/a+e−x/a t`u.x= dˆe´nx=a (a >0). (DS πa
2
4 (e
2+ 4−e−2))
22. y2 = 4x t`u.x= dˆe´n x
= 3, xung quanh tru.c Ox (DS. 56π ) 23. x=etsint, y=etcost t`u.t= dˆe´nt = π
2, xung quanh tru.cOx. (DS 2π
√
2 (e
(98)24. x=acos3t, y=asin3t, 06t62π; quay xung quanh tru.cOx. (DS 12
5 πa
2
)
Chı’ dˆa˜n. V`ı du.`o.ng cong c´o t´ınh dˆo´i x´u.ng qua c´ac tru.c to.a dˆo nˆen chı’ cˆ` n t´ınh diˆe.n t´ıch ta.o nˆen bo.’i mˆo.t phˆaa ` n tu du.`o.ng thuˆo.c g´oc I quay xung quanh tru.c Ox.
25. x = t −sint, y = 1−cost (diˆe.n t´ıch du.o c ta.o th`anh quay mˆo.t cung); xung quanh tru.c Ox.
(DS 64π ) 26. y= sin 2x t`u.x= dˆe´n x= π
2; xung quanh tru.cOx. (DS π
2
2
√
5 + ln(
√
5 + 2)) 27. 3x2+ 4y2
= 12; xung quanh tru.c Oy (DS 2π(4 + ln 3)) 28. x2 =y+ 4, y
= 2; xung quanh tru.c Oy (DS. 62π )
29. Cung cu’a du.`o.ng tr`on x2+y2 = (y >0) gi˜u.a hai diˆe’m c´o ho`anh
dˆo. x=−1 v`a x= 1; xung quanh tru.c Ox (DS 8π)
30. Du.`o.ng h`ınh tim (cacdiod) ρ = a(1 + cosϕ); quay xung quanh tru.c cu c
(DS 32πa
2
5 )
31. Du.`o.ng tr`onρ= 2rsinϕ; quay xung quanh tru.c cu..c (DS 4π2r2)
32. Cung _
AB cu’a du.`o.ng xicloid x = a(t−sint), y = a(1−cost); quay xung quanh du.`o.ng th˘a’ng y=a (DS 16√2πa
2
3 )
Chı’ dˆa˜n. Ap du.ng cˆong th´u´ c
S = 2π
3π
Z
π/2
2(y(t)−a)
q
x0 t
2
+y0 t
2
(99)11.4 T´ıch phˆan suy rˆo.ng
11.4.1 T´ıch phˆan suy rˆo ng cˆa n vˆo ha.n
1 Gia’ su.’ h`am f(x) x´ac di.nh ∀x>a v`a kha’ t´ıch trˆen mo.i doa.n [a, b]. Nˆe´u tˆ` n ta.i gi´o.i ha.n h˜u.u ha.no
lim b→+∞
b
Z
a
f(x)dx (11.24) th`ı gi´o.i ha.n d´o du.o c go.i l`a t´ıch phˆan suy rˆo.ng cu’a h`am f(x) trˆen khoa’ng [a,+∞) v`a k´y hiˆe.u l`a
+∞
Z
a
f(x)dx.
Trong tru.`o.ng ho p n`ay ngu.`o.i ta c`on n´oi r˘a`ng t´ıch phˆan suy rˆo.ng (11.24) hˆo.i tu v`a h`amf(x) kha’ t´ıch theo ngh˜ıa suy rˆo.ng trˆen khoa’ng [a,+∞) Nˆe´u gi´o.i ha.n (11.24) khˆong tˆo` n ta.i th`ı t´ıch phˆan
+∞
Z
a
f(x)dx du.o c go.i l`a t´ıch phˆan phˆan k`y v`a h`amf(x) khˆong kha’ t´ıch theo ngh˜ıa suy rˆo.ng trˆen [a,+∞)
Tu.o.ng tu nhu trˆen, theo di.nh ngh˜ıa b
Z
−∞
f(x)dx = lim a→−∞
b
Z
a
f(x)dx (11.25)
+∞
Z
−∞
f(x)dx= c
Z
−∞
f(x)dx+
+∞
Z
c
f(x)dx, c∈R (11.26) C´ac cˆong th´u.c co ba’n dˆo´i v´o.i t´ıch phˆan suy rˆo.ng
1) T´ınh tuyˆe´n t´ınh Nˆe´u c´ac t´ıch phˆan suy rˆo.ng
+∞
Z
a
f(x)dx v`a
+∞
Z
a
g(x)dxhˆo.i tu. ∀α, β ∈Rth`ı t´ıch phˆan
+∞
Z
a
(100)v`a
+∞
Z
a
(αf(x) +βg(x))dx=α
+∞
Z
a
f(x)dx+β
+∞
Z
a
g(x)dx.
2)Cˆong th´u.c Newton-Leibnitz Nˆe´u trˆen khoa’ng [a,+∞) h`amf(x) liˆen tu.c v`a F(x),x∈[a,+∞) l`a nguyˆen h`am n`ao d´o cu’a n´o th`ı
+∞
Z
a
f(x)dx=F(x)a+∞=F(+∞)−F(a) d´o F(+∞) = lim
x→+∞F(x)
3) Cˆong th´u.c dˆo’i biˆe´n Gia’ su.’ f(x), x∈[a,+∞) l`a h`am liˆen tu.c, ϕ(t), t ∈[α, β] l`a kha’ vi liˆen tu.c v`a a =ϕ(α) ϕ(t) < lim
t→β−0ϕ(t) =
+∞ Khi d´o:
+∞
Z
a
f(x)dx= β
Z
α
f(ϕ(t))ϕ0(t)dt (11.27) 4)Cˆong th´u.c t´ıch phˆan t`u.ng phˆ` n.a Nˆe´uu(x) v`av(x),x∈[a,+∞) l`a nh˜u.ng h`am kha’ vi liˆen tu.c v`a lim
x→+∞(uv) tˆ` n ta.i th`ı:o
+∞
Z
a
udv=uv+a∞−
+∞
Z
a
vdu (11.28)
trong d´o uv+a∞= lim x→+∞(uv)
−u(a)v(a). C´ac diˆ`u kiˆe e.n hˆo.i tu.
1) Tiˆeu chuˆa’n Cauchy T´ıch phˆan
+∞
Z
a
f(x)dx hˆo.i tu v`a chı’ khi
∀ε >0, ∃b=b(ε)>a cho∀b1 > b v`a∀b2 > b ta c´o:
b2
Z
b1
f(x)dx
(101)2) Dˆa´u hiˆe.u so s´anh I Gia’ su.’ g(x) > f(x) > ∀x > a v`a f(x), g(x) kha’ t´ıch trˆen mo.i doa.n [a, b],b <+∞ Khi d´o:
(i) Nˆe´u t´ıch phˆan
+∞
Z
a
g(x)dx hˆo.i tu th`ı t´ıch phˆan
+∞
Z
a
f(x)dx hˆo.i tu
(ii) Nˆe´u t´ıch phˆan
+∞
Z
a
f(x)dxphˆan k`y th`ı t´ıch phˆan
+∞
Z
a
g(x)dxphˆan k`y
3) Dˆa´u hiˆe.u so s´anh II Gia’ su.’ f(x)>0,g(x)>0 ∀x>a v`a lim
x→+∞ f(x) g(x) =λ. Khi d´o:
(i) Nˆe´u < λ < +∞ th`ı c´ac t´ıch phˆan
+∞
Z
a
f(x)dx v`a
+∞
Z
a
g(x)dx dˆ` ng th`o.i hˆo.i tu ho˘a.c dˆoo ` ng th`o.i phˆan k`y
(ii) Nˆe´u λ = v`a t´ıch phˆan
+∞
Z
a
g(x)dx hˆo.i tu th`ı t´ıch phˆan
+∞
Z
a
f(x)dx hˆo.i tu
(iii) Nˆe´u λ = +∞ v`a t´ıch phˆan
+∞
Z
a
f(x)dx hˆo.i tu th`ı t´ıch phˆan
+∞
Z
a
g(x)dx hˆo.i tu
Dˆe’ so s´anh ta thu.`o.ng su.’ du.ng t´ıch phˆan
+∞
Z
a dx xα
% &
hˆo.i tu nˆe´u α >1, phˆan k`y nˆe´u α61
(102)D- i.nh ngh˜ıa. T´ıch phˆan
+∞
Z
a
f(x)dx du.o c go.i l`a hˆo.i tu tuyˆe.t dˆo´i nˆe´u
t´ıch phˆan
+∞
Z
a
|f(x)|dx hˆo.i tu v`a du.o c go.i l`a hˆo.i tu c´o diˆe`u kiˆe.n nˆe´u t´ıch phˆan
+∞
Z
a
f(x)dx hˆo.i tu nhu.ng t´ıch phˆan
+∞
Z
a
|f(x)|dx phˆan k`y Mo.i t´ıch phˆan hˆo.i tu tuyˆe.t dˆo´i dˆe`u hˆo.i tu
3) T`u dˆa´u hiˆe.u so s´anh II v`a (11.29) r´ut ra
Dˆa´u hiˆe.u thu..c h`anh. Nˆe´u x → +∞ h`am du.o.ng f(x) l`a vˆo c`ung b´e cˆa´p α >0 so v´o.i
x th`ı (i) t´ıch phˆan
+∞
Z
a
f(x)dx hˆo.i tu khi α >1;
(ii) t´ıch phˆan
+∞
Z
a
f(x)dx phˆan k`y α 61
C ´AC V´I DU. V´ı du 1. T´ınh t´ıch phˆan
I =
+∞
Z
2
dx x2√x2−1·
Gia’i. Theo di.nh ngh˜ıa ta c´o
+∞
Z
2
dx
x2√x2−1 = limb→+∞ b
Z
2
dx x2√x2−1·
D˘a.t x =
(103)I(b) = b
Z
2
dx
x2√x2−1 = 1/b
Z
1/2
−dt t2·
t2
r
1 t2 −1
=−
1/b
Z
1/2
tdt
√
1−t2
=
√
1−t2 1/b
1/2
=
r
1−
b2 −
r
1−
4. T`u d´o suy r˘a`ng I = lim
b→+∞I(b) = 2−
√
3
2 Nhu vˆa.y t´ıch phˆan d˜a cho hˆo.i tu N
V´ı du 2. Kha’o s´at su hˆo.i tu cu’a t´ıch phˆan
+∞
Z
1
2x2+ 1
x3+ 3x+ 4dx.
Gia’i. H`am du.´o.i dˆa´u t´ıch phˆan >0∀x>1 Ta c´o f(x) = 2x
2
+ x3+ 3x+ 4 =
2 + x2
x+ x+
4 x2
·
V´o.i x du’ l´o.n h`am f(x) c´o d´ang diˆe.u nhu.
x Do d´o ta lˆa´y h`am ϕ(x) =
x dˆe’ so s´anh v`a c´o lim
x→+∞ f(x)
ϕ(x) = limx→+∞
(2x2+ 1)x
x2+ 3x+ 4 = 26=
V`ı t´ıch phˆan ∞
Z
1
dx
x phˆan k`y nˆen theo dˆa´u hiˆe.u so s´anh II t´ıch phˆan d˜a cho phˆan k`y N
V´ı du 3. Kha’o s´at su. hˆo.i tu cu’a t´ıch phˆan ∞
Z
2
dx
3
√
(104)Gia’i. Ta c´o bˆa´t d˘a’ng th´u.c
3
√
x3−1 >
1
x khix >2
Nhu.ng t´ıch phˆan ∞
Z
2
dx
x phˆan k`y, d´o theo dˆa´u hiˆe.u so s´anh I t´ıch phˆan d˜a cho phˆan k`y N
V´ı du 4. Kha’o s´at su hˆo.i tu v`a d˘a.c t´ınh hˆo.i tu cu’a t´ıch phˆan
+∞
Z
1
sinx x dx.
Gia’i. Dˆ` u tiˆen ta t´ıch phˆan t`a u.ng phˆ` n mˆo.t c´ach h`ınh th´u.ca
+∞
Z
1
sinx
x dx=− cosx
x
+∞
1
−
+∞
Z
1
cosx
x2 dx= cos 1− +∞
Z
1
cosx x2 dx.
(11.30)
T´ıch phˆan
+∞
Z
1
cosx
x2 dx hˆo.i tu tuyˆe.t dˆo´i, d´o n´o hˆo.i tu Nhu vˆa.y
ca’ hai sˆo´ ha.ng o.’ vˆe´ pha’i (11.30) h˜u.u ha.n T`u d´o suy ph´ep t´ıch phˆan t`u.ng phˆ` n d˜a thu c hiˆe.n l`a ho p l´y v`a vˆe´ tr´ai cu’a (11.30) l`a t´ıcha phˆan hˆo.i tu
Ta x´et su hˆo.i tu tuyˆe.t dˆo´i Ta c´o
|sinx|> sin2x= 1−cos 2x v`a vˆa.y ∀b >1 ta c´o
b
Z
1
|sinx|
x dx>
b
Z
1
dx x −
1
b
Z
1
cos 2x
(105)T´ıch phˆan th´u nhˆa´t o.’ vˆe´ pha’i cu’a (11.31) phˆan k`y T´ıch phˆan th´u hai o.’ vˆe´ pha’i d´o hˆo.i tu (diˆe`u d´o du.o c suy b˘a`ng c´ach t´ıch phˆan t`u.ng phˆ` n nhu (11.30)) Qua gi´o.i ha.n (11.31) khia b → +∞ ta c´o vˆe´ pha’i cu’a (11.31) dˆ` n dˆe´na ∞ v`a d´o t´ıch phˆan vˆe´ tr´ai cu’a (11.31) phˆan k`y, t´u.c l`a t´ıch phˆan d˜a cho hˆo.i tu c´o diˆe`u kiˆe.n (khˆong tuyˆe.t dˆo´i). N
B `AI T ˆA P T´ınh c´ac t´ıch phˆan suy rˆo.ng cˆa.n vˆo ha.n 1.
∞
Z
0
xe−x2dx (DS 2)
2. ∞
Z
0
dx x
√
x2−1 (DS
π 6)
3. ∞
Z
0
dx
(x2+ 1)2 (DS
π−2 )
4. ∞
Z
0
xsinxdx. (DS Phˆan k`y)
5. ∞
Z
−∞ 2xdx
x2 + 1 (DS Phˆan k`y)
6. ∞
Z
0
e−xsinxdx. (DS 2)
7.
+∞
Z
2
1
x2−1 +
2 (x+ 1)2
dx. (DS +
1 2ln 3)
8.
+∞
Z
−∞
dx
x2 + 4x+ 9 (DS
π
√
(106)9.
+∞
Z
√
2
xdx
(x2+ 1)3 (DS
1
36) Chı’ dˆa˜n. D˘a.t x=
√
t.
10.
+∞
Z
1
dx x
√
x2+x+ 1 (DS ln
1 +√2
3
) Chı’ dˆa˜n. D˘a.tx= t
11.
+∞
Z
1
arctgx
x2 dx. (DS
π +
ln 2 )
12.
+∞
Z
3
2x+
x2+ 3x−10dx. (DS Phˆan k`y)
13. ∞
Z
0
e−axsinbxdx,a >0 (DS b a2+b2)
14.
+∞
Z
0
e−axcosbxdx, a >0 (DS a a2+b2)
Kha’o s´at su. hˆo.i tu cu’a c´ac t´ıch phˆan suy rˆo.ng cˆa.n vˆo ha.n 15.
∞
Z
1
e−x
x dx. (DS Hˆo.i tu.)
Chı’ dˆa˜n. Ap du.ng bˆa´t d˘a’ng th´u´ c e
−x x 6e
−x ∀ x>1
16.
+∞
Z
2
xdx
√
x4 + 1 (DS Phˆan k`y)
Chı’ dˆa˜n. Ap du.ng bˆa´t d˘a’ng th´u´ c
x
√
x4+ 1 >
x
√
x4+x4 ∀x>
17.
+∞
Z
1
sin23x
3
√
(107)18.
+∞
Z
1
dx
√
4x+ lnx (DS Phˆan k`y)
19.
+∞
Z
1
ln1 +1 x
xα dx. (DS Hˆo.i tu nˆe´u α >0)
20.
+∞
Z
0
xdx
3
√
x5+ 2 (DS Hˆo.i tu.)
21.
+∞
Z
1
cos 5x−cos 7x
x2 dx. (DS Hˆo.i tu.)
22.
+∞
Z
0
xdx
3
√
1 +x7 (DS Hˆo.i tu.)
23.
+∞
Z
0
√
x+
1 + 2√x+x2dx. (DS Hˆo.i tu.)
24. ∞
Z
1
1
√
x(e
1/x−
1)dx (DS Hˆo.i tu.)
25. ∞
Z
1
x+√x+ x2+ 2√5
x4+ 1dx. (DS Phˆan k`y)
26. ∞
Z
3
dx
p
x(x−1)(x−2) (DS Hˆo.i tu.) 27∗.
∞
Z
0
(3x4−x2)e−x2dx. (DS Hˆo.i tu.)
Chı’ dˆa˜n. So s´anh v´o.i t´ıch phˆan hˆo.i tu.
+∞
Z
0
e−x
2
2 dx(ta.i ?) v`a ´ap
(108)28∗.
+∞
Z
5
ln(x−2)
x5 +x2+ 1dx. (DS Hˆo.i tu.)
Chı’ dˆa˜n. Ap du.nng hˆe th´u.c´
lim t→+∞
lnt
tα = ∀α >0⇒x→lim+∞
ln(x−2)
xα = ∀α >0 T`u d´o so s´anh t´ıch phˆan d˜a cho v´o.i t´ıch phˆan hˆo.i tu.
+∞
Z
5
dx
xα, α > Tiˆe´p dˆe´n ´ap du.ng dˆa´u hiˆe.u so s´anh II.
11.4.2 T´ıch phˆan suy rˆo ng cu’ a h`am khˆong bi ch˘a.n Gia’ su.’ h`am f(x) x´ac di.nh trˆen khoa’ng [a, b) v`a kha’ t´ıch trˆen mo.i doa.n [a, ξ],ξ < b Nˆe´u tˆ` n ta.i gi´o.i ha.n h˜u.u ha.no
lim ξ→b−0
ξ
Z
0
f(x)dx (11.32)
th`ı gi´o.i ha.n d´o du.o c go.i l`a t´ıch phˆan suy rˆo.ng cu’a h`amf(x) trˆen [a, b) v`a k´y hiˆe.u l`a:
b
Z
a
f(x)dx. (11.33)
Trong tru.`o.ng ho p n`ay t´ıch phˆan suy rˆo.ng (11.33) du.o c go.i l`a t´ıch phˆan hˆo.i tu Nˆe´u gi´o.i ha.n (11.32) khˆong tˆo` n ta.i th`ı t´ıch phˆan suy rˆo.ng (11.33) phˆan k`y.
Di.nh ngh˜ıa t´ıch phˆan suy rˆo.ng cu’a h`amf(x) x´ac di.nh trˆen khoa’ng (a, b] du.o..c ph´at biˆe’u tu.o.ng tu
(109)doa.n [a, b] v`a tru.`o.ng ho..p n`ay t´ıch phˆan suy rˆo.ng du.o c x´ac di.nh bo.’ i d˘a’ng th´u.c:
b
Z
a
f(x)dx= c
Z
a
f(x)dx+ b
Z
c
f(x)dx.
2 C´ac cˆong th´u.c co ba’n
1) Nˆe´u c´ac t´ıch phˆan b
Z
a
f(x)dx v`a b
Z
a
g(x)dx hˆo.i tu th`ı∀α, β ∈R ta c´o t´ıch phˆan
b
Z
a
[αf(x) +βg(x)]dx hˆo.i tu v`a
b
Z
a
[αf(x) +βg(x)]dx=α b
Z
a
f(x)dx+β b
Z
a
g(x)dx.
2) Cˆong th´u.c Newton-Leibnitz Nˆe´u h`am f(x), x∈ [a, b) liˆen tu.c v`a F(x) l`a mˆo.t nguyˆen h`am n`ao d´o cu’a f trˆen [a, b) th`ı:
b
Z
a
f(x)dx=F(x)ab−0 =F(b−0)−F(a), F(b−0) = lim
x→b−0F(x)
3) Cˆong th´u.c dˆo’i biˆe´n Gia’ su.’ f(x) liˆen tu.c trˆen [a, b) c`on ϕ(t), t ∈ [α, β) kha’ vi liˆen tu.c v`a a = ϕ(α) ϕ(t) < lim
t→β−0ϕ(t) =b Khi
d´o:
b
Z
a
f(x)dx= β
Z
α
(110)4) Cˆong th´u.c t´ıch phˆan t`u.ng phˆ` n Gia’ su.a ’ u(x),x∈[a, b) v`av(x), x∈[a, b) l`a nh˜u.ng h`am kha’ vi liˆen tu.c v`a lim
x→b−0(uv) tˆ` n ta.i Khi d´o;o
b
Z
a
udv =uvba−
b
Z
a vdu
uvba = lim x→b−0(uv)
−u(a)v(a). C´ac diˆ`u kiˆe e.n hˆo.i tu.
1) Tiˆeu chuˆa’n Cauchy Gia’ su.’ h`am f(x) x´ac di.nh trˆen khoa’ng [a, b), kha’ t´ıch theo ngh˜ıa thˆong thu.`o.ng trˆen mo.i doa.n [a, ξ], ξ < b v`a khˆong bi ch˘a.n lˆan cˆa.n bˆen tr´ai cu’a diˆe’m x = b Khi d´o t´ıch phˆan
b
Z
a
f(x)dx hˆo.i tu v`a chı’ khi ∀ε > 0, ∃η ∈[a, b) cho
∀η1, η2 ∈(η, b) th`ı
η2
Z
η1
f(x)dx
< ε.
