1. Trang chủ
  2. » Luận Văn - Báo Cáo

Power generation technologies

463 39 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 463
Dung lượng 10,84 MB

Nội dung

Power Generation Technologies This page intentionally left blank Power Generation Technologies Third Edition Paul Breeze Newnes is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States Copyright r 2019 Paul Breeze Published by Elsevier Ltd All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: http://www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein) Notices Knowledge and best practice in this field are constantly changing As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress ISBN: 978-0-08-102631-1 For Information on all Newnes publications visit our website at https://www.elsevier.com/books-and-journals Publisher: Joe Hayton Acquisition Editor: Lisa Reading Editorial Project Manager: Michelle Fischer Production Project Manager: Sruthi Satheesh Cover Designer: Alan Studholme Typeset by MPS Limited, Chennai, India Contents An Introduction to Electricity Generation The History of Electricity Generation The Evolution of Electricity