2) Dˆa´u hiˆe.u so s´anh I. Gia’ su.’ g(x) >f(x) > trˆen khoa’ng [a, b) v`a kha’ t´ıch trˆen mˆo˜i doa.n [a, ξ], ξ < b Khi d´o:
(i) Nˆe´u t´ıch phˆan b
Z
a
g(x)dx hˆo.i tu th`ı t´ıch phˆan b
Z
a
f(x)dxhˆo.i tu
(ii) Nˆe´u t´ıch phˆan b
Z
a
f(x)dxphˆan k`y th`ı t´ıch phˆan b
Z
a
g(x)dx phˆan k`y
3) Dˆa´u hiˆe.u so s´anh II. Gia’ su.’ f(x)>0, g(x)>0,x∈[a, b) v`a lim
x→b−0
(111)(i) Nˆe´u 0< λ <+∞ th`ı c´ac t´ıch phˆan b
Z
a
f(x)dxv`a b
Z
a
g(x)dx dˆ` ngo th`o.i hˆo.i tu ho˘a.c dˆo` ng th`o.i phˆan k`y
(ii) Nˆe´uλ = v`a t´ıch phˆan b
Z
a
g(x)dxhˆo.i tu th`ı t´ıch phˆan b
Z
a
f(x)dx hˆo.i tu
(iii) Nˆe´u λ = +∞ v`a t´ıch phˆan b
Z
a
f(x)dx hˆo.i tu th`ı t´ıch phˆan b
Z
a
g(x)dx hˆo.i tu
Dˆe’ so s´anh ta thu.`o.ng su.’ du.ng t´ıch phˆan: b
Z
a
dx (b−x)α
% &
hˆo.i tu nˆe´u α <1 phˆan k`y nˆe´uα> ho˘a.c
b
Z
a
dx (x−a)α
% &
hˆo.i tu nˆe´u α <1 phˆan k`y nˆe´u α>1
D- i.nh ngh˜ıa. T´ıch phˆan b
Z
a
f(x)dx du.o c go.i l`a hˆo.i tu tuyˆe.t dˆo´i nˆe´u
t´ıch phˆan b
Z
a
|f(x)|dxhˆo.i tu v`a du.o c go.i l`a hˆo.i tu c´o diˆe`u kiˆe.n nˆe´u t´ıch phˆan
b
Z
a
f(x)dxhˆo.i tu nhu.ng b
Z
a
(112)Dˆa´u hiˆe.u thu..c h`anh. Nˆe´u x → b−0 h`am f(x) > x´ac di.nh v`a liˆen tu.c [a, b) l`a vˆo c`ung l´o.n cˆa´p α so v´o.i
b−x th`ı (i) t´ıch phˆan
b
Z
a
f(x)dx hˆo.i tu khiα <1;
(ii) t´ıch phˆan b
Z
a
f(x)dx phˆan k`y α>1
C ´AC V´I DU.
V´ı du 1. X´et t´ıch phˆan
1
Z
0
dx
√
1−x2
Gia’i. H`am f(x) = √
1−x2 liˆen tu.c v`a d´o n´o kha’ t´ıch trˆen mo.i
doa.n [0,1−ε],ε >0, nhu.ng x→1−0 th`ıf(x)→+∞ Ta c´o lim
ε→0 1−ε
Z
0
dx
√
1−x2 = limε→0arc sin(1
−ε) = asrc sin = π 2· Nhu vˆa.y t´ıch phˆan d˜a cho hˆo.i tu N
V´ı du 2. Kha’o s´at su hˆo.i tu cu’a t´ıch phˆan
1
Z
0
√
xdx
√
1−x4 ·
Gia’i. H`am du.´o.i dˆa´u t´ıch phˆan c´o gi´an doa.n vˆo c`ung ta.i diˆe’m x= Ta c´o
√
x
√
1−x4
1
√
1−x ∀x∈[0,1) Nhu.ng t´ıch phˆan
1
Z
0
dx
√
(113)V´ı du 3. Kha’o s´at su. hˆo.i tu cu’a t´ıch phˆan
1
Z
0
dx ex−cosx·
Gia’i. O’ dˆay h`am du.´o.i dˆa´u t´ıch phˆan c´o gi´an doa.n vˆo c`ung ta.i diˆe’m x= Khi x∈(0,1] ta c´o
1
ex−cosx > xe
v`ı r˘a`ng xe>ex−cosx
(ta.i ?) Nhu.ng t´ıch phˆan
1
Z
0
1
xedx phˆan k`y nˆen t´ıch phˆan d˜a cho phˆan k`y N
V´ı du 4. Kha’o s´at su. hˆo.i tu cu’a t´ıch phˆan
+∞
Z
0
arctgx
xα dx, α>
Gia’i. Ta chia khoa’ng lˆa´y t´ıch phˆan l`am hai cho khoa’ng th´u nhˆa´t h`am c´o bˆa´t thu.`o.ng ta.i diˆe’mx= Ch˘a’ng ha.n ta chia th`anh hai nu.’ a khoa’ng (0,1] v`a [1,+∞) Khi d´o ta c´o
+∞
Z
0
arctgx xα dx=
1
Z
0
arctgx xα dx+
+∞
Z
0
arctgx
xα dx. (11.34)
Dˆ` u tiˆen x´et t´ıch phˆana
1
Z
0
arctgx
xα dx, Ta c´o
f(x) = arctgx xα (x∼→0)
x xα =
1
(114)T´ıch phˆan
1
Z
0
ϕ(x)dx hˆo.i tu khi α−1 < ⇒ α < Do d´o t´ıch phˆan
1
Z
0
f(x)dx c˜ung hˆo.i tu khi α <2 theo dˆa´u hiˆe.u so s´anh II.
X´et t´ıch phˆan ∞
Z
1
f(x)dx ´Ap du.ng dˆa´u hiˆe.u so s´anh II 1◦ ta d˘a.t ϕ(x) =
xα v`a c´o lim x→+∞
f(x)
ϕ(x) = limx→+∞
xαarctgx xα =
π · V`ı t´ıch phˆan
∞
Z
0
dx
xα hˆo.i tu α > nˆen v´o.i α > t´ıch phˆan du.o c x´et hˆo.i tu Nhu vˆa.y ca’ hai t´ıch phˆan o.’ vˆe´ pha’i (11.34) chı’ hˆo.i tu 1< α <2
D´o ch´ınh l`a diˆ`u kiˆe.n hˆo.i tu cu’a t´ıch phˆan d˜a cho.e N
V´ı du 5. Kha’o s´at su hˆo.i tu cu’a t´ıch phˆan
1
Z
0
ln(1 +
√
x2)
√
xsin√x dx.
Gia’i. H`am du.´o.i dˆa´u t´ıch phˆan khˆong bi ch˘a.n lˆan cˆa.n pha’i cu’a diˆe’m x= Khi x→0 + ta c´o
ln(1 +
√
x2)
√
xsin√x (x→∼0+0)
3
√
x2
x =
3
√
x =ϕ(x).
V`ı t´ıch phˆan
1
Z
0
dx
3
√
(115)B `AI T ˆA P T´ınh c´ac t´ıch phˆan suy rˆo.ng sau. 1.
6
Z
2
dx
3
p
(4−x)2 (DS
3
√
2)
2.
2
Z
0
dx
3
p
(x−1)2 (DS 6)
3. e
Z
1
dx
xlnx (DS Phˆan k`y)
4.
2
Z
0
dx
x2−4x+ 3 (DS Phˆan k`y)
5.
1
Z
0
xlnxdx. (DS −0,25) 6.
3
Z
2
xdx
4
√
x2−4 (DS
2
4
√
125)
7.
2
Z
0
dx
(x−1)2 (DS Phˆan k`y)
8.
2
Z
−2
xdx
x2−1 (DS Phˆan k`y)
9.
2
Z
0
x3dx
√
4−x2 (DS
16
3 ) Chı’ dˆa˜n. D˘a.tx = sint.
10.
0
Z
−1
e1/x
x3 dx. (DS −
(116)11.
1
Z
0
e1/x
x3 dx. (DS Phˆan k`y)
12.
1
Z
0
dx
p
x(1−x) (DS π) 13.
b
Z
a
dx
p
(x−a)(b−x); a < b. (DS π) 14.
1
Z
0
xln2xdx. (DS 4)
Kha’o s´at su hˆo.i tu cu’a c´ac t´ıch phˆan suy rˆo.ng sau dˆay.
15.
1
Z
0
cos2x
3
√
1−x2dx. (DS Hˆo.i tu.)
16.
1
Z
0
ln(1 +√3x
esinx−1 dx. (DS Hˆo.i tu.) 17.
1
Z
0
dx
e√x−1 (DS Hˆo.i tu.) 18.
1
Z
0
√
xdx
esinx−1 (DS Hˆo.i tu.) 19.
1
Z
0
x2dx
3
p
(1−x2)5 (DS Phˆan k`y)
20.
1
Z
0
x3dx
3
p
(117)21.
1
Z
0
dx
ex−cosx (DS Phˆan k`y) 22.
π/4
Z
0
ln(sin 2x)
5
√
x dx. (DS Hˆo.i tu.)
23.
1
Z
0
lnx
√
xdx. (DS Hˆo.i tu.)
Chı’ dˆa˜n. Su.’ du.ng hˆe th´u.c lim x→0+0x
αlnx= 0 ∀α >0⇒ c´o thˆe’ lˆa´y α=
4 ch˘a’ng ha.n ⇒
|lnx| √
x < x3/4
24.
1
Z
0
sinx
x2 dx. (DS Phˆan k`y)
25.
2
Z
0
dx
√
x−x3 (DS Hˆo.i tu.)
26.
2
Z
1
(x−2)
x2−3x2+ 4dx. (DS Phˆan k`y)
27.
1
Z
0
dx
p
x(ex−e−x) (DS Hˆo.i tu.) 28.
2
Z
0
s
16 +x4
16−x4dx. (DS Hˆo.i tu.)
29.
1
Z
0
√
ex−1
sinx dx. (DS Hˆo.i tu.)
30.
1
Z
0
3
p
ln(1 +x)
(118)T´ıch phˆan h`am nhiˆ`u biˆe e´n
12.1 T´ıch phˆan 2-l´o.p 118
12.1.1 Tru.`o.ng ho p miˆe`n ch˜u nhˆa.t 118 12.1.2 Tru.`o.ng ho..p miˆe`n cong 118 12.1.3 Mˆo.t v`ai ´u.ng du.ng h`ınh ho.c 121
12.2 T´ıch phˆan 3-l´o.p 133
12.2.1 Tru.`o.ng ho p miˆe`n h`ınh hˆo.p 133 12.2.2 Tru.`o.ng ho p miˆe`n cong 134 12.2.3 136 12.2.4 Nhˆa.n x´et chung 136
12.3 T´ıch phˆan d u.`o.ng 144
12.3.1 C´ac di.nh ngh˜ıa co ba’n 144 12.3.2 T´ınh t´ıch phˆan du.`o.ng 146
12.4 T´ıch phˆan m˘a t 158
(119)12.4.3 Cˆong th´u.c Gauss-Ostrogradski 162 12.4.4 Cˆong th´u.c Stokes 162
12.1 T´ıch phˆan 2-l´o.p
12.1.1 Tru.`o.ng ho..p miˆe`n ch˜u nhˆa t Gia’ su.’
D = [a, b]×[c, d] ={(x, y) :a 6x6b, c 6y 6d}
v`a h`am f(x, y) liˆen tu.c miˆe`n D Khi d´o t´ıch phˆan 2-l´o.p cu’a h`am f(x, y) theo miˆ`n ch˜e u nhˆa.t
D ={(x, y) :a6x6 b;c6y6d}
du.o c t´ınh theo cˆong th´u.c
ZZ
D
f(M)dxdy= b
Z
a dx
d
Z
c
f(M)dy; (12.1)
ZZ
D
f(M)dxdy= d
Z
c dy
b
Z
a
f(M)dx, M = (x, y) (12.2)
Trong (12.1): dˆ` u tiˆen t´ınh t´ıch phˆan tronga I(x) theoy xemxl`a h˘a`ng sˆo´, sau d´o t´ıch phˆan kˆe´t qua’ thu du.o c I(x) theo x Dˆo´i v´o.i (12.2) ta c˜ung tiˆe´n h`anh tu.o..ng tu nhu.ng theo th´u tu ngu.o c la.i
12.1.2 Tru.`o.ng ho..p miˆe`n cong Gia’ su.’ h`am f(x, y) liˆen tu.c miˆe`n bi ch˘a.n
(120)trong d´o y=ϕ1(x) l`a biˆen du.´o.i,y =ϕ2(x) l`a biˆen trˆen, ho˘a.c
D ={(x, y) :c6y6d;g1(y)6x6g2(y)}
trong d´o x = g1(y) l`a biˆen tr´ai c`on x = g2(y) l`a biˆen pha’i, o.’ dˆay
ta luˆon gia’ thiˆe´t c´ac h`am ϕ1, ϕ2, g1, g2 dˆ`u liˆen tu.c c´ac khoa’nge
tu.o.ng ´u.ng Khi d´o t´ıch phˆan 2-l´o.p theo miˆ`ne D luˆon luˆon tˆ` n ta.i.o Dˆe’ t´ınh t´ıch phˆan 2-l´o.p ta c´o thˆe’ ´ap du.ng mˆo.t hai phu.o.ng ph´ap sau
1+ Phu.o.ng ph´ap Fubini du a trˆen di.nh l´y Fubini vˆe` viˆe.c du.a t´ıch phˆan 2-l´o.p vˆ` t´ıch phˆan l˘a.p Phu.o.ng ph´ap n`ay cho ph´ep ta du.a t´ıche phˆan 2-l´o.p vˆ` t´ıch phˆan l˘a.p theo hai th´u tu kh´ac nhau:e
ZZ
D
f(M)dxdy = b
Z
a
h ϕZ2(x)
ϕ1(x)
f(M)dyidx = b
Z
a dx
ϕZ2(x)
ϕ1(x)
f(M)dy, (12.3)
ZZ
D
f(M)dxdy = d
Z
c
h gZ2(y)
g1(y)
f(M)dxidy = d
Z
c dy
gZ2(y)
g1(y)
f(M)dx (12.4)
T`u (12.3) v`a (12.4) suy r˘a`ng cˆa n cu’a c´ac t´ıch phˆan biˆe´n thiˆen v`a phu thuˆo c v`ao biˆe´n m`a t´ınh t´ıch phˆan trong, n´o du.o..c xem l`a khˆong dˆo’i Cˆa n cu’a t´ıch phˆan ngo`ai luˆon luˆon l`a h˘a`ng sˆo´.
Nˆe´u cˆong th´u.c (12.3) (tu.o.ng ´u.ng: (12.4)) phˆ` n biˆen du.´o.ia hay phˆ` n biˆen trˆen (tu.o.ng ´a u.ng: phˆ` n biˆen tr´ai hay pha’i) gˆoa ` m t`u mˆo.t sˆo´ phˆ` n v`a mˆo˜i phˆaa ` n c´o phu.o.ng tr`ınh riˆeng th`ı miˆe`nD cˆ` n chia th`anha nh˜u.ng miˆ`n bo.e ’ i c´ac du.`o.ng th˘a’ng song song v´o.i tru.c Oy (tu.o.ng ´
u.ng: song song v´o.i tru.cOx) cho mˆo˜i miˆe`n d´o c´ac phˆa` n biˆen du.´o.i hay trˆen (tu.o.ng ´u.ng: phˆ` n biˆen tr´ai, pha’i) dˆea `u chı’ du.o c biˆe’u diˆe˜n bo.’ i mˆo.t phu.o.ng tr`ınh.
2+ Phu.o.ng ph´ap dˆo’i biˆe´n Ph´ep dˆo’i biˆe´n t´ıch phˆan 2-l´o.p du.o c thu c hiˆe.n theo cˆong th´u.c
ZZ
D
f(M)dxdy=
Z Z
D∗
f[ϕ(u, v), ψ(u, v)]
D(x, y) D(u, v)
(121)
trong d´o D∗ l`a miˆ`n biˆe´n thiˆen cu’a to.a dˆo cong (e u, v) tu.o.ng ´u.ng c´ac diˆe’m (x, y) biˆe´n thiˆen D: x = ϕ(u, v), y = ψ(u, v); (u, v)∈D∗, (x, y)∈D; c`on
J = D(x, y) D(u, v) =
∂x ∂u
∂x ∂v ∂y ∂u
∂y ∂v
6= (12.6)
l`a Jacobiˆen cu’a c´ac h`am x=ϕ(u, v),y =ψ(u, v).
To.a dˆo cong thu.`o.ng d`ung ho.n ca’ l`a to.a dˆo cu c (r, ϕ) Ch´ung liˆen hˆe v´o.i to.a dˆo Dˆecac bo.’i c´ac hˆe th´u.c x = rcosϕ, y = rsinϕ, r < +∞, ϕ < 2π T`u (12.6) suy J = r v`a to.a dˆo. cu c (12.5) c´o da.ng
ZZ
D
f(M)dxdy =
ZZ
D∗
f(rcosϕ, rsinϕ)rdrdϕ. (12.7)
K´y hiˆe.u vˆe´ pha’i cu’a (12.7) l`a I(D∗) C´o c´ac tru.`
o.ng ho p cu thˆe’ sau dˆay
(i) Nˆe´u cu c cu’a hˆe to.a dˆo cu c n˘a`m ngo`aiD th`ı
I(D∗) = ϕ2
Z
ϕ1
dϕ rZ2(ϕ)
r1(ϕ)
f(rcosϕ, rsinϕ)rdr. (12.8)
(ii) Nˆe´u cu..c n˘a`m D v`a mˆo˜i tia di t`u cu..c c˘a´t biˆen ∂D khˆong qu´a mˆo.t diˆe’m th`ı
I(D∗) =
2π
Z
0
dϕ r(ϕ)
Z
0
f(rcosϕ, rsinϕ)rdr. (12.9)
(iii) Nˆe´u cu..c n˘a`m trˆen biˆen ∂D cu’a D th`ı
I(D∗) = ϕ2
Z
ϕ1
dϕ r(ϕ)
Z
0
(122)12.1.3 Mˆo t v`ai ´u.ng du ng h`ınh ho c
1+ Diˆe.n t´ıchSD cu’a miˆ`n ph˘a’nge D du.o c t´ınh theo cˆong th´u.c SD =
ZZ
D
dxdy⇒SD =
ZZ
D∗
rdrdϕ. (12.11)
2+ Thˆe’ t´ıch vˆa.t thˆe’ h`ınh tru th˘a’ng d´u.ng c´o d´ay l`a miˆe`nD (thuˆo.c m˘a.t ph˘a’ng Oxy) v`a gi´o.i ha.n ph´ıa trˆen bo’ i m˘ a.t z =f(x, y)>0 du.o..c t´ınh theo cˆong th´u.c
V =
ZZ
D
f(x, y)dxdy. (12.12)
3+ Nˆe´u m˘
a.t (σ) du.o..c cho bo.’i phu.o.ng tr`ınh z = f(x, y) th`ı diˆe.n t´ıch cu’a n´o du.o c biˆe’u diˆe˜n bo.’i t´ıch phˆan 2-l´o.p
Sσ =
ZZ
D(x,y)
q
1 + (f0
x)2+ (fy0)2dxdy, (12.13)
trong d´o D(x, y) l`a h`ınh chiˆe´u vuˆong g´oc cu’a m˘a.t (σ) lˆen m˘a.t ph˘a’ng to.a dˆo.Oxy.
C ´AC V´I DU. V´ı du 1. T´ınh t´ıch phˆan
Z Z
D
xydxdy, D ={(x, y) : 16x62; 16y 62}.
Gia’i. Theo cˆong th´u.c (12.2):
ZZ
D
xydxdy =
2
Z
1
dy
2
Z
1
(123)T´ınh t´ıch phˆan (xemy l`a khˆong dˆo’i) ta c´o I(x) =
2
Z
1
xydx=yx
2 2
= 2y−
2y. Bˆay gi`o t´ınh t´ıch phˆan ngo`ai:
ZZ D xydxdy = Z
2y−1
2y
dy= 4· N V´ı du 2. T´ınh t´ıch phˆan
Z Z
D
xydxdy nˆe´u D du.o c gi´o.i ha.n bo.’i c´ac du.`o.ng cong y=x−4,y2= 2x
Gia’i. B˘a`ng c´ach du ng c´ac du.`o.ng gi˜u.a c´ac giao diˆe’m A(8,4) v`a B(2,−2) cu’a ch´ung, ba.n do.c s˜e thu du.o c miˆe`n lˆa´y t´ıch phˆan D.
Nˆe´u dˆ` u tiˆen lˆa´y t´ıch phˆan theoa x v`a tiˆe´p dˆe´n lˆa´y t´ıch phˆan theo y th`ı t´ıch phˆan theo miˆ`ne D du.o c biˆe’u diˆe˜n bo.’i mˆo.t t´ıch phˆan bˆo.i
I = ZZ D xydxdy = Z −2 ydy y4 Z
y2/2
xdx,
trong d´o doa.n [−2,4] l`a h`ınh chiˆe´u cu’a miˆ`ne D lˆen tru.cOy T`u d´o I =
4
Z
−2
y
hx2
2
y4
y2/2
i
dy = Z −2 y h
(y+ 4)2 −y
4
4
i
dy= 90
Nˆe´u t´ınh t´ıch phˆan theo th´u tu kh´ac: dˆa` u tiˆen theo y, sau d´o theo xth`ı cˆ` n chia miˆea `nD th`anh hai miˆ`n bo.e ’ i du.`o.ng th˘a’ng quaB v`a song song v´o.i tru.c Oy v`a thu du.o..c
I = ZZ D1 + Z Z D2 = Z xdx √ 2x Z
−√2x
ydy+ Z xdx √ 2x Z
x−4
ydy
=
2
Z
0
xdx·0 +
8
Z
2
xhy
2 √ 2x x−4
i
(124)Nhu vˆa.y t´ıch phˆan 2-l´o.p d˜a cho khˆong phu thuˆo.c th´u tu t´ınh t´ıch phˆan Do vˆa.y, cˆa` n cho.n mˆo.t th´u tu t´ıch phˆan dˆe’ khˆong pha’i chia miˆ`n.e N
V´ı du 3. T´ınh t´ıch phˆan
ZZ
D
(y− x)dxdy d´o miˆ`ne D du.o c gi´o.i ha.n bo.’i c´ac du.`o.ng th˘a’ng y = x+ 1, y = x−3, y = −1
3x+ 3, y=−1
3x+
Gia’i. Dˆe’ tr´anh su. ph´u.c ta.p, ta su.’ du.ng ph´ep dˆo’i biˆe´nu=−y−x; v=y+1
3x v`a ´ap du.ng cˆong th´u.c (12.5) Qua ph´ep dˆo’i biˆe´n d˜a cho.n, du.`o.ng th˘a’ng y=x+ biˆe´n th`anh du.`o.ng th˘a’ng u= 1; c`on y=x−3 biˆe´n th`anhu=−3 m˘a.t ph˘a’ngOuv; tu.o.ng tu.., c´ac du.`o.ng th˘a’ng y=−1
3x+
3,y=−
3x+ biˆe´n th`anh c´ac du.`o.ng th˘a’ngv=
3,v = Do d´o miˆ`ne D∗ tro.’ th`anh miˆ`ne D∗ = [−3,1]×
h7
3,5
Dˆ˜ d`ang thˆa´ye r˘a`ng D(x, y)
D(u, v) =−
4 Do d´o theo cˆong th´u.c (12.5):
ZZ
D
(y−x)dxdy =
ZZ
D∗
h1
4u+ 4v
−−
4u+ 4v
i3
4dudv
=
ZZ
D∗
3
4ududv=
5
Z
7/3
dv
4
Z
−3
3
4udu=−8 N
Nhˆa n x´et. Ph´ep dˆo’i biˆe´n t´ıch phˆan hai l´o.p nh˘a`m mu.c d´ıch do.n gia’n h´oa miˆ`n lˆa´y t´ıch phˆan C´o thˆe’ l´e uc d´o h`am du.´o.i dˆa´u t´ıch phˆan tro.’ nˆen ph´u.c ta.p ho.n.
V´ı du 4. T´ınh t´ıch phˆan
ZZ
D
(x2+y2)dxdy, d´o D l`a h`ınh tr`on gi´o.i ha.n bo.’i du.`o.ng tr`on x2+y2 = 2x
(125)c´o da.ng
x=rcosϕ, y=rsinϕ. (12.14) Thˆe´ (12.14) v`ao phu.o.ng tr`ınh du.`o.ng tr`on ta thu du.o..cr2 = 2rcosϕ⇒
r= ho˘a.c r= cosϕ (dˆay l`a phu.o.ng tr`ınh du.`o.ng tr`on to.a dˆo. cu c) Khi d´o
D∗ =n(r, ϕ) :−π
2 6ϕ6 π
2,06r 62 cosϕ
o
T`u d´o thu du.o c
I =
ZZ
D
(x2+y2)dxdy=
ZZ
D∗
r3drdϕ = π/2
Z
−π/2
dϕ
2 cosZ ϕ
0
r3dr
= π/2
Z
−π/2
r4
4
2 cosϕ
0
dϕ= π/2
Z
−π/2
cos4ϕf ϕ= 3π · N
Nhˆa n x´et. Nˆe´u lˆa´y cu..c ta.i tˆam h`ınh tr`on th`ı x−1 = rcosϕ
y=rsinϕ
D∗ =(r, ϕ) : 06r 61,06ϕ62π}
v`a x2+y2 = + 2rcosϕ+r2 nˆen
I =
Z Z
D∗
r(1 + 2rcosϕ+r2)drdϕ
=
2π
Z
0
dϕ
1
Z
0
(r+ 2r2cosϕ+r3)dr= 3π ·
V´ı du 5. T´ınh thˆe’ t´ıch vˆa.t thˆe’T gi´o.i ha.n bo’ i paraboloid z =x2+y2, m˘a.t tru. y=x2 v`a c´ac m˘
(126)Gia’i. H`ınh chiˆe´u cu’a vˆa.t thˆe’T lˆen m˘a.t ph˘a’ngOxy l`a D(x, y) =n(x, y) :−16x61, x2 6y 61o. Do d´o ´ap du.ng (12.12) ta c´o
V(T) =
ZZ
D(x,y)
zdxdy=
ZZ
D(x,y)
(x2+y2)dxdy =
1
Z
−1
dx
1
Z
x2
(x2+y2)dy
=
1
Z
−1
h
x2y+ y
3
3
1
x2
i
dx= 88 105· N
V´ı du 6. T`ım diˆe.n t´ıch m˘a.t cˆa` u b´an k´ınhR v´o.i tˆam ta.i gˆo´c to.a dˆo
Gia’i. Phu.o.ng tr`ınh m˘a.t cˆa` u d˜a cho c´o da.ng x2+y2+z2 =R2. Do d´o phu.o.ng tr`ınh nu.’ a trˆen m˘a.t cˆa` u l`a
z =pR2 −x2−y2.
Do t´ınh dˆo´i x´u.ng nˆen ta chı’ t´ınh diˆe.n t´ıch nu’ a trˆen l` a du’ Ta c´o ds =
q
1 +z0 x
2
+z0 y
2
dxdy = p Rdxdy R2 −x2−y2 ·
Miˆ`n lˆa´y t´ıch phˆane D(x, y) ={(x, y) :x2+y2
6R2} Do d´o
S =
ZZ
D(x,y)
R
p
R2 −x2−y2dxdy=
x=rcosϕ y=rsinϕ J =r
= 2R
2π
Z
0
dϕ R
Z
0
rdr
√
R2−r2
= 4πR
h
− √
R2 −r2R
i
(127)V´ı du 7. T´ınh diˆe.n t´ıch phˆa` n m˘a.t tru. x2 = 2z gi´o.i ha.n bo’ i giao tuyˆe´n cu’a m˘a.t tru d´o v´o.i c´ac m˘a.t ph˘a’ngx−2y= 0, y= 2x,x=
√
2
Gia’i. Dˆ˜ thˆa´y r˘a`ng h`ınh chiˆe´u cu’a phˆae ` n m˘a.t d˜a nˆeu l`a tam gi´ac v´o.i c´ac ca.nh n˘a`m trˆen giao tuyˆe´n cu’a m˘a.t ph˘a’ng Oxy v´o.i c´ac m˘a.t ph˘a’ng d˜a cho
T`u phu.o.ng tr`ınh m˘a.t tru ta c´oz = x
2
2, vˆa.y ∂z
∂x =x, ∂z
∂y = →dS =
√
1 +x2dxdy.
T`u d´o suy r˘a`ng
S =
2√2
Z
0
√
1 +x2dx 2x
Z
x/2
dy =
2√2
Z
0
x
√
1 +x2dx= 13. N
B `AI T ˆA P
T`ım cˆa.n cu’a t´ıch phˆan hai l´o.p
Z Z
D
f(x, y)dxdy theo miˆ`ne D gi´o.i ha.n bo.’i c´ac du.`o.ng d˜a chı’ (Dˆe’ ng˘a´n go.n ta k´y hiˆe.uf(x, y) =f(−)) 1. x= 3, x= 5, 3x−2y+ = 0, 3x−2y+ =
(DS
5
Z
3
dx
3x+4
5
Z
3x+1
5
f(−)dy) 2. x= 0, y = 0, x+y=
(DS
2
Z
0
dx
2−x
Z
0
(128)3. x2+y2 61,x>0, y>0
(DS
1
Z
0
dx √
1−x2
Z
0
f(−)dy) 4. x+y61,x−y61, x>0
(DS
1
Z
0
dx
1−x
Z
x−1
f(−)dy) 5. y>x2, y64−x2.
(DS √
2
Z
−√2
dx
4−x2
Z
x2
f(−)dy) 6. x
2
4 + y2
9 61
(DS
+2
Z
−2
dx
3
√
4−x2
Z
−3
2
√
4−x2
f(−)dy) 7. y=x2,y =√x.
(DS
1
Z
0
dx √
x
Z
x2
f(−)dy) 8. y=x, y= 2x, x+y =
(DS
2
Z
0
dx
2x
Z
x
f(−)dy+
3
Z
2
dx
6−x
Z
x
(129)9. Z dy Z y
f(−)dx (DS
4 Z dx x Z
f(−)dy) 10. Z −1 dx √
1−x2
Z
x+1
f(−)dy (DS
1
Z
0
dy y−1
Z
−
√
1−y2
f(−)dx) 11.
1
Z
0
dx
2−x2
Z
x
f(−)dy (DS
1 Z dy y Z
f dx+
2
Z
1
dy √
2−y
Z f dx) 12. Z dy y Z 1/y
f dx. (DS
1
Z
1/2
dx
2
Z
1/x
f dy+
2 Z dx Z x f dy)
T´ınh c´ac t´ıch phˆan l˘a.p sau 13. Z dx 2x Z x
(x−y+ 1)dy (DS 3) 14. Z −2 dy y Z y3
x2+y2dx. (DS 6π)
15. Z dy y2 Z
(x+ 2y)dx (DS −11,2) 16.
5
Z
0
dx
5−x
Z
0
p
4 +x+ydy. (DS 506 15 ) 17. Z dx Z dy
(x+y)2 (DS
25 24) 18. a Z dx
2Z√ax
−2√ax
(x2+y2)dy (DS 344 105a
4
(130)19.
2π
Z
0
dϕ a
Z
asinϕ
rdr. (DS πa
2
2 )
20∗.
1
Z
0
dx √
1−x2
Z
0
p
1−x2−y2dy. (DS. π
6)
T´ınh c´ac t´ıch phˆan 2-l´o.p theo c´ac h`ınh ch˜u nhˆa.t d˜a chı’ ra. 21.
ZZ
D
(x+y2)dxdy; 26x63, 16 y62 (DS 45 6) 22.
ZZ
D
(x2+y)dxdy; 16x62, 06 y61 (DS 25 6) 23.
ZZ
D
(x2+y2)dxdy; 6x61, 6y 61 (DS 3) 24.
ZZ
D
3y2dxdy
1 +x2 ; 6x61, 6y61 (DS
π 4) 25.
ZZ
D
sin(x+y)dxdy; 0 6x6 π
2, 06y π
2 (DS 2) 26.
ZZ
D
xexydxdy; 06 x61, −16y60 (DS e) 27.
ZZ
D
dxdy
(x−y)2; 6x62, 36y64 (DS ln
4 3)
T´ınh c´ac t´ıch phˆan 2-l´o.p theo miˆ`ne D gi´o.i ha.n c´ac du.`o.ng d˜a chı’
28.
ZZ
D
xydxdy; y = 0, y=x,x= (DS 8) 29.
ZZ
D
xydxdy; y =x2, x=y2. (DS.
(131)30.
ZZ
D
xdxdy;y=x3, x+y= 2, x= (DS 15) 31.
ZZ
D
xdxdy;xy = 6, x+y−7 = (DS 205 6) 32.
ZZ
D
y2xdxdy; x2+y2= 4, x+y−2 = 0. (DS 13
5) 33.
ZZ
D
(x+y)dxdy; 0 6y6π, 06x6 siny. (DS 5π ) 34.
ZZ
D
sin(x+y)dxdy;x=y, x+y = π
2, y= (DS 2) 35.
ZZ
D
e−y2dxdy; D l`a tam gi´ac v´o.i dı’nh O(0,0), B(0,1), A(1,1) (DS −
2e + 2) 36.
ZZ
D
xydxdy;D l`a h`ınh elip 4x2+y2 64 (DS 0)
37.
ZZ
D
x2ydxdy; y= 0, y=√2ax−x2. (DS. 4a
5 ) 38.
ZZ
D
xdxdy
x2+y2; y=x, x= 2, x= 2y (DS
π
2 −2arctg 2) 39.
ZZ
D
√
x+ydxdy; x= 0, y= 0, x+y= (DS 5) 40.
ZZ
D
(x−y)dxdy; y= 2−x2, y = 2x−1. (DS 4
15) 41.
ZZ
D
(132)42.
ZZ
D
xdxdy; x= + siny,x = 0, y= 0, y= 2π (DS 9π ) 43.
ZZ
D
xydxdy; (x−2)2 +y2 = (DS 3) 44.
ZZ
D
dxdy
√
2a−x; D l`a h`ınh tr`on b´an k´ınh a n˘a`m g´oc vuˆong I v`a tiˆe´p x´uc v´o.i c´ac tru.c to.a dˆo (DS.
3a
√
2a) 45.
ZZ
D
ydxdy; x=R(t−sint),y=R(1−cost), 06 t62π (l`a miˆ`ne gi´o.i ha.n bo.’i v`om cu’a xicloid.) (DS.
2πR
3)
Chı’ dˆa˜n.
ZZ
D
ydxdy =
2πR
Z
0
dx y=Zf(x)
0
ydy
Chuyˆe’n sang to.a dˆo cu..c v`a t´ınh t´ıch phˆan to.a dˆo m´o.i 46.
ZZ
D
(x2+y2)dxdy; D :x2+y2 6R2, y>0. (DS. πR
4 ) 47.
ZZ
D
ex2+y2dxdy; D :x2+y2 61, x>0, y>0 (DS π
4(e−1)) 48.
ZZ
D
ex2+y2dxdy; D :x2+y2 6R2 (DS 2π(eR2 −1)) 49.
ZZ
D
p
1−x2 −y2dxdy; D :x2
+y2 6x. (DS π−
4
)
50.
ZZ
D
s
1−x2−y2
1 +x2+y2dxdy; D: x
2+y2 61, x>0,y >0.
(DS π(π−2)
(133)51.
ZZ
D
ln(x2+y2)
x2+y2 dxdy; D : 6x
+y2 6e. (DS 2π)
52.
ZZ
D
(x2+y2)dxdy; D gi´o.i ha.n bo.’i c´ac du.`o.ng tr`on
x2+y2+ 2x−1 = 0, x2+y2+ 2x= (DS 5π )
Chı’ dˆa˜n. D˘a.t x−1 =rcosϕ, y=rsinϕ.
T´ınh thˆe’ t´ıch cu’a vˆa.t thˆe’ gi´o.i ha.n bo.’i c´ac m˘a.t d˜a chı’ ra. 53. x= 0, y = 0, z = 0, x+y+z = (DS
6)
54. x= 0, y = 0, z = 0, x+y= 1, z =x2+y2. (DS.
6) 55. z =x2+y2, y=x2, y = 1, z= 0. (DS. 88
105) 56. z =px2+y2, x2+y2=a2, z = 0. (DS.
3πa
3)
57. z =x2+y2, x2+y2=a2, z = (DS πa
4
2 ) 58. z =x, x2+y2=a2, z = 0. (DS. 4a
3
3 )
59. z = 4−x2 −y2, x=±1, y=±1 (DS 131 3) 60. 2−x−y−2z = 0, y=x2,y =x. (DS 11
120) 61. x2+y2 = 4x,z =x, z = 2x (DS 4π)
T´ınh diˆe.n t´ıch c´ac phˆa` n m˘a.t d˜a chı’ ra.
62. Phˆ` n m˘a.t ph˘a’ng 6a x+ 3y+ 2z = 12 n˘a`m g´oc phˆa` n t´am I (DS 14)
63. Phˆ` n m˘a.t ph˘a’nga x+y+z = 2a n˘a`m m˘a.t tru.x2+y2 =a2.
(134)64. Phˆ` n m˘a.t paraboloida z=x2+y2 n˘a`m m˘a.t tru x2+y2 = (DS π
6(17
√
17−1))
65. Phˆ` n m˘a.t 2a z =x2+y2 n˘a`m m˘a.t tru. x2+y2 = (DS
3(2
√
2−1)π)
66. Phˆ` n m˘a.t n´ona z =px2+y2 n˘a`m m˘a.t tru. x2
+y2 =a2 (DS πa2
√
2)
67. Phˆ` n m˘a.t cˆaa ` ux2+y2+z2 =R2 n˘a`m m˘a.t tru.x2+y2 =Rx.
(DS 2R2(π−2))
68. Phˆ` n m˘a.t n´ona z2 =x2+y2 n˘a`m m˘a.t tru. x2+y2 = 2x (DS
√
2π)
69. Phˆ` n m˘a.t tru.a z2 = 4x n˘a`m g´oc phˆa` n t´am th´u I v`a gi´
o.i ha.n bo.’ i m˘a.t tru.y2 = 4x v`a m˘
a.t ph˘a’ng x= (DS 3(2
√
2−1))
70. Phˆ` n m˘a.t cˆaa ` ux2+y2+z2 =R2 n˘a`m m˘a.t tru.x2+y2 =a2 (a6 R) (DS 4πa(a−√a2−R2))
12.2 T´ıch phˆan 3-l´o.p
12.2.1 Tru.`o.ng ho..p miˆe`n h`ınh hˆo p Gia’ su.’ miˆe`nD ⊂ R3:
D= [a, b]×[c, d]×[e, g] ={(x, y, z) :a6 x6b, c6y6d, e6z 6g}
v`a h`am f(x, y, z) liˆen tu.c trong D Khi d´o t´ıch phˆan 3-l´o.p cu’a h`am f(x, y, z) theo miˆ`ne D du.o..c t´ınh theo cˆong th´u.c
ZZ Z
D
f(x, y, z)dxdydz= b
Z
a
nZd c
hZg
e
f(x, y, z)dz
i
dy
o
dx
= b
Z
a dx
d
Z
c dy
g
Z
e
(135)T`u (12.15) suy c´ac giai doa.n t´ınh t´ıch phˆan 3-l´o.p: (i) Dˆ` u tiˆen t´ınha I(x, y) =
g
Z
e
f(M)dz;
(ii) Tiˆe´p theo t´ınhI(x) = d
Z
c
I(x, y)dy;
(iii) Sau c`ung t´ınh t´ıch phˆan I = b
Z
a
I(x)dx.
Nˆe´u t´ıch phˆan (12.15) du.o c t´ınh theo th´u tu kh´ac th`ı c´ac giai doa.n t´ınh vˆa˜n tu.o.ng tu : dˆa` u tiˆen t´ınh t´ıch phˆan trong, tiˆe´p dˆe´n t´ınh t´ıch phˆan gi˜u.a v`a sau c`ung l`a t´ınh t´ıch phˆan ngo`ai
12.2.2 Tru.`o.ng ho..p miˆe`n cong 1+ Gia’ su.’ h`am f(M) liˆen tu.c miˆe`n bi ch˘a.n
D =(x, y, z) :a6x6b, ϕ1(x)6y6ϕ2(x), g1(x, y)6z 6g2(x, y) .
Khi d´o t´ıch phˆan 3-l´o.p cu’a h`am f(M) theo miˆ`ne D du.o c t´ınh theo cˆong th´u.c
ZZZ
D
f(M)dxdydz = b
Z
a
n ϕZ2(x)
ϕ1(x)
h g2Z(x,y)
g1(x,y)
f(M)dxidyodx (12.16)
ho˘a.c
Z ZZ
D
f(M)dxdydz =
Z Z
D(x,y)
dxdy g2Z(x,y)
g1(x,y)
f(M)dz, (12.17)
(136)thu.`o.ng theo (12.16) t`u t´ıch phˆan trong, tiˆe´p dˆe´n t´ıch phˆan gi˜u.a v`a sau c`ung l`a t´ınh t´ıch phˆan ngo`ai Khi t´ınh t´ıch phˆan 3-l´o.p theo cˆong th´u.c (12.17): dˆ` u tiˆen t´ınh t´ıch phˆan v`a sau d´o c´o thˆe’ t´ınh t´ıcha phˆan 2-l´o.p theo miˆ`ne D(x, y) theo c´ac phu.o.ng ph´ap d˜a c´o 12.1 2+ Phu.o.ng ph´ap dˆo’i biˆe´n Ph´ep dˆo’i biˆe´n t´ıch phˆan 3-l´o.p
du.o c tiˆe´n h`anh theo cˆong th´u.c
Z ZZ
D
f(M)dxdydz =
Z ZZ
D∗
fϕ(u, v, w), ψ(u, v, w), χ(u, v, w)× ×
D(u, v, w)D(x, y, z)dudvdw, (12.18) d´oD∗ l`a miˆ`n biˆe´n thiˆen cu’a to.a dˆo conge u, v, w tu.o.ng ´u.ng khi c´ac diˆe’m (x, y, z) biˆe´n thiˆen D: x = ϕ(u, v, w), y =ψ(u, v, w), z=χ(u, v, w), D(x, y, z)
D(u, v, w) l`a Jacobiˆen cu’a c´ac h`am ϕ, ψ, χ
J = D(x, y, z) D(u, v, w) =
∂ϕ ∂u
∂ϕ ∂v
∂ϕ ∂w ∂ψ
∂u ∂ψ
∂v ∂ψ ∂w ∂χ
∂u ∂χ ∂v
∂χ ∂w
6
= (12.19)
Tru.`o.ng ho p d˘a.c biˆe.t cu’a to.a dˆo cong l`a to.a dˆo tru v`a to.a dˆo cˆa` u (i) Bu.´o.c chuyˆe’n t`u to.a dˆo Dˆec´ac sang to.a dˆo tru (r, ϕ, z) du.o c thu c hiˆe.n theo c´ac hˆe th´u.c x = rcosϕ, y = rsinϕ, z = z; 0 r < +∞, 06 ϕ < 2π, −∞ < z < +∞ T`u (12.19) suy J =r v`a to.a dˆo tru ta c´o
ZZ Z
D
f(M)dxdydz=
ZZ Z
D∗
frcosϕ, rsinϕ, zrdrdϕdz, (12.20)
(137)(ii) Bu.´o.c chuyˆe’n t`u to.a dˆo Dˆec´ac sang to.a dˆo cˆa` u (r, ϕ, θ) du.o..c thu c hiˆe.n theo c´ac hˆe th´u.c x = rsinθcosϕ, y = rsinθsinϕ, z = rcosθ, 0 r < +∞, ϕ < 2π, θ π T`u (12.19) ta c´o J =r2sinθ v`
a to.a dˆo cˆa` u ta c´o
ZZZ
D
f(M)dxdydz =
=
ZZ Z
D∗
frsinθcosϕ, rsinθsinϕ, rcosθr2sinθdrdϕdθ, (12.21) d´o D∗ l`a miˆ`n biˆe´n thiˆen cu’a to.a dˆo cˆae ` u tu.o.ng ´u.ng diˆe’m (x, y, z) biˆe´n thiˆen D.
12.2.3
Thˆe’ t´ıch cu’a vˆa.t thˆe’ cho´an hˆe´t miˆe`n D ⊂ R3
du.o c t´ınh theo cˆong th´u.c
VD =
Z ZZ
D
dxdydz. (12.22)
12.2.4 Nhˆa n x´et chung
B˘a`ng c´ach thay dˆo’i th´u tu. t´ınh t´ıch phˆan t´ıch phˆan 3-l´o.p ta s˜e thu du.o c c´ac cˆong th´u.c tu.o.ng tu nhu cˆong th´u.c (12.16) dˆe’ t´ınh t´ıch phˆan Viˆe.c t`ım cˆa.n cho t´ıch phˆan do.n thˆong thu.`o.ng chuyˆe’n t´ıch phˆan 3-l´o.p vˆ` t´ıch phˆan l˘a.p du.o c thu c hiˆe.n nhu dˆo´i v´o.i tru.`o.ng ho pe t´ıch phˆan 2-l´o.p
C ´AC V´I DU. V´ı du 1. T´ınh t´ıch phˆan l˘a.p
I =
1
Z
−1
dx
1
Z
x2
dy
2
Z
0
(138)Gia’i. Ta t´ınh liˆen tiˆe´p ba t´ıch phˆan x´ac di.nh thˆong thu.`o.ng b˘a´t dˆ` u t`a u t´ıch phˆan
I(x, y) =
2
Z
0
(4 +z)dz = 4z20+ z
2
2
2 = 10;
I(x) =
1
Z
x2
I(x, y)dy= 10
1
Z
x2
dy= 10(1−x2); I =
1
Z
−1
I(x)dx=
1
Z
−1
10(1−x2)dx= 40 · N V´ı du 2. T´ınh t´ıch phˆan
I =
ZZ Z
D
(x+y+z)dxdydz,
trong d´o miˆ`ne D du.o c gi´o.i ha.n bo.’i c´ac m˘a.t ph˘a’ng to.a dˆo v`a m˘a.t ph˘a’ng x+y+z =
Gia’i. Miˆ`ne D d˜a cho l`a mˆo.t t´u diˆe.n c´o h`ınh chiˆe´u vuˆong g´oc trˆen m˘a.t ph˘a’ng Oxy l`a tam gi´ac gi´o.i ha.n bo’ i c´ ac du.`o.ng th˘a’ng x = 0, y = 0, x+y = R˜o r`ang l`a x biˆe´n thiˆen t`u dˆe´n (doa.n [0,1] l`a h`ınh chiˆe´u cu’a D lˆen tru.c Ox) Khi cˆo´ di.nh x, 0 x th`ıy biˆe´n thiˆen t`u dˆe´n 1−x Nˆe´u cˆo´ di.nh ca’xv`ay(0 6x61, 06y61−x) th`ı diˆe’m (x, y, z) biˆe´n thiˆen theo du.`o.ng th˘a’ng d´u.ng t`u m˘a.t ph˘a’ng z = dˆe´n m˘a.t ph˘a’ng x+y +z = 1, t´u.c l`a z biˆe´n thiˆen t`u dˆe´n 1−x−y Theo cˆong th´u.c (12.16) ta c´o
I =
1
Z
0
dx
1−x
Z
0
dy
1−Zx−y
0
(139)Dˆ˜ d`ang thˆa´y r˘a`nge I =
1
Z
0
dx
1−x
Z
0
xz+yz+z
2
2
i1−x−y
0
dy
=
1
Z
0
nh
y−yx2−xy2− y
3
3
i1−x
0
o
dx
=
1
Z
0
(2−3x+x3)dx= 8· N V´ı du 3. T´ınh I =
ZZZ
D
dxdydz
(x+y+z)3, d´o miˆ`ne D du.o c gi´o.i
ha.n bo.’i c´ac m˘a.t ph˘a’ngx+z = 3, y= 2, x= 0, y= 0, z =
Gia’i. Miˆ`ne D d˜a cho l`a mˆo.t h`ınh l˘ang tru c´o h`ınh chiˆe´u vuˆong g´oc lˆen m˘a.t ph˘a’ng Oxy l`a h`ınh ch˜u nhˆa.t D(x, y) = (x, y) :
x 3,0 y V´o.i diˆe’m M(x, y) cˆo´ di.nh thuˆo.c D(x, y) diˆe’m (x, y, z) ∈ D biˆe´n thiˆen trˆen du.`o.ng th˘a’ng d´u.ng t`u m˘a.t ph˘a’ng Oxy (z = 0) dˆe´n m˘a.t ph˘a’ng x+z = 3, t´u.c l`a z biˆe´n thiˆen t`u dˆe´n 3−x: 06z 63−x T`u d´o theo (12.17) ta c´o
ZZZ
D
f(M)dxdydz =
ZZ
D(x,y)
dxdy z=3Z−x
z=0
(x+y+z+ 1)−3dz
=
ZZ
D(x,y)
h(x+y+z+ 1)−2
−2
3−x
0
i
dxdy =· · ·= ln 2−1
8 · N
V´ı du 4. T´ınh t´ıch phˆan
ZZZ
D
(x2+y2+z2)dxdydz, d´o miˆ`ne D du.o c gi´o.i ha.n bo.’i m˘a.t 3(x2+y2) +z2 = 3a2
Gia’i. Phu.o.ng tr`ınh m˘a.t biˆen cu’aD c´o thˆe’ viˆe´t du.´o.i da.ng x2
a2 +
y2
b2 +
z2
(a
√
(140)D´o l`a m˘a.t elipxoid tr`on xoay, t´u.c l`a D l`a h`ınh elipxoid tr`on xoay H`ınh chiˆe´u vuˆong g´ocD(x, y) cu’aD lˆen m˘a.t ph˘a’ngOxy l`a h`ınh tr`on x2 +y2 6 a2 Do d´o ´
ap du.ng c´ach lˆa.p luˆa.n nhu c´ac v´ı du v`a ta thˆa´y r˘a`ng diˆe’m M(x, y) ∈ D(x, y) du.o c cˆo´ di.nh th`ı diˆe’m (x, y, z) cu’a miˆ`ne D biˆe´n thiˆen trˆen du.`o.ng th˘a’ng d´u.ng M(x, y) t`u m˘a.t biˆen du.´o.i cu’a D
z =−p3(a2−x2−y2)
dˆe´n m˘a.t biˆen trˆen
z = +p3(a2−x2−y2).
T`u d´o theo (12.17) ta c´o
I =
Z Z
D(x,y)
dxdy
+
√
3(a2−x2−y2)
Z
−
√
3(a2−x2−y2)
(x2+y2+z2)dz
= 2a2
√
3
Z Z
x2+y26a2
p
a2−x2−y2dxdy=|chuyˆe’n sang to.a dˆo cu c|
= 2a2
√
3
Z Z
r6a
√
a2−r2rdrdϕ=a2√
3
2π
Z
0
dϕ a
Z
0
(a2 −r2)1/2rdr = 4πa
5
√
3 · N
V´ı du 5. T´ınh thˆe’ t´ıch cu’a vˆa.t thˆe’ gi´o.i ha.n bo.’i c´ac m˘a.t ph˘a’ng x+y+z = 4, x= 3, y= 2, x= 0, y = 0, z =
(141)x+y = Do d´o ´ap du.ng (12.17) ta c´o VD = ZZZ D dxdydz = ZZ
D(x,y)
dxdy
4−Zx−y
0
dz =
ZZ
D(x,y)
(4−x−y)dxdy = Z dy Z
(4−x−y)dx+
2
Z
1
dy
4−y
Z
0
(4−x−y)dx =
1
Z
0
nh
(4−y)x− x
2
2
i3 o dy+ Z nh
(4−y)x− x
2
2
i4−y
0 o dy = Z 15
2 −3y
dy+
2
Z
1
(4−y)2dy= 55 · N V´ı du 6. T´ınh t´ıch phˆan
I =
ZZ Z
D
zpx2+y2dxdydz,
trong d´o miˆ`ne D gi´o.i ha.n bo.’i m˘a.t ph˘a’ng y= 0, z = 0, z =a v`a m˘a.t tru x2+y2 = 2x (x>0,y >0,a >0)
Gia’i. Chuyˆe’n sang to.a dˆo tru ta thˆa´y phu.o.ng tr`ınh m˘a.t tru.x2 + y2 = 2x
trong to.a dˆo tru c´o da.ngr= cosϕ, 06ϕ6 π
2 (h˜ay v˜e h`ınh !) Do d´o theo cˆong th´u.c (12.20) ta c´o
I = π/2
Z
0
dϕ
2 cosZ ϕ
0
r2dr a
Z
0
zdz = a
2 π/2 Z dϕ
2 cosZ ϕ
0
r2dr
= 4a π/2 Z
cos3ϕdϕ= 9a
2
. N
V´ı du 7. T´ınh t´ıch phˆan I =
ZZZ
D
(142)nˆe´u miˆ`ne D l`a nu.’ a trˆen cu’a h`ınh cˆ` ua x2+y2+z2 6R2, z >0
Gia’i. Chuyˆe’n sang to.a dˆo cˆa` u, miˆe`n biˆe´n thiˆen D∗ cu’a c´ac to.a dˆo. cˆ` u tu.o.ng ´a u.ng diˆe’m (x, y, z) biˆe´n thiˆen D l`a c´o da.ng
D∗ : 06ϕ <2π, 06 θ6 π
2, 06r6R. T`u d´o
I =
ZZZ
D∗
r2sin2θ·r2sinθdrdϕdθ=
2π Z dϕ π/2 Z
sin3θdθ R
Z
0
r4dr
= 15πR
5
. N
B `AI T ˆA P
T´ınh c´ac t´ıch phˆan l˘a.p sau
1. Z dx √ x Z ydy
2Z−2x
1−x
dz. (DS 12) 2. a Z ydy h Z dx a−y
Z
0
dz. (DS a
3 h ) 3. Z dy Z √
2y−y2
xdx
3
Z
0
z2dz. (DS 30)
4.
1
Z
0
dx
1−x
Z
0
dy
1−Zx−y
0
dz
(1 +x+y+z)3 (DS
ln 2 − 16) 5. c Z dz b Z dy a Z
(x2+y2+z2)dx (DS abc (a
(143)6. a
Z
0
dx a−x
Z
0
dy a−Zx−y
0
(x2+y2 +z2)dz (DS a
5
20)
T´ınh c´ac t´ıch phˆan 3-l´o.p theo miˆ`ne D gi´o.i ha.n bo.’i c´ac m˘a.t d˜a chı’
7.
ZZZ
D
(x+y−z)dxdydz; x=−1, x= 1; y= 0, y= 1; z = 0, z = (DS −2)
8.
ZZZ
D
xydxdydz;x= 1, x= 2;y =−2,y=−1;z = 0, z = (DS −8
9) 9.
ZZZ
D
dxdydz
(x+y+z)2;x= 1, x = 2; y= 1, y= 2; z = 1, z =
(DS 2ln
128 125) 10.
ZZZ
D
(x+ 2y+ 3z+ 4)dxdydz;x= 0, x= 3; y = 0, y= 2; z = 0, z = (DS 54)
11.
ZZZ
D
zdxdydz; x= 0, y= 0, z = 0; x+y+z = (DS 24) 12.
ZZZ
D
xdxdydz;x= y= 0, z = 0, y= 1; x+z = (DS 6) 13.
ZZZ
D
yzdxdydz; x2+y2 +z2 = 1, z >0. (DS 0)
14.
ZZZ
D
xydxdydz;x2 +y2= 1, z = 0, z= (x>0,y>0).
(DS 8) 15.
ZZZ
D
(144)(x>0, y>0,z >0) (DS 48) 16.
ZZZ
D
p
x2+y2dxdydz; x2
+y2 =z2,z = 0,z = (DS π/6)
17.
ZZZ
D
(x2+y2+z2)dxdydz;x= 0, x=a, y= 0, y =b, z = 0, z =c. (DS abc
3 (a
2+b2+c2))
18.
ZZZ
D
ydxdydz; y=
√
x2+z2, y=h,h >0. (DS. πh
4 ) T´ınh c´ac t´ıch phˆan 3-l´o.p sau b˘a`ng phu.o.ng ph´ap dˆo’i biˆe´n 19.
ZZZ
D
(x2+y2+z2)dxdydz;x2+y2+z2 6R2. (DS. 4πR
5 ) 20.
ZZZ
D
(x2+y2)dxdydz; z =x2+y2, z = (DS π 6) 21.
ZZZ
D
p
x2+y2+z2dxdydz; x2
+y2+z2 6R2 (DS πR4)
22.
ZZZ
D
zpx2+y2dxdydz; x2+y2 = 2x, y= 0, z= 0, z = 3.
(DS 8) 23.
ZZZ
D
zdxdydz; x2+y2+z2 6R2, x>0, y>0,z >0
(DS πR
4
16 ) 24.
ZZZ
D
(x2−y2)dxdydz; x2+y2 = 2z, z = 2. (DS. 16π
3 ) 25.
ZZZ
D
(145)T´ınh thˆe’ t´ıch cu’a c´ac vˆa.t thˆe’ gi´o.i ha.n bo.’i c´ac m˘a.t d˜a chı’ 26. x= 0, y = 0, z = 0, x+ 2y+z−6 = (DS 36)
27. 2x+ 3y+ 4z = 12; x= 0, y= 0, z = (DS 12) 28. x
a + y b +
z
c = 1, x= 0, y= 0, z = (DS abc
6 ) 29. ax=y2+z2, x=a. (DS. πa
3
2 ) 30. 2z =x2+y2, z = 2. (DS 4π)
31. z =x2+y2, x2+y2+z2 = (DS π 6[8
√
2−7]) 32. z =px2+y2, z=x2
+y2 (DS π 6) 33. x2+y2−z = 1, z = 0. (DS. π
2) 34. 2z =x2+y2, y+z = 4. (DS. 81π
4 ) 35. x
2
a2 +
y2 b2 +
z2
c2 = (DS
4 3πabc)
12.3 T´ıch phˆan du.`o.ng
12.3.1 C´ac di.nh ngh˜ıa co ba’n
Gia’ su.’ h`am f(M), P(M) v`a Q(M),M = (x, y) liˆen tu.c ta.i mo.i diˆe’m cu’a du.`o.ng cong du.o cL=L(A, B) v´o.i diˆe’m dˆ` ua Av`a diˆe’m cuˆo´iB Chia mˆo.t c´ach t`uy ´yL(A, B) th`anh n cung nho’ v´o.i dˆo d`ai tu.o.ng ´u.ng l`a ∆s0, ∆s1, ∆s2, ,∆sn−1 D˘a.t d= max
06i6n−1(∆si) Trong mˆo˜i cung
nho’, lˆa´y mˆo.t c´ach t`uy ´y diˆe’m N0, N1, , Nn−1 t´ınh gi´a tri f(Ni),
P(Ni) v`a Q(Ni) ta.i diˆe’mNi d´o
(146)Phu.o.ng ph´ap I.Lˆa´y gi´a tri.f(Ni) nhˆan v´o.i dˆo d`ai cung ∆si tu.o.ng ´
u.ng v`a lˆa.p tˆo’ng t´ıch phˆan σ1 =
n−1
X
i=0
f(Ni)∆si. (*)
Phu.o.ng ph´ap II. Kh´ac v´o.i c´ach lˆa.p tˆo’ng t´ıch phˆan (∗), phu.o.ng ph´ap n`ay ta lˆa´y gi´a tri. P(Ni), Q(Ni) nhˆan khˆong pha’i v´o.i dˆo d`ai cu’a c´ac cung nho’ m`a l`a nhˆan v´o.i h`ınh chiˆe´u vuˆong g´oc cu’a c´ac cung nho’ d´o trˆen c´ac tru.c to.a dˆo., t´u.c l`a lˆa.p tˆo’ng
σx = n−1
X
i=0
P(Ni)∆xi; ∆xi =proOx∆si,
σy = n−1
X
i=0
Q(Ni)∆yi; ∆yi =proOy∆si
Mˆo˜i c´ach lˆa.p tˆo’ng t´ıch phˆan trˆen dˆay s˜e dˆa˜n dˆe´n mˆo.t kiˆe’u t´ıch phˆan du.`o.ng
D- i.nh ngh˜ıa 12.3.1. Nˆe´u tˆ` n ta.i gi´o.i ha.n h˜u.u ha.n limo
d→0σ1 khˆong phu
thuˆo.c v`ao ph´ep phˆan hoa.ch du.`o.ng cong L th`anh c´ac cung nho’ v`a khˆong phu thuˆo.c v`ao viˆe.c cho.n c´ac diˆe’m trung gian Ni trˆen mˆo˜i cung nho’ th`ı gi´o.i ha.n d´o du.o c go.i l`a t´ıch phˆan du.`o.ng theo dˆo d`ai (hay t´ıch phˆan du.`o.ng kiˆe’u I) cu’a h`am f(x, y) theo du.`o.ng cong L = L(A, B) K´y hiˆe.u:
Z
L
f(x, y)ds. (12.23)
D- i.nh ngh˜ıa 12.3.2. Ph´at biˆe’u tu.o.ng tu nhu di.nh ngh˜ıa 12.3.1:
1+ lim
d→0σx = limd→0
n−1
X
i=0
P(Ni)∆xi =
Z
L(A,B)
P(x, y)dx
(147)go.i l`a t´ıch phˆan du.`o.ng theo ho`anh dˆo (nˆe´u (12.24) tˆo`n ta.i h˜u.u ha.n)
2+ lim
d→0σy = limd→0
n−1
X
i=0
Q(Ni)∆yi=
Z
L(A,B)
Q(x, y)dy
(12.25) go.i l`a t´ıch phˆan du.`o.ng theo tung dˆo (nˆe´u (12.25) tˆo` n ta.i h˜u.u ha.n)
Thˆong thu.`o.ng ngu.`o.i ta lˆa.p tˆo’ng t´ıch phˆan da.ng
Σ = n−1
X
i=0
P(Ni)∆xi+ n−1
X
o=0
Q(Ni)∆yi
v`a nˆe´u∃ lim
d→0Σ th`ı gi´o.i ha.n d´o du.o c go.i l`a t´ıch phˆan du.`o.ng theo to.a
dˆo da.ng tˆo’ng qu´at:
Z
L(A,B)
P(x, y)dx+Q(x, y)dy. (12.26)
D- i.nh l´y. Nˆe´u c´ac h`am f(x, y), P(x, y), Q(x, y) liˆen tu c theo du.`o.ng cong L(A, B) = L th`ı c´ac t´ıch phˆan du.`o.ng (12.23) - (12.26) tˆ` n ta.io h˜u.u ha n.
T`u di.nh ngh˜ıa 12.3.1 v`a kh´ai niˆe.m dˆo d`ai cung (khˆong phu thuˆo.c hu.´o.ng cu’a cung) v`a di.nh ngh˜ıa 12.3.2 v`a t´ınh chˆa´t cu’a h`ınh chiˆe´u cu’a cung (h`ınh chiˆe´u dˆo’i dˆa´u dˆo’i hu.´o.ng cu’a cung) suy t´ınh chˆa´t quan tro.ng cu’a t´ıch phˆan du.`o.ng: t´ıch phˆan du.`o.ng theo dˆo d`ai khˆong phu thuˆo c v`ao hu.´o.ng cu’a du.`o.ng cong; t´ıch phˆan du.`o.ng theo to a dˆo. dˆo’i dˆa´u dˆo’i hu.´o.ng du.`o.ng cong.
12.3.2 T´ınh t´ıch phˆan du.`o.ng
(148)tr`ınh cu’a du.`o.ng lˆa´y t´ıch phˆanL =L(A, B) ta biˆe´n dˆo’i biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan du.`o.ng th`anh biˆe’u th´u.c mˆo.t biˆe´n m`a gi´a tri cu’a biˆe´n d´o ta.i diˆe’m dˆa` u A v`a diˆe’m cuˆo´i B s˜e l`a cˆa.n cu’a t´ıch phˆan x´ac di.nh thu du.o c
1+ Nˆe´uL(A, B) du.o..c cho bo.’i c´ac phu.o.ng tr`ınh tham sˆo´x=ϕ(t), y=ψ(t),t∈[a, b] (trong d´o ϕ,ψ kha’ vi liˆen tu.c v`aϕ02+ψ02 >0) th`ı
ds=
q
ϕ02
+ψ02
dt
Z
L(A,B)
f(x, y)ds= b
Z
a
f[ϕ(t), ψ(t)]
q
ϕ02
+ψ02dt (12.27)
v`a
Z
L(A,B)
P(x, y)dx+Q(x, y)dy=
= b
Z
a
P ϕ(t), ψ(t)ϕ0(t) +Q ϕ(t), ψ(t)ψ0(t)dt. (12.28)
2+ Nˆe´u L(A, B
) du.o c cho bo.’i phu.o.ng tr`ınh y = g(x), x ∈ [a, b] (trong d´o g(x) kha’ vi liˆen tu.c trˆen [a, b]) th`ı
ds=
q
1 +g02
(x)dx
Z
L(A,B)
f(x, y)ds= b
Z
a
f[x, g(x)]
q
1 +g02
(x)dx (12.29)
v`a
Z
L(A,B)
P dx+Qdy= b
Z
a
(149)
3+ Nˆe´uL(A, B) du.o..c cho du.´o.i da.ng to.a dˆo cu cρ=ρ(ϕ)α 6ϕ6
β th`ı
ds=
q
ρ2+ρ0 ϕ
2
dϕ
Z
L(A,B)
f(x, y)ds= β
Z
α
f[ρcosϕ, ρsinϕ]
q
ρ2+ρ02
dϕ. (12.31)
4+ T´ıch phˆan du.`
o.ng theo to.a dˆo c´o thˆe’ t´ınh nh`o cˆong th´u.c Green Nˆe´u P(x, y), Q(x, y) v`a c´ac da.o h`am riˆeng ∂Q
∂x, ∂P
∂y c`ung liˆen tu.c miˆ`ne D gi´o.i ha.n bo’ i du.` o.ng cong khˆong tu. c˘a´t tro.n t`u.ng kh´uc
L=∂D th`ı
I
L+
P dx+Qdy =
Z Z
D
∂Q
∂x − ∂P
∂y
dxdy. (12.32)
Cˆong th´u.c (12.32) go.i l`a cˆong th´u.c Green, d´o
I
L+
l`a t´ıch phˆan theo du.`o.ng cong k´ın c´o hu.´o.ng du.o.ngL+.
Hˆe qua’. Diˆe.n t´ıch miˆe`n D gi´o.i ha n bo’ i du.`. o.ng cong L du.o..c t´ınh theo cˆong th´u.c
SD =
I
L
xdy−ydx. (12.33)
5+ Nhˆa
n x´et vˆ` t´ıch phˆe an du.`o.ng khˆong gian. Gia’ su.’ L =
L(A, B) l`a du.`o.ng cong khˆong gian; f, P, Q, R l`a nh˜u.ng h`am ba biˆe´n liˆen tu.c trˆenL Khi d´o tu.o.ng tu nhu tru.`o.ng ho p du.`o.ng cong ph˘a’ng ta c´o thˆe’ di.nh ngh˜ıa t´ıch phˆan du.`o.ng theo dˆo d`ai
I
L(A,B)
f(x, y, z)dsv`a t´ıch phˆan du.`o.ng theo to.a dˆo.
Z
L
P(x, y, z)dx,
Z
L
Q(x, y, z)dy,
Z
L
(150)v`a
Z
L
P dx+Qdy+Rdz.
Vˆ` thu c chˆa´t k˜y thuˆa.t t´ınh c´ac t´ıch phˆan n`ay khˆong kh´ac biˆe.t g`ıe so v´o.i tru.`o.ng ho..p du.`o.ng cong ph˘a’ng
C ´AC V´I DU. V´ı du 1. T´ınh t´ıch phˆan du.`o.ng
I
L x
yds, d´o L l`a cung parabˆon y2 = 2x t`u diˆe’m (1,
√
2) dˆe´n diˆe’m (2,2)
Gia’i. Ta t`ım vi phˆan dˆo d`ai cung Ta c´o y=
√
2x, y0= √1
2x, ds =
q
1 +y02
dx=
r
1 + 2xdx=
√
1 + 2x
√
2x dx. Tu d´o suy
I
L x yds=
2
Z
1
x
√
2x ·
√
1 + 2x
√
2x dx= 6[5
√
5−3
√
3] N
V´ı du 2. T´ınh dˆo d`ai cu’a du.`o.ng astroid x = acos3t, y = asin3
t, t∈[0,2π]
Gia’i. Ta ´ap du.ng cˆong th´u.c: dˆo d`ai (L) =
I
L
ds Trong tru.`o.ng ho p n`ay ta c´o
x0=−3acos2tsint, y0= 3asin2tcost, ds= 3a
2 sin 2tdt V`ı du.`o.ng cong dˆo´i x´u.ng v´o.i c´ac tru.c to.a dˆo nˆen
dˆo d`ai(L) = π/2
Z
0
3a
2 sin 2tdt= 6a
h−cos 2t
iπ/2
(151)V´ı du 3. T´ınh
I
L
(x−y)ds, d´o L:x2+y2 = 2ax
Gia’i. Chuyˆe’n sang to.a dˆo cu c x =rcosϕ, y =rsinϕ Trong to.a dˆo cu..c phu.o.ng tr`ınh du.`o.ng tr`on c´o da.ng r = 2acosϕ,−π
2 ϕ6 π Vi phˆan dˆo d`ai cung
ds =
q
r2+r0 ϕ
2
dϕ=
q
4a2cos2ϕ+ 4a2sin2
ϕdϕ= 2adϕ Do d´o
I =
I
L
(x−y)ds= π/2
Z
−π/2
(2acosϕ) cosϕ−(2asinϕ) sinϕ2adϕ = 4a2
π/2
Z
−π/2
cos2ϕdϕ= 2πa2. N
V´ı du 4. T´ınh t´ıch phˆan
I
L
(3x2+y)dx+ (x−2y2)dy, d´o L l`a biˆen cu’a h`ınh tam gi´ac v´o.i dı’nh A(0,0),B(1,0),C(0,1)
Gia’i. Theo t´ınh chˆa´t cu’a t´ıch phˆan du.`o.ng ta c´o
I
L =
I
AB +
I
BC +
I
CA .
a) Trˆen ca.nh AB ta c´oy= ⇒dy = Do d´o
I
AB =
1
Z
0
3x2dx=
b) Trˆen ca.nhBC ta c´ox+y= 1⇒y=−x+ 1, dy=−dx Do d´o
I
BC =
0
Z
1
[3x2+ (1−x)−x+ 2(1−x2)]dx=−5
(152)c) Trˆen ca.nh CA ta c´o x= ⇒dx= v`a d´o
I
CA =−
0
Z
1
2y2dy= 3· Nhu vˆa.y
I
L
= 1−
3 +
3 = N
V´ı du 5. T´ınh t´ıch phˆan
I
L
(x+y)dx−(x−y)dy, d´oLl`a du.`o.ng elip x
2
a2 +
y2
b2 = c´o di.nh hu.´o.ng du.o.ng
Gia’i. 1+Ta c´o thˆ
e’ t´ınh tru c tiˆe´p t´ıch phˆan d˜a cho b˘a`ng c´ac phu.o.ng ph´ap d˜a nˆeu (ch˘a’ng ha.n b˘a`ng c´ach tham sˆo´ h´oa phu.o.ng tr`ınh elip).
2+ Nhu.ng do.n gia’n ho.n ca’ l`a su.
’ du.ng cˆong th´u.c Green Ta c´o P =x+y, Q=−(x−y)⇒ ∂Q
∂x − ∂P
∂y =−2 Do d´o theo cˆong th´u.c Green ta c´o
I
L =
Z Z
x2
a2+
y2 b261
(−2)dxdy=−2πab, v`ı diˆe.n t´ıch h`ınh elip b˘a`ng πab. N
V´ı du 6. T´ınh t´ıch phˆan
I
L
2(x2+y2)dx+x(4y+ 3)dy, d´o Ll`a du.`o.ng gˆa´p kh´ucABC v´o.i dı’nh A(0,0),B(1,1) v`a C(0,2)
Gia’i. Nˆe´u ta nˆo´i A v´o.i C th`ı thu du.o c du.`o.ng gˆa´p kh´uc k´ın L∗ gi´o.i ha.n ∆ABC Trˆen ca.nh CA ta c´o x= nˆendx= v`a t`u d´o
I
CA
(153)Do d´o
I
L +
I
CA =
I
L∗
⇒
I
L =
I
L∗
.
´
Ap du.ng cˆong th´u.c Green ta c´o
I
L =
ZZ
∆ABC
[(4y+ 3)−4y]dxdy=
ZZ
∆ABC dxdy = 3S∆ABC = N
B `AI T ˆA P
T´ınh c´ac t´ıch phˆan du.`o.ng theo dˆo d`ai sau dˆay 1.
I
C
(x+y)ds, C l`a doa.n th˘a’ng nˆo´i A(9,6) v´o.i B(1,2) (DS 36
√
5)
2.
I
C
xyds,C l`a biˆen h`ınh vuˆong |x|+|y|=a, a >0 (DS 0) 3.
I
C
(x+y)ds, C l`a biˆen cu’a tam gi´ac dı’nh A(1,0),B(0,1),C(0,0) (DS +
√
2) 4.
I
C ds
x−y,C l`a doa.n th˘a’ng nˆo´i A(0,2) v´o.iB(4,0) (DS
√
5 ln 2)
5.
I
C
p
x2+y2ds, C l`a du.`o.ng tr`on x2
+y2 =ax. (DS 2a2)
6.
I
C
(x2+y2)nds,C l`a du.`o.ng tr`on x2+y2 =a2. (DS 2πa2n+1)
7.
I
C e
√
x2+y2
(154)
(r, ϕ) : 06r6 a,06ϕ6 π
4
(DS 2(ea−1) + πae a
4 ) 8.
I
C
xyds,C l`a mˆo.t phˆa` n tu elip n˘a`m g´oc phˆa` n tu I (DS ab
3 ·
a2+ab+b2 a+b )
Chı’ dˆa˜n. Su.’ du.ng phu.o.ng tr`ınh tham sˆo´ cu’a du.`o.ng elip: x = acost,y=bsint.
9.
I
C
ds
p
x2 +y2+ 4,C l`a doa.n th˘a’ng nˆo´i diˆe’m O(0,0) vo.iA(1,2)
(DS ln
√
5 + ) 10.
I
C
(x2+y2+z2)ds, C l`a cung du.`o.ng cong x=acost, y=asint, z=bt; 06t62π, a >0, b >0
(DS 2π
√
a2+b2(3a2
+ 4π2b2)) 11.
I
C
x2ds, C l`a du.`o.ng tr`on
x2+y2+z2 =a2
x+y+z =
(DS 2πa
3
3 )
Chı’ dˆa˜n. Ch´u.ng to’ r˘a`ng
I
C
x2ds=
I
C
y2ds=
I
C
z2ds v`a t`u d´o suy
I =
I
C
(155)12.
I
C
(x+y)ds, C l`a mˆo.t phˆa` n tu du.`o.ng tr`on
x2+y2+z2 =R2
y=x n˘a`m g´oc phˆa` n t´am I (DS.R2
√
2) 13. T´ınh
I
C
xyzds, C l`a mˆo.t phˆa` n tu du.`o.ng tr`on
x2+y2+z2 =R2 x2+y2 = R
2
4 n˘a`m g´oc phˆa` n t´am I
T´ınh c´ac t´ıch phˆan du.`o.ng theo to.a dˆo sau dˆay 14.
I
C
y2dx+x2dy,C l`a du.`o.ng t`u diˆe’m (0,0) dˆe´n diˆe’m (1,1): 1) C l`a doa.n th˘a’ng.
2) C l`a cung parabol y=x2.
3) C l`a cung parabol y=√x. (DS 1)
3; 2) 10 ; 3)
7 10) 15.
I
C
y2dx−x2dy, C l`a du.`o.ng tr`on b´an k´ınh R = v`a c´o hu.´o.ng ngu.o c chiˆe`u kim dˆo` ng hˆo` v`a:
1) v´o.i tˆam ta.i gˆo´c to.a dˆo 2) v´o.i tˆam ta.i diˆe’m (1,1) (DS 1) 0; 2) −4π) 16.
I
C
(156)v`a (1,2) (DS 2) 17.
I
C
cosydx−sinxdy,C l`a doa.n th˘a’ng t`u diˆe’m (2,−2) dˆe´n diˆe’m (−2,2) (DS −2 sin 2)
18.
I
C
(x2+y2)dx+ (x2−y2)dy,C l`a du.`o.ng cong y= 1− |1−x|, 06x62 (DS
3) 19.
I
C
(x+y)dx+ (x−y)dy,C l`a elip c´o hu.´o.ng du.o.ng x
2
a2 +
y2
b2 =
(DS 0) 20.
I
C
(2a−y)dx+xdy, C l`a mˆo.t v`om cuˆo´n cu’a du.`o.ng xicloid x=a(t−sint),y=a(1−cost), 06t62π (DS −2πa2)
21.
I
C
dx+dy
|z|+|y|, C l`a biˆen c´o hu.´o.ng du.o.ng cu’a h`ınh vuˆong v´o.i dı’nh
ta.i diˆe’m A(1,0), B(0,1), C(−1,0) v`aD(0,−1) (DS 0) 22.
I
C
(x2−y2)dx+ (x2 +y2)dy,C l`a elip c´o hu.´o.ng du.o.ng x2
a2 +
y2
b2 = (DS 0)
23.
I
C
(x2+y2)dx+xydy, C l`a cung cu’a du.`o.ng y=ex t`u diˆe’m (0,1) dˆe´n diˆe’m (1, e) (DS 3e
2
4 + 2) 24.
I
C
(x3−y2)dx+xydy, C l`a cung cu’a du.`o.ng y=ax t`u diˆe’m (0,1) dˆe´n diˆe’m (1, a) (DS
4 + a2
2 +
3(1−a2)
4 lna ) 25.
I
C
(157)x=a(t−sint),y=a(1−cost),a >0 c´o di.nh hu.´o.ng theo hu.´o.ng t˘ang cu’a tham sˆo´ (DS a3π(5−2π))
´
Ap du.ng cˆong th´u.c Green dˆe’ t´ınh t´ıch phˆan du.`o.ng 26.
I
C
xy2dy−x2dx, C l`a du.`o.ng tr`on x2+y2 =a2 (DS πa
4
4 ) 27.
I
C
(x+y)dx−(x−y)dy, C l`a elip x
2
a2 +
y2
b2 = (DS −2πab)
28.
I
C
e−x2+y2(cos 2xydx+ sin 2xydy), C l`a du.`o.ng tr`on x2+y2 =R2.
(DS 0) 29.
I
C
(xy+exsinx+x+y)dx+ (xy−e−y +x−siny)dy,
C l`a du.`o.ng tr`on x2+y2 = 2x. (DS. −π)
30.
I
C
(1 +xy)dx+y2dy,C l`a biˆen cu’a nu.’ a trˆen cu’a h`ınh tr`on x2+y2 62x(y>0). (DS. −π
2) 31.
I
C
(x2+y2)dx+ (x2 −y2)dy, C l`a biˆen cu’a tam gi´ac ∆ABC v´o.i A= (0,0), B = (1,0),C = (0,1), Kiˆe’m tra kˆe´t qua’ b˘a`ng c´ach t´ınh tru c tiˆe´p (DS 0)
32.
I
C
(2xy−x2)dx+ (x+y3)dy, C l`a biˆen cu’a miˆ`n bi ch˘a.n gi´o.i ha.ne bo.’ i hai du.`o.ng y = x2 v`a y2 = x Kiˆe’m tra kˆe´t qua’ b˘a`ng c´ach t´ınh
tru c tiˆe´p (DS 30) 33.
I
C
(158)34.
I
C
(xy+x+y)dx+ (xy+x−y)dy, d´o C l`a a) elip x
2
a2 +
y2
b2 = 1;
b) du.`o.ng tr`on x2+y2=ax (a >0) (DS a) 0; b)−πa
8 ) 35.
I
C
xy2dx−x2ydy,C l`a du.`o.ng tr`on x2+y2 =R2 (DS. πR
2 ) 36.
I
C
2(x2 +y2)dx +x(4y + 3)dy, C l`a du.`o.ng gˆa´p kh´uc v´o.i dı’nh A = (0,0), B = (1,1), C = (0,2) Kiˆe’m tra kˆe´t qua’ b˘a`ng c´ach t´ınh tru c tiˆe´p (DS 3)
Chı’ dˆa˜n. Bˆo’ sung cho C doa.n th˘a’ng dˆe’ thu du.o c chu tuyˆe´n d´ong
37. H˜ay so s´anh hai t´ıch phˆan I1 =
I
AmB
(x+y)2dx−(x−y)2dy v`a I2 =
I
AnB
(x+y)2dx−(x−y)2dy nˆe´uAmBl`a doa.n th˘a’ng nˆo´iA(1,1) v´o.iB(2,6) v`aAnBl`a cung parabol quaA. B v`a gˆo´c to.a dˆo (DS.I1−I2 = 2)
38. T´ınh I =
I
AmBnA
(x+y)dx−(x−y)dy, d´o AmB l`a cung parabol qua A(1,0) v`a B(2,3) v`a c´o tru.c dˆo´i x´u.ng l`a tru.c Oy, c`on AnB l`a doa.n th˘a’ng nˆo´i A v´o.iB
(DS −1
3)
Chı’ dˆa˜n. Dˆ` u tiˆen viˆe´t phu.o.ng tr`ınh parabol v`a du.`o.ng th˘a’ng, saua d´o ´ap du.ng cˆong th´u.c Green
39. Ch´u.ng minh r˘a`ng gi´a tri cu’a t´ıch phˆan
I
C
(2xy−y)dx+x2dy, d´o C l`a chu tuyˆe´n d´ong, b˘a`ng diˆe.n t´ıch miˆe`n ph˘a’ng v´o.i biˆen l`a
(159)40.
I
C
(x+y)2dx−(x2+y2)dy, C l`a biˆen cu’a ∆ABC v´o.i dı’nh A(1,1),B(3,2) v`aC(2,5) (DS −462
3) 41.
I
C
(y−x2)dx+ (x+y2)dy,C l`a biˆen h`ınh qua.t b´an k´ınh R v`a g´ocϕ(0 6ϕ6 π
2) (DS 0) 42.
I
C
y2dx+ (x+y)2dy, C l`a biˆen cu’a h`ınh tam gi´ac ∆ABC v´o.i A(a,0),B(a, a),C(0, a) (DS. 2a
3
3 )
12.4 T´ıch phˆan m˘a.t
12.4.1 C´ac di.nh ngh˜ıa co ba’n
Gia’ su.’ c´ac h`am f(M), P(M), Q(M) v`a R(M),M = (x, y, z) liˆen tu.c ta.i mo.i diˆe’mM cu’a m˘a.t tro.n, du.o c (σ) (m˘a.t tro.n l`a m˘a.t c´o m˘a.t ph˘a’ng tiˆe´p x´uc ta.i mo.i diˆe’m cu’a n´o) Chia mˆo.t c´ach t`uy ´y m˘a.t (σ) th`anh n ma’nh σ0, σ1, , σn−1 v´o.i diˆe.n t´ıch tu.o.ng ´u.ng l`a ∆S0,
∆S1, ,∆Sn−1 D˘a.t dk = diamσk; d = max
06k6n−1dk Trong mˆo˜i ma’nh
m˘a.t ta lˆa´y mˆo.t c´ach t`uy ´y diˆe’m Ni T´ınh gi´a tri cu’a c´ac h`am d˜a cho ta.i diˆe’mNi,i= 0, n−1 Ta k´y hiˆe.u cosα(Ni), cosβ(Ni) v`a cosγ(Ni) l`a c´ac cosin chı’ phu.o.ng cu’a vecto ph´ap tuyˆe´n~n(Ni) ta.i diˆe’mNi cu’a m˘a.t (σ).
X´et hai c´ach lˆa.p tˆo’ng t´ıch phˆan sau.
(I) Lˆa´y gi´a tri. f(Ni) nhˆan v´o.i c´ac phˆ` n tu.a ’ diˆe.n t´ıch m˘a.t ∆S0,
∆S1, ,∆Sn−1 v`a lˆa.p tˆo’ng
n−1
X
i=0
(160)(II) Kh´ac v´o.i c´ach lˆa.p tˆo’ng t´ıch phˆan (I), phu.o.ng ph´ap n`ay ta lˆa´y gi´a tri. P(Ni), Q(Ni) v`a R(Ni) nhˆan khˆong pha’i v´o.i phˆ` na tu.’ diˆe.n t´ıch ∆Si cu’a c´ac ma’nh m˘a.t σi m`a l`a nhˆan v´o.i h`ınh chiˆe´u cu’a c´ac ma’nh d´o lˆen c´ac m˘a.t ph˘a’ng to.a dˆo. Oxy, Oxz v`aOyz, t´u.c l`a lˆa.p c´ac tˆo’ng da.ng
σxy = n−1
X
i=0
P(Ni)m(σxyi ), m(σixy) =proOxy(σi);
σxz = n−1
X
i=0
Q(Ni)m(σxzi ), m(σ i
xz) =proOxz(σi); σyz =
n−1
X
i=0
R(Ni)m(σyzi ), m(σyzi ) =proOyz(σi) D- i.nh ngh˜ıa 12.4.1. Nˆe´u tˆ` n ta.i gi´o.i ha.n h˜u.u ha.no
lim d→0
n−1
X
i=1
f(Ni)∆Si (12.34) khˆong phu thuˆo.c v`ao ph´ep phˆan hoa.ch m˘a.t (σ) th`anh c´ac ma’nh v`a khˆong phu thuˆo.c v`ao c´ach cho.n c´ac diˆe’m trung gian Ni ∈ σi th`ı gi´o.i ha.n d´o go.i l`a t´ıch phˆan m˘a.t theo diˆe.n t´ıch.
K´y hiˆe.u :
ZZ
(σ)
f(x, y, z)dS
D- i.nh ngh˜ıa 12.4.2. C´ac t´ıch phˆan m˘a.t theo to.a dˆo du.o c di.nh ngh˜ıa bo.’ i
ZZ
(σ)
P(M)dxdy def= lim d→0
n−1
X
i=0
P(Ni)m(σxyi ) (12.35)
ZZ
(σ)
Q(M)dxdz def= lim d→0
n−1
X
i=0
Q(Ni)m(σxzi ) (12.36)
ZZ
(σ)
R(M)dydz def= lim d→0
n−1
X
i=0
(161)nˆe´u c´ac gi´o.i ha.n o’ vˆe´ pha’i (12.35)-(12.37) tˆ ` n ta.i h˜u.u ha.n khˆong phu.o thuˆo.c v`ao ph´ep phˆan hoa.ch m˘a.t (σ) v`a c´ach cho.n diˆe’m trung gianNi, i= 0, n−1
T´ıch phˆan m˘a.t theo to.a dˆo da.ng tˆo’ng qu´at
ZZ
(σ)
P(M)dxdy+Q(M)dxdz+R(M)dydz
l`a tˆo’ng cu’a c´ac t´ıch phˆan m˘a.t theo to.a dˆo (12.35), (12.36) v`a (12.37). Nˆe´u (σ) l`a m˘a.t d´ong (k´ın !) th`ı t´ıch phˆan m˘a.ttheo ph´ıa ngo`ai cu’a n´o du.o c k´y hiˆe.u
ZZ
(σ)+
ho˘a.c do.n gia’n l`a
Z Z
(σ)
nˆe´u n´oi r˜o (σ) l`a m˘a.t n`ao;
c`on t´ıch phˆan theo ph´ıa trong du.o..c k´y hiˆe.u
Z Z
(σ)−
ho˘a.c do.n gia’n l`a
ZZ
(σ)
khi d˜a n´oi r˜o (σ) l`a m˘a.t n`ao.
12.4.2 Phu.o.ng ph´ap t´ınh t´ıch phˆan m˘a t
Phu.o.ng ph´ap chung dˆe’ t´ınh t´ıch phˆan m˘a.t ca’ hai da.ng l`a du.a vˆe` t´ıch phˆan hai l´o.p Cu thˆe’ l`a: xuˆa´t ph´at t`u phu.o.ng tr`ınh cu’a m˘a.t (σ) ta biˆe´n dˆo’i biˆe’u th´u.c du.´o.i dˆa´u t´ıch phˆan th`anh biˆe’u th´u.c hai biˆe´n m`a miˆ`n biˆe´n thiˆen cu’a ch´e ung l`a h`ınh chiˆe´u do.n tri cu’a (σ) lˆen m˘a.t ph˘a’ng to.a dˆo tu.o.ng ´u.ng v´o.i c´ac biˆe´n d´o
1+ Nˆe´u m˘a.t (σ) c´o phu.o.ng tr`ınh z = ϕ(x, y) th`ı t´ıch phˆan m˘a.t theo diˆe.n t´ıch du.o c biˆe´n dˆo’i th`anh t´ıch phˆan hai l´o.p theo cˆong th´u.c
dS=
q
1 +ϕ0 x
2
+ϕ0 y
2
dxdy
ZZ
(σ)
f(x, y, z)dS=
ZZ
D(x,y)
f[x, y, ϕ(x, y)]
q
1 +ϕ0 x
2
+ϕ0 y
2
dxdy (12.38)
(162)Nˆe´u m˘a.t (σ) c´o phu.o.ng tr`ınhy =ψ(x, z) th`ı
ZZ
(σ)
f(x, y, z)dS =
Z Z
D(x,z)
f[x, ψ(x, z), z]
q
1 +ψ0 x
2
+ψ0 z
2
dxdz, (12.39)
trong d´o D(x, z) =proOxz(σ)
Nˆe´u m˘a.t (σ) c´o phu.o.ng tr`ınhx =g(y, z) th`ı
ZZ
(σ)
f(·)dS =
ZZ
D(y,z)
f[g(y, z), y, z]
q
1 +g0 y
2+g0 z
2dydz, (12.40)
trong d´o D(y, z) =proOyz(σ) 2+ Gia’ thiˆe´t m˘
a.t (σ) chiˆe´u du.o c do.n tri lˆen c´ac m˘a.t ph˘a’ng to.a dˆo., t´u.c l`a m˘a.t c´o phu.o.ng tr`ınh da.ng
z =ϕ(x, y), (x, y)∈D(x, y); y=ψ(x, z), (x, z)∈D(x, z); x=g(y, z), (y, z)∈D(y, z).
Ta k´y hiˆe.ue1,e2,e3l`a c´ac vecto co so.’ cu’aR3v`a cosα(M) = cos(~n, ~de1),
cosβ(M) = cos(~n, ~de2), cosγ(M) = cos(~n, ~de3) D´o l`a c´ac cosin chı’
phu.o.ng cu’a vecto ph´ap tuyˆe´n v´o.i m˘a.t (σ) ta.i diˆe’mM ∈(σ) Khi d´o c´ac t´ıch phˆan m˘a.t theo to.a dˆo lˆa´y theo m˘a.t hai ph´ıa du.o c t´ınh nhu. sau
ZZ
(σ)
P(M)dxdy =
+
ZZ
D(x,y)
P(x, y, ϕ(x, y))dxdy nˆe´u cosγ >0;
−
ZZ
D(x,y)
P(x, y, ϕ(x, y))dxdy nˆe´u cosγ <0
(163)Tu.o.ng tu ta c´o
ZZ
(σ)
Q(M)dxdz =
+
ZZ
D(x,z)
Q(x, ψ(x, z), z)dxdz nˆe´u cosβ >0,
−
ZZ
D(x,z)
Q(·)dxdz nˆe´u cosβ <0;
Z Z
(σ)
R(M)dydz =
+
ZZ
D(y,z)
R(g(y, z), y, z)dydz nˆe´u cosα >0
−
ZZ
D(y,z)
R(·)dydz nˆe´u cosα <0
Nhˆa n x´et. T´ıch phˆan m˘a.t theo to.a dˆo lˆa´y theo phˆa` nm˘a t tru. v´o.i du.`o.ng sinh song song v´o.i tru.c Oz l`a b˘a`ng Trong c´ac tru.`o.ng ho p tu.o.ng tu , c´ac t´ıch phˆan m˘a.t theo to.a dˆo x,z hay y,z c˜ung =
12.4.3 Cˆong th´u.c Gauss-Ostrogradski D´o l`a cˆong th´u.c
ZZZ
D
∂P
∂x + ∂Q
∂y + ∂R
∂z
dxdydz =
Z Z
∂D
P dydz+Qdxdz+Rdxdy.
N´o x´ac lˆa.p mˆo´i liˆen hˆe gi˜u.a t´ıch phˆan m˘a.t theo m˘a.t biˆen ∂D cu’a D v´o.i t´ıch phˆan 3-l´o.p lˆa´y theo miˆ`ne D ⊂R3
12.4.4 Cˆong th´u.c Stokes D´o l`a cˆong th´u.c
I
L
P dx+Qdy+Rdz=
ZZ
(σ)
∂Q
∂x − ∂P
∂y
dxdy+∂R ∂y −
∂Q ∂z
dydz
+
∂P
∂z − ∂R
∂x
(164)
N´o x´ac lˆa.p mˆo´i liˆen hˆe gi˜u.a t´ıch phˆan m˘a.t theo m˘a.t (σ) v´o.i t´ıch phˆan du.`o.ng lˆa´y theo b`o.L cu’a m˘a.t (σ).
Ta nhˆa.n x´et r˘a`ng sˆo´ ha.ng th´u nhˆa´t o.’ vˆe´ pha’i cu’a cˆong th´u.c Stokes c˜ung ch´ınh l`a vˆe´ pha’i cˆong th´u.c Green Hai sˆo´ ha.ng c`on la.i thu du.o c t`u d´o bo.’ i ph´ep ho´an vi tuˆa` n ho`an c´ac biˆe´nx, y, z v`a c´ac h`am P, Q, R:
x
% &
z ←− y
P
% &
R ←− Q C ´AC V´I DU.
V´ı du 1. T´ınh t´ıch phˆan
ZZ
(σ)
(6x+ 4y+ 3z)dS, d´o (σ) l`a phˆ` na m˘a.t ph˘a’ng x+ 2y+ 3z = n˘a`m g´oc phˆa` n t´am th´u nhˆa´t
Gia’i. M˘a.t t´ıch phˆan l`a tam gi´ac ABC tronng d´o A(6,0,0), B(0,3,0) v`a C(0,0,2) Su.’ du.ng phu.o.ng tr`ınh cu’a (σ) dˆe’ biˆe´n dˆo’i t´ıch phˆan m˘a.t th`anh t´ıch phˆan 2-l´o.p T`u phu.o.ng tr`ınh cu’a (σ) r´ut z =
3(6−x−2y) T`u d´o dS =
q
1 +z0 x
2
+z0 y
2
dxdy=
√
14 dxdy. Do d´o
I =
√
14
ZZ
∆OAB
[(6x+ 4y+3
3(6−x−2y)]dxdy =
√
14
3
Z
0
dy
6Z−2y
0
(5x+ 2y+ 6)dx
=
√
14
3
Z
0
nh5
2x
2
+ 2xy+ 6xi
6−2y
0
o
dy= 54
√
(165)V´ı du 2. T´ınh
ZZ
(σ)
p
1 + 4x2+ 4y2dS, (σ) l`a phˆ` n paraboloid tr`ona
xoayz = 1−x2 −y2 n˘a`m trˆen m˘a.t ph˘a’ng Oxy.
Gia’i. M˘a.t (σ) chiˆe´u du.o c do.n tri lˆen m˘a.t ph˘a’ngOxy v`a h`ınh tr`on x2+y2 61 l`a h`ınh chiˆe´u cu’a n´o: D(x, y) =(x, y) :x2+y2 61 Ta
t´ınh dS Ta c´o zx0 = −2x, z0y = −2y ⇒ dS = p1 + 4x2+ 4y2dxdy.
Do vˆa.y
ZZ
(σ)
=
Z Z
D(x,y)
p
1 + 4x2+ 4y2 ·p1 + 4x2 + 4y2dxdy
=
ZZ
x2+y261
(1 + 4x2+ 4y2)dxdy
B˘a`ng c´ach chuyˆe’n sang to.a dˆo cu c ta c´o
I =
2π
Z
0
dϕ
1
Z
0
(1 + 4r2)rdr = 3π N
V´ı du 3. T´ınh t´ıch phˆan
ZZ
(σ)
(y2+z2dxdy, d´o (σ) l`a ph´ıa ngo`ai cu’a m˘a.t z =
√
1−x2 gi´o.i ha.n bo’ i c´ ac m˘a.t ph˘a’ng y= 0, y= 1.
Gia’i. M˘a.t (σ) l`a nu.’ a trˆen cu’a m˘a.t tru. x2+z2 = 1, z > Do d´o h`ınh chiˆe´u cu’a (σ) lˆen m˘a.t ph˘a’ng Oxy l`a h`ınh ch˜u nhˆa.t x´ac di.nh bo.’i c´ac diˆ`u kiˆe.n:e −1 x 1, y Do d´o v`ız =
√
1−x2 nˆen
cosγ >0 v`a
Z Z
(σ)
(y2+z2)dxdy =
ZZ
D(x,y)
[y2+ (
√
1−x2)2
]dxdy
=
1
Z
−1
dx
1
Z
0
(166)V´ı du 4. T´ınh t´ıch phˆan
ZZ
(σ)
2dxdy+ydxdz−x2zdydz, d´o (σ) l`a ph´ıa trˆen cu’a phˆ` n elipxoid 4xa 2+y2+ 4z2 = n˘a`m g´oc phˆa` n
t´am I
Gia’i. Ta viˆe´t t´ıch phˆan d˜a cho du.´o.i da.ng
I =
Z Z
(σ)
dxdy+
ZZ
(σ)
ydydz−
ZZ
(σ)
x2zdydz.
v`a su.’ du.ng phu.o.ng tr`ınh cu’a m˘a.t (σ) dˆe’ biˆe´n dˆo’i mˆo˜i t´ıch phˆan Lu.u ´
y r˘a`ng cosα >0, cosβ >0, cosγ >0
(i) V`ı h`ınh chiˆe´u cu’a m˘a.t (σ) lˆen m˘a.t ph˘a’ng Oxy l`a phˆ` n tu h`ınha elip x
2
12 +
y2
22 61 nˆen
I1 =
ZZ
(σ)
dxdy=
ZZ
D(x,y)
dxdy= π
2 (v`ı diˆe.n t´ıch elip = 2π)
(ii) H`ınh chiˆe´u cu’a (σ) lˆen m˘a.t ph˘a’ng Oxz l`a phˆ` n tu h`ınh tr`ona 4x2+ 4z2 64⇔ x2+z2 61 M˘a.t kh´ac t`u phu.o.ng tr`ınh m˘a.t r´ut ra y= 2p1−x2−y2 v`a d´o
I2 =
Z Z
(σ)
ydxdz=
Z Z
D(x,y)
√
1−x2−z2dxdz =|chuyˆe’n sang to.a dˆo cu c|
= π/2
Z
0
dϕ
1
Z
0
√
1−r2rdr = π
3·
(iii) H`ınh chiˆe´u cu’a (σ) lˆen m˘a.t ph˘a’ng Oyz l`a mˆo.t phˆa` n tu h`ınh elip y
2
4 +z
2
(167)x=
r
1− y
2
4 −z
2 rˆ` i thˆe´ v`ao h`am du.´o.i dˆa´u t´ıch phˆan cu’ao I 3:
I3 =
ZZ
(σ)
x2zdydz =
Z Z
D(y,z)
z 1− y
2
4 −z
2
dydz
=
1
Z
0
dz
2√1−z2
Z
0
z 1− y
2
4 −z
2
dy =· · ·= 15 · Nhu vˆa.y I = 2I1+I2−I3 =
4π −
4 15· N V´ı du 5. T´ınh
ZZ
(σ)−
ydydz, d´o (σ) l`a m˘a.t cu’a t´u diˆe.n gi´o.i ha.n bo.’ i m˘a.t ph˘a’ng x+y+z = v`a c´ac m˘a.t ph˘a’ng to.a dˆo., t´ıch phˆan du.o c lˆa´y theo ph´ıa cu’a t´u diˆe.n.
Gia’i. M˘a.t ph˘a’ng x+y+z = c˘a´t c´ac tru.c to.a dˆo ta.iA(1,0,0), B(0,1,0) v`a C = (0,0,1) Ta k´y hiˆe.u gˆo´c to.a dˆo l`a O(0,0,0) T`u d´o suy m˘a.t k´ın (σ) gˆ` m t`o u h`ınh tam gi´ac ∆ABC, ∆BCO, ∆ACO v`a ∆ABO Do vˆa.y t´ıch phˆan d˜a cho l`a tˆo’ng cu’a bˆo´n t´ıch phˆan.
(i) T´ıch phˆan I1 =
ZZ
ABC
ydxdz R´ut y t`u phu.o.ng tr`ınh m˘a.t (σ)⊃
∆ABC ta c´oy= 1−x−z v`a d´o I1 =−
Z Z
ACO
(1−x−z)dxdz =
1
Z
0
dx
1−x
Z
0
(x+z−1)dz =−1
6· (Lu.u ´y r˘a`ng cosβ = cos(~n, Oy)< v`ı vecto.~n lˆa.p v´o.i hu.´o.ng du.o.ng tru.cOy mˆo.t g´oc t`u, d´o tru.´o.c t´ıch phˆan theo ∆ACOxuˆa´t hiˆe.n dˆa´u tr`u.)
(ii)
ZZ
(BCD)
ydxdz=
ZZ
(ABO)
(168)v`ı m˘a.t ph˘a’ng BCO v`aABO dˆ`u vuˆong g´oc v´o.i m˘a.t ph˘a’nge Oxz. (iii)
ZZ
(ACO)
ydxdz =
Z Z
ACO
0dxdz =
Vˆa.y I =−1
6 N
V´ı du 6. T´ınh t´ıch phˆan I =
ZZ
(σ)
x3dydz+y3dzdx+z3dxdy, trong d´o (σ) l`a ph´ıa ngo`ai m˘a.t cˆa` ux2 +y2+z2 =R2.
Gia’i. Ap du.ng cˆong th´u.c Gauss-Ostrogradski ta c´o´
ZZ
(σ)
=
Z ZZ
D
(x2+y2+z2)dxdydz
trong d´o D ⊂ R3 l`a miˆ`n v´o.i biˆen l`a m˘a.t (e σ) Chuyˆe’n sang to.a dˆo. cˆ` u ta c´oa
3
ZZ Z
D
(x2 +y2+z2)dxdydz =
2π
Z
0
dϕ π
Z
0
sinθdθ R
Z
0
r4dr
= 12πR
5
5 · Vˆa.y I = 12πR
5
5 · N V´ı du 7. T´ınh t´ıch phˆan
I
L
x2y3dx+dy+zdz, d´o L l`a du.`o.ng tr`on x2+y2 = 1, z = 0, c`on m˘
a.t (σ) l`a ph´ıa ngo`ai cu’a nu.’ a m˘a.t cˆa` u x2+y2+z2 = 1, z >0 v`aL c´
o di.nh hu.´o.ng du.o.ng
Gia’i. Trong tru.`o.ng ho p n`ay P =x2y3, Q= 1, R =z Do d´o ∂Q
∂x − ∂P
∂y =−3x
2
y2, ∂R ∂y −
∂Q ∂z = 0,
∂P ∂z −
(169)v`a d´o theo cˆong th´u.c Stokes ta c´o
I
L
=−3
Z Z
(σ)
x2y2dxdy=−π
8· N B `AI T ˆA P
T´ınh c´ac t´ıch phˆan m˘a.t theo diˆe.n t´ıch sau dˆay 1.
ZZ
(Σ)
(x+y+z)dS, (Σ) l`a m˘a.t lˆa.p phu.o.ng 0 6x61, 0661, 06z 61 (DS 9)
2.
ZZ
(Σ)
(2x+y+z)dS, (Σ) l`a phˆ` n m˘a.t ph˘a’nga x+y+z = n˘a`m
g´oc phˆ` n t´ama I (DS.
√
3 ) 3.
ZZ
(Σ)
z + 2x+ 4y
dS, (Σ) l`a phˆ` n m˘a.t ph˘a’ng 6a x+ 4y+ 3z = 12 n˘a`m g´oc phˆa` n t´am I (DS 4√61)
4.
ZZ
(σ)
p
x2+y2dS, (Σ) l`a phˆ` n m˘a.t n´ona z2 =x2+y2, 0 6z 61.
(DS
√
2π ) 5.
ZZ
(Σ)
(y+z+
√
a2 −x2)dS, (Σ) l`a phˆ` n m˘a.t tru.a x2
+y2 =a2 n˘a`m gi˜u.a hai m˘a.t ph˘a’ng z = v`a z =h (DS.ah(4a+πh))
6.
ZZ
(Σ)
p
y2−x2dS, (Σ) l`a phˆ` n m˘a.t n´ona z2=x2+y2 n˘a`m m˘a.t
tru x2+y2 =a2 (DS 8a
3
(170)7.
ZZ
(Σ)
(x+y+z)dS, (Σ) l`a nu.’ a trˆen cu’a m˘a.t cˆa` u x2+y2+z2 =a2 (DS πa3)
8.
ZZ
(Σ)
p
x2+y2dS, (Σ) l`a m˘a.t cˆa` u x2+y2+z2 =a2 (DS. 8πa
3 ) 9.
ZZ
(Σ)
dS
(1 +x+y), (Σ) l`a biˆen cu’a t´u diˆe.n x´ac di.nh bo
’ i bˆa´t phu.o.ng
tr`ınhx+y+z 61,x>0,y>0,z>0 (DS 3(3−
√
3)+(√3−1) ln 2) 10.
Z Z
(Σ)
(x2 +y2)dS, (Σ) l`a phˆ` n m˘a.t paraboloida x2+y2 = 2z
du.o c
c˘a´t bo.’ i m˘a.t ph˘a’ng z= (DS 55 +
√
3 65 ) 11.
Z Z
(Σ)
p
1 + 4x2+ 4y2dS, (Σ) l`a phˆ` n m˘a.t paraboloida z = 1−x2−y2
gi´o.i ha.n bo.’i c´ac m˘a.t ph˘a’ng z = v`a z= (DS 3π) 12.
Z Z
(Σ)
(x2 +y2)dS, (Σ) l`a phˆ` n m˘a.t n´ona z = px2+y2 n˘a`m gi˜u.a
c´ac m˘a.t ph˘a’ngz = v`a z= (DS π
√
2 ) 13.
Z Z
(Σ)
(xy+yz+zx)dS, (Σ) l`a phˆ` n m˘a.t n´ona z = px2+y2 n˘a`m
trong m˘a.t tru. x2+y2 = 2ax (a >0) (DS 64a
4√2
15 ) 14.
ZZ
(Σ)
(x2+y2+z2)dS, (Σ) l`a ma.t cˆa` u (DS 4π)
15.
ZZ
(Σ)
(171)bo.’ i m˘a.t ph˘a’ng x= 10 (DS 50π
3 (1 + 25
√
5)) Su.’ du.ng cˆong th´u.c t´ınh diˆe.n t´ıch m˘a.tS(Σ) =
Z Z
(Σ)
dS dˆe’ t´ınh diˆe.n t´ıch cu’a phˆ` n m˘a.t (Σ) nˆe´ua
16. (Σ) l`a phˆ` n m˘a.t ph˘a’ng 2a x+ 2y+z = 8a n˘a`m m˘a.t tru. x2+y2 =R2. (DS 3πR2)
17. (Σ) l`a phˆ` n m˘a.t tru.a y+z2 =R2 n˘a`m m˘a.t tru.
x2+y2 =R2. (DS 8R2)
18. (Σ) l`a phˆ` n m˘a.t paraboloida x2+y2 = 6z n˘a`m m˘a.t tru x2+y2 = 27. (DS 42π)
19. (Σ) l`a phˆ` n m˘a.t cˆaa ` u x2+y2+z2 = 3a2 n˘a`m paraboloid x2+y2 = 2az. (DS 2πa2(3−√3))
20. (Σ) l`a phˆ` n m˘a.t n´ona z2 = 2xy n˘a`m g´oc phˆa` n t´am I gi˜u.a hai m˘a.t ph˘a’ng x= 2, y= (DS 16)
21. (Σ) l`a phˆ` n m˘a.t tru.a x2+y2 =Rx n˘a`m m˘a.t cˆa` u
x2+y2+z2 =R2. (DS 4R2)
T´ınh c´ac t´ıch phˆan m˘a.t theo to.a dˆo sau: 22.
ZZ
(Σ)
dxdy, (Σ) l`a ph´ıa ngo`ai phˆ` n m˘a.t n´ona z =px2+y2 khi
06z 61 (DS −π) 23.
ZZ
(Σ)
ydzdx, (Σ) l`a ph´ıa trˆen cu’a phˆ` n m˘a.t ph˘a’nga x+y+z = a
(a >0) n˘a`m g´oc phˆa` n t´am I (DS. a
3
6) 24.
ZZ
(Σ)
(172)25.
ZZ
(Σ)
−xdydz+zdzdx + 5dxdy, (Σ) l`a ph´ıa trˆen cu’a phˆ` n m˘a.ta ph˘a’ng 2x+ 3y+z = thuˆo.c g´oc phˆa` n t´am I (DS 6)
26.
Z Z
(Σ)
yzdydz+xzdxdz+xydxdy, (Σ) l`a ph´ıa trˆen cu’a tam gi´ac ta.o bo.’ i giao tuyˆe´n cu’a m˘a.t ph˘a’ng x+y+z = a v´o.i c´ac m˘a.t ph˘a’ng to.a dˆo (DS. a
4
8 ) 27.
ZZ
(Σ)
x2dydz+z2dxdy, (Σ) l`a ph´ıa ngo`ai cu’a phˆ` n m˘a.t n´ona
x2+y2 =z2, 06z 61. (DS. −4
3) 28.
ZZ
(Σ)
xdydz+ydzdx+zdxdy, (Σ) l`a ph´ıa ngo`ai phˆ` n m˘a.t cˆaa ` u x2+y2+z2=a2 (DS 4πa3)
29.
ZZ
(σ)
x2dydz−y2dzdx+z2dxdy, (Σ) l`a ph´ıa ngo`ai cu’a m˘a.t cˆa` u x2+y2+z2=R2 thuˆo.c g´oc phˆa` n t´am I (DS πa
4
8 ) 30.
ZZ
(Σ)
2dxdy+ydzdx−x2zdydz, (Σ) l`a ph´ıa ngo`ai cu’a phˆ` n m˘a.ta elipxoid 4x2 +y2+ 4z2 = thuˆ
o.c g´oc phˆa` n t´am I (DS 4π −
4 15) 31.
ZZ
(Σ)
(y2+z2)dxdy, (Σ) l`a ph´ıa ngo`ai cu’a m˘a.t tru. z2 = 1−x2,
06y61 (DS π 3) 32.
ZZ
(Σ)
(z−R)2dxdy, (Σ) l`a ph´ıa ngo`ai cu’a nu.’ a m˘a.t cˆa` u x2+y2+ (z−R)2 =R2,R 6z 62R (DS −5π
(173)33.
ZZ
(Σ)
x2dydz+y2dzdx+z2dxdy, (Σ) l`a ph´ıa ngo`ai cu’a phˆ` n m˘a.ta
cˆ` ua x2+y2+z2 =a2 thuˆo.c g´oc phˆa` n t´am I (DS 3πa
4
8 ) 34.
ZZ
(Σ)
z2dxdy, (σ) l`a ph´ıa cu’a m˘a.t elipxoid x2+y2+ 2z2 = (DS 0)
35.
ZZ
(Σ)
(z+ 1)dxdy, (Σ) l`a ph´ıa ngo`ai cu’a m˘a.t cˆa` u
x2+y2+z2 =R2 (DS. 4πR
3 ) 36.
ZZ
(Σ)
x2dydz+y2dzdx+z2dxdy, (Σ) l`a ph´ıa ngo`ai cu’a m˘a.t cˆa` u
(x−a)2+ (y−b)2+ (z−c)2 =R2 (DS. 8πR
3 (a+b+c)) 37.
ZZ
(Σ)
x2y2zdxdy, (Σ) l`a ph´ıa cu’a nu.’ a du.´o.i m˘a.t cˆa` u
x2+y2+z2 =R2 (DS. 2πR
105 ) 38.
ZZ
(Σ)
xzdxdy+xydydz+yzdxdz, (Σ) l`a ph´ıa ngo`ai cu’a t´u diˆe.n ta.o
bo.’ i c´ac m˘a.t ph˘a’ng to.a dˆo v`a m˘a.t ph˘a’ng x+y+z = (DS 8)
Chı’ dˆa˜n. Su.’ du.ng nhˆa.n x´et nˆeu phˆa` n l´y thuyˆe´t 39.
ZZ
(Σ)
yzdydz+xzdxdz +xydxdy, (Σ) l`a ph´ıa ngo`ai cu’a m˘a.t biˆen t´u diˆe.n lˆa.p bo.’i c´ac m˘a.t ph˘a’ng x = 0, y = 0, z = 0, x+y+z = a. (DS 0)
40.
ZZ
(Σ)
(174)m˘a.t cˆa` u x2+y2 +z2 =R2 (z >0) (DS πR
4
2 ) ´
Ap du.ng cˆong th´u.c Gauss-Ostrogradski dˆe’ t´ınh t´ıch phˆan m˘a.t theo ph´ıa ngo`ai cu’a m˘a.t (Σ) (nˆe´u m˘a.t khˆong k´ın th`ı bˆo’ sung dˆe’ n´o tro.’ th`anh k´ın)
41.
ZZ
(Σ)
x2dydz+y2dzdx+z2dxdy, (Σ) l`a m˘a.t cˆa` u
(x−a)2+ (y−b)2+ (z−c)2 =R2 (DS 8π
3 (a+b+c)R
3
) 42.
ZZ
(Σ)
xdydz+ydzdx+zdxdy, (Σ) l`a m˘a.t cˆa` u x2+y2+z2 =R2.
(DS 4πR3)
43.
ZZ
(Σ)
4x3dydz+ 4y3dzdx−6z2dxdy, (Σ) l`a biˆen cu’a phˆ` n h`ınha tru x2+y2 6a2, 0 6z 6h. (DS 6πa2(a2−h2))
44.
ZZ
(σ)
(y−z)dydz+ (z−x)dzdx+ (x−y)dxdy, (Σ) l`a phˆ` n m˘a.ta n´on x2+y2 =z2, 06x6h (DS 0)
Chı’ dˆa˜n. V`ı (Σ) khˆong k´ın nˆen cˆ` n bˆo’ sung phˆaa ` n m˘a.t ph˘a’ngz =h n˘a`m n´on dˆe’ thu du.o c m˘a.t k´ın.
45.
ZZ
(Σ)
dydz+zxdzdx+xydxdy, (Σ) l`a biˆen cu’a miˆ`ne
{(x, y, z) :x2+y2 6a2,06z 6h} (DS 0)
46.
ZZ
(Σ)
ydydz+zdzdx+xdxdy, (Σ) l`a m˘a.t cu’a h`ınh ch´op gi´o.i ha.n bo.’ i c´ac m˘a.t ph˘a’ng
x+y+z =a (a >0),x= 0, y= 0, z = (DS 0) 47.
ZZ
(Σ)
(175)(DS π 5) 48.
Z Z
(Σ)
x3dydz+y3dzdx+z3dxdy, (Σ) l`a m˘a.t cˆa` ux2+y2+z2 =a2.
(DS 12πa
5
5 ) 49.
ZZ
(Σ)
z2dxdy, (Σ) l`a m˘a.t elipxoid x
2
a2 +
y2
b2 +
z2
c2 = (DS 0)
Chı’ dˆa˜n. Xem v´ı du 10, mu.c III.
50.
ZZ
(Σ)
xdydz+ydzdx+zdxdy, (Σ) l`a m˘a.t elipxoidx
2
a2+
y2
b2 +
z2
c2 =
(Ds 4πabc) 51.
ZZ
(Σ)
xdydz+ydzdx+zdxdy, (Σ) l`a biˆen h`ınh tru.x2+y2 6a2,
−h6z 6h. (DS 6πa2h) 52.
ZZ
(Σ)
x2dydz+y2dzdx+z2dxdy, (Σ) l`a biˆen cu’a h`ınh lˆa.p phu.o.ng 06x6a, 06y6a, 06z 6a. (DS 3a4)
Dˆe’ ´ap du.ng cˆong th´u.c Stokes, ta lu.u ´y la.i quy u.´o.c
Hu.´o.ng du.o.ng cu’a chu tuyˆe´n∂Σ cu’a m˘a.t (Σ) du.o c quy u.´o.c nhu sau: Nˆe´u mˆo.t ngu.`o.i quan tr˘a´c d´u.ng trˆen ph´ıa du.o c cho.n cu’a m˘a.t (t´u.c l`a hu.´o.ng t`u chˆan dˆe´n dˆ` u tr`a ung v´o.i hu.´o.ng cu’a vecto ph´ap tuyˆe´n) th`ı ngu.`o.i quan s´at di chuyˆe’n trˆen∂Σ theo hu.´o.ng d´o th`ı m˘a.t (Σ) luˆon luˆon n˘a`m bˆen tr´ai
´
Ap du.ng cˆong th´u.c Stokes dˆe’ t´ınh c´ac t´ıch phˆan sau 53.
I
C
(176)54.
I
C
ydx+zdy+xdz,C l`a du.`o.ng tr`on x2+y2+z2 =R2,x+y+z = c´o hu.´o.ng ngu.o..c chiˆe`u kim dˆo`ng hˆo` nˆe´u nh`ın t`u phˆa` n du.o.ng tru.c Ox. (DS −√3πR2)
55.
I
C
(y− z)dx+ (z − x)dy + (x− y)dz, C l`a elip x2 +y2 = a2, x
a + z
h = (a > 0, h > 0) c´o hu.´o.ng ngu.o c chiˆe`u kim dˆo` ng hˆo` nˆe´u nh`ın t`u diˆe’m (2a,0,0) (DS −2πa(a+h))
56.
I
C
(y−z)dx+(z−x)dy+(x−y)dz,C l`a du.`o.ng tr`onx2+y2+z2 =a2,
y=xtgα, 0 < α < π
2 c´o hu.´o.ng ngu.o c chiˆe`u kim dˆo` ng hˆo` nh`ın t`u diˆe’m (2a,0,0) (DS 2√2πa2sinπ
4 −α)) 57.
I
C
(y−z)dx+ (z−x)dy+ (x−y)dz,C l`a elipx2+y2 = 1,x+z = c´o hu.´o.ng ngu.o c chiˆe`u kim dˆo` ng hˆo` nˆe´u nh`ın t`u phˆ` n du.o.ng tru.ca Oz. (DS −4π)
58.
I
C
(y2−z2)dx+ (z2−x2)dy+ (x2−y2)dz,C l`a biˆen cu’a thiˆe´t diˆe.n cu’a lˆa.p phu.o.ng 0 x a, 0 y a, 0 z a v´o.i m˘a.t ph˘a’ng x+y+z = 3a
2 c´o hu.´o.ng ngu.o c chiˆe`u kim dˆo` ng hˆo` nˆe´u nh`ın t`u diˆe’m (2a,0,0) (DS −9
2a
3
) 59.
I
C
exdx+z(x2 +y2)3/2dy+yz3dz, C l`a giao tuyˆe´n cu’a m˘a.t z =
p
x2+y2 v´o.i c´ac m˘
a.t ph˘a’ng x= 0, x= 2, y = 0, y= (DS −14)
60.
I
C
8yp(1−x2−z2)3dx+xy3
(177)(178)L´y thuyˆe´t chuˆo˜i
13.1 Chuˆo˜i sˆo´ du.o.ng 178
13.1.1 C´ac di.nh ngh˜ıa co ba’n 178 13.1.2 Chuˆo˜i sˆo´ du.o.ng 179
13.2 Chuˆo˜i hˆo i tu tuyˆe.t dˆo´i v`a hˆo.i tu khˆong tuyˆe.t dˆo´i 191
13.2.1 C´ac di.nh ngh˜ıa co ba’n 191 13.2.2 Chuˆo˜i dan dˆa´u v`a dˆa´u hiˆe.u Leibnitz 192
13.3 Chuˆo˜i l˜uy th`u.a 199
13.3.1 C´ac di.nh ngh˜ıa co ba’n 199 13.3.2 D- iˆe`u kiˆe.n khai triˆe’n v`a phu.o.ng ph´ap khai
triˆe’n 201
13.4 Chuˆo˜i Fourier 211
(179)13.1 Chuˆo˜i sˆo´ du.o.ng 13.1.1 C´ac di.nh ngh˜ıa co ba’n Gia’ su.’ cho d˜ay sˆo´ (an) Biˆe’u th´u.c da.ng
a1+a2+· · ·+an+· · ·=
∞
X
n=1
an=X n>1
an (13.1)
du.o c go.i l`a chuˆo˜i sˆo´(hay do.n gia’n l`a chuˆo˜i) C´ac sˆo´a1, , an,
du.o c go.i l`ac´ac sˆo´ ha ng cu’a chuˆo˜i, sˆo´ ha.ngango.i l`a sˆo´ ha ng tˆo’ng qu´at
cu’a chuˆo˜i Tˆo’ng n sˆo´ ha.ng dˆa` u tiˆen cu’a chuˆo˜i du.o c go.i l`a tˆo’ng riˆeng th´u.n cu’a chuˆo˜i v`a k´y hiˆe.u l`a sn, t´u.c l`a
sn=a1+a2+· · ·+an.
V`ı sˆo´ sˆo´ ha.ng cu’a chuˆo˜i l`a vˆo ha.n nˆen c´ac tˆo’ng riˆeng cu’a chuˆo˜i lˆa.p th`anh d˜ay vˆo ha.n c´ac tˆo’ng riˆeng s1, s2, , sn,
D- i.nh ngh˜ıa 13.1.1. Chuˆo˜i (13.1) du.o c go.i l`a chuˆo˜i hˆo.i tu. nˆe´u d˜ay c´ac tˆo’ng riˆeng (sn) cu’a n´o c´o gi´o.i ha n h˜u.u ha n v`a gi´o.i ha.n d´o du.o c go.i l`atˆo’ng cu’a chuˆo˜i hˆo.i tu Nˆe´u d˜ay (sn) khˆong c´o gi´o.i ha.n h˜u.u ha.n th`ı chuˆo˜i (13.1)phˆan k`y
D- i.nh l´y 13.1.1. Diˆ`u kiˆe.n cˆae ` n dˆe’ chuˆo˜i (13.1) hˆo i tu l`a sˆo´ ha ng tˆo’ng qu´at cu’a n´o dˆ` n dˆe´n khia n→ ∞, t´u.c l`a lim
n→∞an= 0.
Di.nh l´y 13.1.1 chı’ l`a diˆ`u kiˆe.n cˆae ` n ch´u khˆong l`a diˆ`u kiˆe.n du’.e Nhu.ng t`u d´o c´o thˆe’ r´ut diˆ`u kiˆe.n du’ dˆe’ chuˆo˜i phˆan k`y:e Nˆe´u
lim n→∞an
6
= th`ı chuˆo˜i P
n>1
an phˆan k`y.
Chuˆo˜i P n>m+1
anthu du.o c t`u chuˆo˜i P n>1
an sau c˘a´t bo’ m sˆo´ ha.ng dˆ` u tiˆen du.o c go.i l`aa phˆ` n du th´a u.mcu’a chuˆo˜i P
n>1
(180)(13.1) hˆo.i tu v`a tˆo’ng cu’a n´o b˘a`ngRm th`ıs=sm+Rm Chuˆo˜i hˆo.i tu c´o c´ac t´ınh chˆa´t quan tro.ng l`a
(i) V´o.i sˆo´m cˆo´ di.nh bˆa´t k`y chuˆo˜i (13.1) v`a chuˆo˜i phˆa` n du th´u.m cu’a n´o dˆ` ng th`o.i hˆo.i tu ho˘a.c dˆoo ` ng th`o.i phˆan k`y
(ii) Nˆe´u chuˆo˜i (13.1) hˆo.i tu th`ıRm →0 m→ ∞
(iii) Nˆe´u c´ac chuˆo˜i P n>1
an v`a P n>1
bn hˆo.i tu v`a α, β l`a h˘a`ng sˆo´ th`ı
X
n>1
(αan+βbn) =αX n>1
an+βX n>1
bn.
13.1.2 Chuˆo˜i sˆo´ du.o.ng Chuˆo˜i sˆo´ P
n>1
an du.o c go.i l`a chuˆo˜i sˆo´ du.o.ng nˆe´u an >0 ∀n∈N Nˆe´u an>0∀n th`ı chuˆo˜i du.o c go.i l`a chuˆo˜i sˆo´ du.o.ng thu c su
Tiˆeu chuˆa’n hˆo i tu . Chuˆo˜i sˆo´ du.o.ng hˆo.i tu v`a chı’ d˜ay tˆo’ng riˆeng cu’a n´o bi ch˘a.n trˆen.
Nh`o diˆ`u kiˆe.n n`ay, ta c´o thˆe’ thu du.o c nh˜u.ng dˆa´u hiˆe.u du’ sau dˆay:e
Dˆa´u hiˆe.u so s´anh I Gia’ su.’ cho hai chuˆo˜i sˆo´ A:X
n>1
an, an>0∀n ∈N v`a B :X n>1
bn, bn>0 ∀n∈N v`aan6bn ∀n∈N Khi d´o:
(i) Nˆe´u chuˆo˜i sˆo´B hˆo.i tu th`ı chuˆo˜i sˆo´A hˆo.i tu., (ii) Nˆe´u chuˆo˜i sˆo´A phˆan k`y th`ı chuˆo˜i sˆo´B phˆan k`y
Dˆa´u hiˆe.u so s´anh II. Gia’ su.’ c´ac chuˆo˜i sˆo´A v`a B l`a nh˜u.ng chuˆo˜i sˆo´ du.o.ng thu..c su v`a ∃ lim
n→∞ an
bn = λ (r˜o r`ang l`a λ +∞) Khi d´o:
(i) Nˆe´u λ <∞th`ı t`u su hˆo.i tu cu’a chuˆo˜i sˆo´B k´eo theo su hˆo.i tu. cu’a chuˆo˜i sˆo´A
(181)(iii) Nˆe´u 0< λ <+∞th`ı hai chuˆo˜i A v`a B dˆ` ng th`o.i hˆo.i tu ho˘a.co dˆ` ng th`o.i phˆan k`o y
Trong thu c h`anh dˆa´u hiˆe.u so s´anh thu.`o.ng du.o c su.’ du.ng du.´o.i da.ng “ thu c h`anh” sau dˆay:
Dˆa´u hiˆe.u thu c h`anh. Nˆe´u dˆo´i v´o.i d˜ay sˆo´ du.o.ng (an) tˆ` n ta.i c´ac sˆo´o pv`aC >0 choan∼ C
np,n → ∞th`ı chuˆo˜i
P
n>1
an hˆo.i tu nˆe´u p >1 v`a phˆan k`y nˆe´u p61
C´ac chuˆo˜i thu.`o.ng du.o c d`ung dˆe’ so s´anh l`a 1) Chuˆo˜i cˆa´p sˆo´ nhˆan P
n>0
aqn, a6= hˆ
o.i tu 06 q <1 v`a phˆan k`y q>1
2) Chuˆo˜i Dirichlet: P n>1
1
nα hˆo.i tu khiα >1 v`a phˆan k`y khiα6 Chuˆo˜i phˆan k`y P
n>1
1
n go.i l`a chuˆo˜i diˆe`u h`oa
T`u dˆa´u hiˆe.u so s´anh I v`a chuˆo˜i so s´anh 1) ta r´ut ra:
Dˆa´u hiˆe.u D’Alembert. Nˆe´u chuˆo˜i a1+a2+· · ·+an+ ., an >0
∀n c´o
lim n→∞
an+1
an =D
th`ı chuˆo˜i hˆo.i tu khiD<1 v`a phˆan k`y D>1
Dˆa´u hiˆe.u Cauchy. Nˆe´u chuˆo˜i a1+a2 +· · ·+an+ ., an >0 ∀n
c´o
lim n→∞
n
√
an =C
th`ı chuˆo˜i hˆo.i tu khiC <1 v`a phˆan k`y C >1
Trong tru.`o.ng ho..p D = C = th`ı ca’ hai dˆa´u hiˆe.u n`ay dˆe`u khˆong cho cˆau tra’ l`o.i kh˘a’ng di.nh v`ı tˆo` n ta.i chuˆo˜i hˆo.i tu lˆa˜n chuˆo˜i phˆan k`y v´o.i D ho˘a.cC b˘a`ng
Dˆa´u hiˆe.u t´ıch phˆan. Nˆe´u h`am f(x) x´ac di.nh ∀x > khˆong ˆam v`a gia’m th`ı chuˆo˜i P
n>1
(182)∞
Z
0
f(x)dx hˆo.i tu
T`u dˆa´u hiˆe.u t´ıch phˆan suy chuˆo˜i P n>1
1
nα hˆo.i tu α > v`a phˆan k`y 0< α61 Nˆe´u α60 th`ı an=
nα 6→0 α60 v`a n→ ∞nˆen chuˆo˜i d˜a cho c˜ung phˆan k`y
C ´AC V´I DU. V´ı du 1. Kha’o s´at su. hˆo.i tu cu’a c´ac chuˆo˜i
1) X
n>1
1
p
n(n+ 1); 2)
X
n>7
1 nlnn·
Gia’i. 1) Su.’ du.ng bˆa´t d˘a’ng th´u.c hiˆe’n nhiˆen
p
n(n+ 1) > n+ · V`ı chuˆo˜i P
n>1
1
n+ l`a phˆ` n du sau sˆo´ ha.ng th´u nhˆa´t cu’a chuˆo˜i diˆe`ua h`oa nˆen n´o phˆan k`y
Do d´o theo dˆa´u hiˆe.u so s´anh I chuˆo˜i d˜a cho phˆan k`y. 2) V`ı lnn >2∀n > nˆen
nlnn <
n2 ∀n >7
Do chuˆo˜i Dirichlet P n>7
1
n2 hˆo.i tu nˆen suy r˘a`ng chuˆo˜i d˜a cho hˆo.i
tu N
V´ı du 2. Kha’o s´at su. hˆo.i tu cu’a c´ac chuˆo˜i:
1) X
n>1
(n−1)n
nn+1 , 2)
X
n>1
n2e− √
n .
Gia’i. 1) Ta viˆe´t sˆo´ ha.ng tˆo’ng qu´at cu’a c´ac chuˆo˜i du.´o.i da.ng: (n−1)n
nn+1 =
1 n
1−
n
(183)Ta biˆe´t r˘a`ng lim n→∞
1−
n
n =
e nˆenann→∞∼ ne Nhu.ng chuˆo˜i P
n→∞
ne phˆan k`y, d´o chuˆo˜i d˜a cho phˆan k`y 2) R˜o r`ang l`a dˆa´u hiˆe.u D’Alembert v`a Cauchy khˆong gia’i quyˆe´t du.o c vˆa´n dˆe` vˆe` su hˆo.i tu Ta nhˆa.n x´et r˘a`nge−
√ n
= 0(n−α2) khin→ ∞
(α >0) T`u d´o
X
n>1
an=X n>1
1 na20−2
hˆo.i tu nˆe´u a0 >6 Do vˆa.y theo dˆa´u hiˆe.u so s´anh I chuˆo˜i
P
n>1
n2e−√n hˆo.i tu N
V´ı du 3. Kha’o s´at su hˆo.i tu cu’a chuˆo˜i
1) X
n>1
2n+n2
3n+n , 2)
X
n>1
(n!)2
(2n)!·
Gia’i. 1) Ta c´o: an+1
an =
2n+1+ (n+ 1)2
3n+1+ (n+ 1) ×
3n+n 2n+n2 =
2 + (n+ 1)
2
2n
3 +n+ 3n
×
1 + n 3n + n
2
2n ,
n
√
an=
n
v u u u u t
1 +n
2
2n + n
3n
·
T`u d´o suy lim n→∞
an+1
an =
3 v`a limn→∞
n
√
an =
3 V`a ca’ hai dˆa´u hiˆe.u Cauchy, D’Alembert dˆ`u cho kˆe´t luˆa.n chuˆo˜i hˆo.i tu e
2) ´Ap du.ng dˆa´u hiˆe.u D’Alembert ta c´o:
D= lim n→∞
an+1
an = limn→∞
(n+ 1)2
(184)Nhˆa n x´et. Nˆe´u ´ap du.ng bˆa´t d˘a’ng th´u.c
n
e
n
< n!< e
n
2
n th`ı
(n!)n2
(2n)!
1
n
< en2
n
2
2
2n
e
2 =
e2+2n
42 ,
do d´o lim n→∞
n
√
an <
e
4
2
< v`a d´o dˆa´u hiˆe.u Cauchy c˜ung cho ta kˆe´t luˆa.n.
V´ı du 4. Kha’o s´at su hˆo.i tu cu’a chuˆo˜i
1) X
n>1
2n
n2+ 1, 2)
X
n>2
1
nlnpn, p >
Gia’i. 1) Ta c´o an= 2n
n2+ 1 =f(n) Trong biˆe’u th´u.c cu’a sˆo´ ha.ng
tˆo’ng qu´at cu’a an = 2n
n2+ 1 ta thay n bo.’ i biˆe´n liˆen tu.c x v`a ch´u.ng to’
r˘a`ng h`am f(x) thu du.o c liˆen tu.c do.n diˆe.u gia’m trˆen nu.’a tru.c du.o.ng. Ta c´o:
+∞
Z
1
2x
x2+ 1dx= limA→+∞
A
Z
1
2x
x2+ 1dx= limA→+∞ln(x
+ 1)A1 = ln(+∞)−ln =∞.
Do d´o chuˆo˜i 1) phˆan k`y
2) Nhu trˆen, ta d˘a.t f(x) =
xlnpx, p > 0,x >2 H`am f(x) tho’a m˜an mo.i diˆe`u kiˆe.n cu’a dˆa´u hiˆe.u t´ıch phˆan V`ı t´ıch phˆan
+∞
Z
2
(185)V´ı du 5. Ch´u.ng minh r˘a`ng chuˆo˜i P n>1
n+
(n+ 1)√n tho’a m˜an diˆ`u kiˆe.ne cˆ` n hˆo.i tu nhu.ng chuˆo˜i phˆan k`y.a
Gia’i. Ta c´o
an= n+
(n+ 1)√n (n→∞∼ )
1
√
n ⇒nlim→∞an= Tiˆe´p theo∀k = 1,2, , n ta c´o
ak = k+ (k+ 1)
√
k >
√
k >
√
n v`a d´o
sn = n
X
k=1
ak >n·√1
n =
√
n →+∞ khin → ∞
v`a d´o chuˆo˜i phˆan k`y N
B `AI T ˆA P
Trong c´ac b`ai to´an sau dˆay, b˘a`ng c´ach kha’o s´at gi´o.i ha.n cu’a tˆo’ng riˆeng, h˜ay x´ac lˆa.p t´ınh hˆo.i tu (v`a t´ınh tˆo’ngS) hay phˆan k`y cu’a chuˆo˜i
1. X n>1
1
3n−1 (DS S =
3 2) 2. X
n>0
(−1)n
2n (DS 3) 3. X
n>1
(−1)n−1 (DS Phˆan k`y) 4. X
n>0
ln2n2 (DS 1−ln22) 5. X
n>1
1
(186)6. X n>1
1
(α+n)(α+n+ 1), α>0 (DS α+ 1) 7. X
n>3
1
n2−4 (DS
25 48) 8. X
n>1
2n+
n2(n+ 1)2 (DS 1)
9. X n>1
(√3
n+ 2−1√3
n+ +√3
n). (DS 1−√3
2)
10. X
n>1
1
n(n+ 3)(n+ 6) (DS 73 1080)
Su.’ du.ng diˆe`u kiˆe.n cˆa` n 2) dˆe’ x´ac di.nh xem c´ac chuˆo˜i sau dˆay chuˆo˜i n`ao phˆan k`y
11. X
n>1
(−1)n−1 (DS Phˆan k`y)
12. X
n>1
2n−1
3n+ (DS Phˆan k`y)
13. X
n>1
n
p
0,001 (DS Phˆan k`y)
14. X
n>1
1
√
2n (DS Dˆa´u hiˆe.u cˆa` n khˆong cho cˆau tra’ l`o.i)
15. X
n>1
2n
3n (DS Dˆa´u hiˆe.u cˆa` n khˆong cho cˆau tra’ l`o.i)
16. X
n>1
1
n
√
0,3 (DS Phˆan k`y)
17. X
n>1
1
n
√
n! (DS Phˆan k`y)
18. X
n>1
n2sin
(187)19. X n>1
1 + n
n2
en (DS Phˆan k`y)
20. X
n>1
2n2+ 1
2n2+ 3
n2
(DS Phˆan k`y)
21. X
n>1
nn+n1
n+ n
n (DS Phˆan k`y)
22. X
n>1
n+
(n+ 1)√n (DS Dˆa´u hiˆe.u cˆa` n khˆong cho cˆau tra’ l`o.i)
23. X
n>1
(n+ 1)arctg
n+ (DS Phˆan k`y)
Trong c´ac b`ai to´an sau dˆay, h˜ay d`ung dˆa´u hiˆe.u so s´anh dˆe’ kha’o s´at su hˆo.i tu cu’a c´ac chuˆo˜i d˜a cho
24 X
n>1
1
√
n (DS Phˆan k`y)
25. X
n>1
1
nn (DS Hˆo.i tu.) Chı’ dˆa˜n. n
n>2n ∀n>3.
26. X
n>1
1
lnn (DS Phˆan k`y) Chı’ dˆa˜n. So s´anh v´o.i chuˆo˜i diˆe`u h`oa
27. X
n>1
1
n3n−1 (DS Hˆo.i tu.)
28. X
n>1
1
3
√
n+ (DS Phˆan k`y)
29. X
n>1
1
2n+ 1 (DS Hˆo.i tu.)
30. X
n>1
n
(188)31. X n>1
1
p
(n+ 2)(n2 + 1) (DS Hˆo.i tu.)
32. X
n>1
5n2−3n+ 10
3n5+ 2n+ 17 (DS Hˆo.i tu.)
33. X
n>1
5 + 3(−1)n
2n+3 (DS Hˆo.i tu.) Chı’ dˆa˜n. 265 + 3(−1)
n 68.
34. X
n>1
lnn
n (DS Phˆan k`y) Chı’ dˆa˜n. lnn >1 ∀n >2
35. X
n>1
lnn
n2 (DS Hˆo.i tu.)
Chı’ dˆa˜n. Su.’ du.ng hˆe th´u.c lnn < nα ∀α >0 v`an du’ l´o.n
36. X
n>1
lnn
3
√
n (DS Phˆan k`y)
37. X
n>1
n5
5√n (DS Hˆo.i tu.)
38. X
n>1
1
√
nsin
n (DS Hˆo.i tu.)
39. X
n>1
n4+ 4n2+
2n (DS Hˆo.i tu.)
40. X
n>1
n2(√n
a− n+1√
a), a >0 (DS Phˆan k`y ∀a6= 1)
41. X
n>1
(n
√
2− n+1 √
2) (DS Hˆo.i tu.)
42. X
n>1
1
1 +an,a >0 (DS Hˆo.i tu khia >1 Phˆan k`y < a61)
43. X
n>1
sin πn
n2√n+n+ 1 (DS Hˆo.i tu.)
(189)44. X n>1
sinπ n
p
, p > (DS Hˆo.i tu nˆe´u p > 1, phˆan k`y nˆe´u p61)
45. X
n>1
tgp π
n+ 2, p >0 (DS Hˆo.i tu p >1, phˆan k`y p61)
46. X
n>1
sin np ·tg
1
nq, p >0, q >0
(DS Hˆo.i tu khi p+q >1, phˆan k`y p+q 61)
47. X
n>1
1−cos np
, p >0
(DS Hˆo.i tu khi p >
2, phˆan k`y khip6 2)
48. X
n>1
(
√
n+ 1−√n)pln2n+ 2n+
(DS Hˆo.i tu khi p >0, phˆan k`y p60)
Trong c´ac b`ai to´an sau dˆay, h˜ay kha’o s´at su hˆo.i tu cu’a chuˆo˜i d˜a cho nh`o dˆa´u hiˆe.u du’ D’Alembert
49. X
n>1
n
2n (DS Hˆo.i tu.)
50. X
n>1
2n−1
nn (DS Hˆo.i tu.)
51. X
n>1
2n−1
(n−1)! (DS Hˆo.i tu.)
52. X
n>1
n!
2n+ 1 (DS Phˆan k`y)
53. X
n>1
4nn!
nn (DS Phˆan k`y)
54. X
n>1
3n
(190)55. X n>1
1·3· · ·(2n−1)
3nn! (DS Hˆo.i tu.)
56. X
n>1
n2sin π
2n (DS Hˆo.i tu.)
57. X
n>1
n(n+ 1)
3n (DS Hˆo.i tu.)
58. X
n>1
73n
(2n−5)! (DS Hˆo.i tu.)
59. X
n>1
(n+ 1)!
2nn! (DS Hˆo.i tu.)
60. X
n>1
(2n−1)!!
n! (DS Phˆan k`y)
61. X
n>1
n!(2n+ 1)!
(3n)! (DS Hˆo.i tu.)
62. X
n>1
nnsin π 2n
n! (DS Phˆan k`y)
63. X
n>1
nn
n!3n (DS Hˆo.i tu.)
64. X
n>1
n!an
nn ,a6=e,a >0 (DS Hˆo.i tu khia < e, phˆan k`y khia > e) Trong c´ac b`ai to´an sau dˆay, h˜ay kha’o s´at su. hˆo.i tu cu’a chuˆo˜i d˜a cho nh`o dˆa´u hiˆe.u du’ Cauchy
65. X
n>1
n
2n+
n
(DS Hˆo.i tu.)
66. X
n>1
arc sin1 n
n
(DS hˆo.i tu.)
67. X
n>1
1 3n
n+ 1
n
n2
(191)68. X n>1
n53n+ 4n+
n
(DS Hˆo.i tu.)
69. X
n>1
3n
n+
nn+ 2
n+
n2
(DS Phˆan k`y)
70. X
n>1
n!
n√n (DS Phˆan k`y)
Chı’ dˆan. Su.’ du.ng cˆong th´u.c Stirlingn!∼
n
e
n√
2πn, n → ∞
71. X
n>1
n−1
n+
n(n−1)
(DS Hˆo.i tu.)
72. X
n>1
n2
+ n2+ 4
n3+1
(DS Hˆo.i tu.)
73. X
n>1
3n n n+
n2
(DS Phˆan k`y)
74. X
n>10
arctgn
√
3n+
√
n+ (DS Phˆan k`y)
75. X
n>1
an
n+
n
, a >0
(DS Hˆo.i tu 0 < a <1, phˆan k`y a>1)
76. X
n>1
nα
ln(n+ 1)n/2
, α >0 (DS Hˆo.i tu. ∀α)
77. X
n>1
5 + (−1)n
4n+1 (DS Hˆo.i tu.)
78. X
n>1
2(−1)n+n (DS Phˆan k`y)
79. X
n>1
2(−1)n−n (DS Hˆo.i tu.)
80. X
n>1
[5−(−1)n]n
(192)81. X n>1
[5 + (−1)n]n
n27n (DS Hˆo.i tu.)
82. X
n>1
[3 + (−1)n]
3n (DS Hˆo.i tu.)
83. X
n>1
n4[√5 + (−1)n]n
4n (DS Hˆo.i tu.)
84. X
n>1
2 + (−1)n
5 + (−1)n+1 · (DS Hˆo.i tu.)
13.2 Chuˆo˜i hˆo.i tu tuyˆe.t dˆo´i v`a hˆo.i tu. khˆong tuyˆe.t dˆo´i
13.2.1 C´ac di.nh ngh˜ıa co ba’n Chuˆo˜i v´o.i c´ac sˆo´ ha.ng c´o dˆa´u kh´ac
a1+a2+· · ·+an+· · ·=
X
n>1
an (13.2)
du.o c go.i l`a chuˆo˜i hˆo.i tu tuyˆe.t dˆo´i nˆe´u chuˆo˜i sˆo´ du.o.ng
|a1|+|a2|+· · ·+|an|+· · ·=
X
n>1
|an| (13.3) hˆo.i tu Chuˆo˜i (13.2) du.o c go.i l`a chuˆo˜ihˆo i tu c´o diˆ`u kiˆe.n (khˆong tuyˆe.te dˆo´i) nˆe´u n´o hˆo.i tu c`on chuˆo˜i (13.3) phˆan k`y.
D- i.nh l´y 13.2.1. Mo i chuˆo˜i hˆo.i tu tuyˆe.t dˆo´i dˆe`u hˆo.i tu., t´u.c l`a su hˆo.i tu cu’a chuˆo˜i (13.3) k´eo theo su hˆo.i tu cu’a chuˆo˜i (13.2)
(193)13.2.2 Chuˆo˜i dan dˆa´u v`a dˆa´u hiˆe.u Leibnitz Chuˆo˜i da.ng
X
n>1
(−1)n−1an=a1−a2+a3−a4+· · ·+ (−1)n−1an+ ,
an>0∀n ∈N (13.4)
du.o c go.i l`a chuˆo˜i dan dˆa´u
Dˆa´u hiˆe.u Leibnitz. Nˆe´u lim
n→∞an = v`a an >an+1 >0
∀n ∈N th`ı chuˆo˜i dan dˆa´u (13.4) hˆo.i tu v`a
|S−Sn|6an+1 (13.5)
trong d´o S l`a tˆo’ng cu’a chuˆo˜i (13.4), Sn l`a tˆo’ng riˆeng th´u.n cu’a n´o Nhu vˆa.y dˆe’ kha’o s´at su hˆo.i tu cu’a chuˆo˜i dan dˆa´u ta cˆa` n kiˆe’m tra hai diˆ`u kiˆe.ne
i)an>an+1 >0 ∀n∈N,
ii) lim
n→∞an=
Hˆe th´u.c (13.5) ch´u.ng to’ r˘a`ng sai sˆo´ g˘a.p pha’i thay tˆo’ng S cu’a chuˆo˜i dan dˆa´u hˆo.i tu bo.’i tˆo’ng cu’a mˆo.t sˆo´ sˆo´ ha.ng dˆa` u tiˆen cu’a n´o l`a khˆong vu.o t qu´a gi´a tri tuyˆe.t dˆo´i cu’a sˆo´ ha.ng th´u nhˆa´t cu’a chuˆo˜i du. bi c˘a´t bo’
Dˆe’x´ac lˆa p su hˆo.i tu.cu’a chuˆo˜i v´o.i c´ac sˆo´ ha.ng c´o dˆa´u kh´ac ta c´o thˆe’ su.’ du.ng c´ac dˆa´u hiˆe.u hˆo.i tu cu’a chuˆo˜i du.o.ng v`a di.nh l´y 13.1.1. Nˆe´u chuˆo˜i P
n>1
|an| phˆan k`y th`ı su hˆo.i tu cu’a chuˆo˜i P n>1
an tro.’ th`anh vˆa´n dˆ` dˆe’ mo.e ’ ngoa.i tr`u tru.`o.ng ho p su.’ du.ng dˆa´u hiˆe.u D’Alembert v`a dˆa´u hiˆe.u Cauchy v`ı c´ac dˆa´u hiˆe.u n`ay x´ac lˆa.p su phˆan k`y cu’a chuˆo˜i chı’ du a trˆen su ph´a v˜o diˆe`u kiˆe.n cˆa` n
Nhˆa n x´et. Chuˆo˜i dan dˆa´u tho’a m˜an dˆa´u hiˆe.u Leibnitz go.i l`a chuˆo˜i Leibnitz
(194)V´ı du 1. Kha’o s´at su hˆo.i tu v`a d˘a.c t´ınh hˆo.i tu cu’a chuˆo˜i P n>1
(−1)n−1
√
n
Gia’i. D˜ay sˆo´
1
√
n
do.n diˆe.u gia’m dˆa` n dˆe´n n→ ∞ Do d´o theo dˆa´u hiˆe.u Leibnitz n´o hˆo.i tu Dˆe’ kha’o s´at d˘a.c t´ınh hˆo.i tu (tuyˆe.t dˆo´i hay khˆong tuyˆe.t dˆo´i) ta x´et chuˆo˜i du.o.ng P
n>1
1
√
n Chuˆo˜i n`ay phˆan k`y Do vˆa.y chuˆo˜i d˜a cho hˆo.i tu c´o diˆe`u kiˆe.n. N
V´ı du 2. Kha’o s´at su. hˆo.i tu v`a d˘a.c t´ınh hˆo.i tu cu’a chuˆo˜i
X
n>1
(−1)n−1ln
2
n n ·
Gia’i. Dˆe’ kha’o s´at d´ang diˆe.u cu’a d˜ay
ln2
n n
ta x´et h`am ϕ(x) = ln2x
x R˜o r`ang l`a limx→∞ϕ(x) = v`a ϕ
0(x) = lnx
x2 (2−lnx) T`u d´o suy
ra x > e2 th`ı ϕ0(x) < 0 Do d´o d˜ay (an) = ln
2
n
n tho’a m˜an dˆa´u hiˆe.u Leibnitz v´o.in > e2 V`ı vˆ
a.y chuˆo˜i d˜a cho hˆo.i tu Dˆe˜ d`ang thˆa´y r˘a`ng chuˆo˜i sˆo´ du.o.ng P
n>1
ln2n
n phˆan k`y nˆen chuˆo˜i dan dˆa´u d˜a cho hˆo.i tu c´o diˆe`u kiˆe.n N
V´ı du 3. C˜ung ho’i nhu trˆen v´o.i chuˆo˜i
X
n>1
cosnα 2n ·
Gia’i. Dˆay l`a chuˆo˜i dˆo’i dˆa´u X´et chuˆo˜i du.o.ng
X
n>1
|cosnα|
2n (*)
V`ı|cosαn| 2n
1
(195)V´ı du 4. C˜ung ho’i nhu trˆen dˆo´i v´o.i chuˆo˜i
X
n>1
(−1)n n(n+ 1)·
Gia’i. Dˆ˜ d`ang thˆa´y r˘a`ng d˜aye
n(n+ 1) do.n diˆe.u gia’m dˆa` n dˆe´n khin → ∞ Do d´o theo dˆa´u hiˆe.u Leibnitz n´o hˆo.i tu Ta x´et su hˆo.i tu. cu’a chuˆo˜i du.o.ng P
n>1
1
n(n+ 1) Chuˆo˜i n`ay hˆo.i tu., ch˘a’ng ha.n theo dˆa´u hiˆe.u t´ıch phˆan
∞
Z
1
dx
x(x+ 1) = limA→∞ A
Z
1
dx+
x+1
2
−
4
= lim A→∞ln
x x+
A
1
= ln
Do d´o chuˆo˜i d˜a cho hˆo.i tu tuyˆe.t dˆo´i. N
V´ı du 5. Cˆ` n lˆa´y bao nhiˆeu sˆo´ ha.ng cu’a chuˆo˜ia P n>1
(−1)n−1
n2 dˆe’ tˆo’ng
cu’a ch´ung sai kh´ac v´o.i tˆo’ng cu’a chuˆo˜i d˜a cho khˆong qu´a 0,01 ? 0,001 ?
Gia’i. 1+ Chuˆo˜i d˜a cho l`a chuˆo˜i Leibnitz Do d´o phˆa` n du cu’a n´o tho’a m˜an diˆ`u kiˆe.ne
|Rn|< an+1 ⇒ |Rn| <
1 (n+ 1)2 ·
Dˆe’ t´ınh tˆo’ng cu’a chuˆo˜i d˜a cho v´o.i su sai kh´ac khˆong qu´a 0,01 ta cˆa` n d`oi ho’i l`a
|Rn|<0,01 ⇒
(n+ 1)2 <0,01⇔n > 10
Nhu vˆa.y dˆe’ t´ınh tˆo’ng cu’a chuˆo˜i v´o.i sai sˆo´ khˆong vu.o t qu´a 0,01 ta chı’ cˆ` n t´ınh tˆo’ng mu.`o.i sˆo´ ha.ng dˆaa ` u l`a du’
(196)Nhˆa n x´et. Ta thˆa´y r˘a`ng chuˆo˜i Leibnitz l`a cˆong cu t´ınh to´an tiˆe.n ho.n so v´o.i chuˆo˜i du.o.ng Ch˘a’ng ha.n dˆe’ t´ınh tˆo’ng cu’a chuˆo˜i P
n>1
1 n2
v´o.i sai sˆo´ khˆong vu.o..t qu´a 0,001 ta cˆa` n pha’i lˆa´y 1001 sˆo´ ha.ng m´o.i du’. Thˆa.t vˆa.y ta c´o thˆe’ ´ap du.ng dˆa´u hiˆe.u t´ıch phˆan Ta c´o
∞
Z
n+1
f(x)dx < Rn< ∞
Z
n
f(x)dx.
T`u d´o
Rn< ∞
Z
n dx x2 =−
1 x
∞ n
= n· T`ımndˆe’
n <0,001 Gia’i bˆa´t phu.o.ng tr`ınh dˆo´i v´o.in ta c´on >1000, t´u.c l`a R1001 < 0,001 Vˆa.y ta cˆa` n lˆa´y 1001 sˆo´ ha.ng dˆa` u dˆe’ t´ınh tˆo’ng
m´o.i c´o du.o..c sai sˆo´ khˆong qu´a 0,001 V´ı du 6. Ch´u.ng to’ r˘a`ng chuˆo˜i
2 +5 −
7
+10 −
26 27
+· · ·+n
2
+ n2 −
n3−1 n3
+ . (*) hˆo.i tu., c`on chuˆo˜i
2 + −
7 +
10 −
26
27 +· · ·+
n2+ n2 −
n3 −1
n3 + . (**)
thu du.o c t`u chuˆo˜i d˜a cho sau bo’ c´ac dˆa´u ngo˘a.c do.n l`a chuˆo˜i phˆan k`y
Gia’i. Sˆo´ ha.ng tˆo’ng qu´at cu’a chuˆo˜i (*) c´o da.ng an = n
2+ 1
n2 −
n3−1
n3 =
n+ n3 ·
Do d´o ∀n >1 ta c´o
n+ n3 =
1 n2 +
(197)v`a chuˆo˜i P n>1
1
nα hˆo.i tu ∀α >1 nˆen chuˆo˜i d˜a cho hˆo.i tu
Bˆay gi`o x´et chuˆo˜i (**) R˜o r`ang sˆo´ ha.ng tˆo’ng qu´at cu’a (**) khˆong dˆ` n dˆe´n khia n → ∞, d´o chuˆo˜i (**) phˆan k`y N
B `AI T ˆA P
Su.’ du.ng dˆa´u hiˆe.u Leibnitz dˆe’ ch´u.ng minh c´ac chuˆo˜i sau dˆay hˆo.i tu c´o diˆe`u kiˆe.n
1. X n>4
(−1)n+1
√
n2−4n+ 1
2. X n>1
(−1)n+1n9
√
n20+ 4n3+ 1
3. X n>1
(−1)nn (n+ 1)√3
n+ 4. X
n>1
(−1)n√n n+ 20 5. X
n>1
(−1)n
4
√
n
6. X n>1
(−1)nlnn n 7. X
n>1
(−1)n+1 2n+ n(n+ 1)
8. X n>1
(−1)ncos π n n 9. X
n>1
(−1)n(n
√
2−1)
10. X
n>1
(−1)nn−1 n+
1
100√n
Kha’o s´at su hˆo.i tu v`a d˘a.c t´ınh hˆo.i tu cu’a c´ac chuˆo˜i
11. X
n>1
(−1)n2n+ 3n−2
n
(DS Hˆo.i tu tuyˆe.t dˆo´i)
12. X
n>1
(−1)n
3n+ 1
3n−2
5n+2
(DS Phˆan k`y)
13. X
n>1
(−1)n2 + (−1) n
n (DS Phˆan k`y)
14. X
n>1
(−1)n−1 n sin
√
n
(198)15. X n>1
(−1)n+1arctgln(n+ 1)
(n+ 1)2 (DS Hˆo.i tu tuyˆe.t dˆo´i)
Chı’ dˆa˜n. Su.’ du.ng bˆa´t d˘a’ng th´u.c ln(n+ 1)<√n+ 1,n >2
16. X
n>1
(−1)n+1
n−ln3n (DS Hˆo.i tu c´o diˆe`u kiˆe.n)
Trong c´ac b`ai to´an sau dˆay h˜ay x´ac di.nh gi´a tri cu’a tham sˆo´p dˆe’ chuˆo˜i sˆo´ hˆo.i tu tuyˆe.t dˆo´i ho˘a.c hˆo.i tu c´o diˆe`u kiˆe.n
17. X
n>1
(−1)n−1
(2n−1)p, p >0
(DS Hˆo.i tu tuyˆe.t dˆo´i khip >1; hˆo.i tu c´o diˆe`u kiˆe.n 0 < p61)
18. X
n>1
(−1)n−1tgp
n√n, p >0 (DS Hˆo.i tu tuyˆe.t dˆo´i khip >
3; hˆo.i tu c´o diˆe`u kiˆe.n 0< p 3)
19. X
n>1
(−1)n−1sinp 5n+
n2√n+ 3,p >0
(DS Hˆo.i tu tuyˆe.t dˆo´i khip >
3; hˆo.i tu c´o diˆe`u kiˆe.n 0< p 3)
20. X
n>1
(−1)n−1
√
n
lnn+ n+
p
, p >0
(DS Hˆo.i tu tuyˆe.t dˆo´i khip >
2; hˆo.i tu c´o diˆe`u kiˆe.n 0< p 2) Kha’o s´at d˘a.c t´ınh hˆo.i tu cu’a c´ac chuˆo˜i (21-32):
21. X
n>1
(−1)n+1
n√3 n (DS Hˆo.i tu tuyˆe.t dˆo´i)
22. X
n>1
(−1)n+1
(199)23. X n>1
(−1)n−1 (2n+ 1)!!
2·5·8· · ·(3n−1) (DS Hˆo.i tu tuyˆe.t dˆo´i)
24. X
n>1
(−1)n+11−cos√π
n
(DS Hˆo.i tu c´o diˆe`u kiˆe.n)
25. X
n>1
(−1)nsinπ n
n (DS Hˆo.i tu tuyˆe.t dˆo´i)
26. X
n>1
(−1)n
√
n+ (DS Hˆo.i tu c´o diˆe`u kiˆe.n)
27. X
n>1
(−1)n
n
√
n (DS Phˆan k`y)
28. X
n>1
(−1)n+1
n−lnn (DS Hˆo.i tu c´o diˆe`u kiˆe.n)
29. X
n>1
(−1)n−1
(n+ 1)a2n
(DS Hˆo.i tu tuyˆe.t dˆo´i khi |a| >1, hˆo.i tu c´o diˆe`u kiˆe.n khi |a|= 1, phˆan k`y |a|<1)
30. X
n>1
(−1)n
(n+ 1)(√n+ 1−1) (DS Hˆo.i tu tuyˆe.t dˆo´i)
31. X
n>1
(−1)n+12 +
n
n
5n (DS Hˆo.i tu tuyˆe.t dˆo´i)
32. X
n>1
(−1)ntg π
3n (DS Hˆo.i tu tuyˆe.t dˆo´i)
Trong c´ac b`ai to´an sau dˆay, h˜ay t`ım sˆo´ sˆo´ ha.ng cu’a chuˆo˜i d˜a cho cˆ` n lˆa´y dˆe’ tˆo’ng cu’a ch´a ung v`a tˆo’ng cu’a chuˆo˜i tu.o.ng ´u.ng sai kh´ac mˆo.t da.i lu.o ng khˆong vu.o t qu´a sˆo´δ cho tru.´o.c
33. X
n>1
(−1)n−1
(200)34. X n>1
cos(nπ)
n! ,δ = 0,001 (DS N o= 5)
35. X
n>1
(−1)n−1
√
n2+ 1,δ = 10
−6. (DS. N o= 106)
36. X
n>1
cosnπ
2n(n+ 1), δ= 10
−6. (DS. N o= 15)
37. X
n>1
(−1)n2n
(4n+ 1)5n, δ= 0,1?; δ = 0,01? (DS.N o = 2, N o= 3)
38. X
n>1
(−1)n
n! , δ= 0,1;δ = 0,001? (DS.N o = 4, N o= 6)
13.3 Chuˆo˜i l˜uy th`u.a 13.3.1 C´ac di.nh ngh˜ıa co ba’n
Chuˆo˜i l˜uy th`u.a dˆo´i v´o.i biˆe´n thu c x l`a chuˆo˜i da.ng
X
n>0
anxn =a0+a1x+a2x2+· · ·+anxn+ . (13.6)
hay
X
n>0
an(x−a)n=a0+a1(x−a) +· · ·+an(x−a)
n
+ . (13.7)
trong d´o c´ac hˆe sˆo´a0, a1, , an, l`a nh˜u.ng h˘a`ng sˆo´ B˘a`ng ph´ep dˆo’i
biˆe´n x bo.’ i x−a t`u (13.6) thu du.o c (13.7) Do d´o dˆe’ tiˆe.n tr`ınh b`ay ta chı’ cˆ` n x´et (13.6) l`a du’ (t´a u.c l`a xem a= 0)
Chuˆo˜i (13.6) luˆon hˆo.i tu ta.i diˆe’mx= 0, c`on (13.7) hˆo.i tu ta.ix=a. Do d´o tˆa.p ho p diˆe’m m`a chuˆo˜i l˜uy th`u.a hˆo.i tu luˆon luˆon 6=∅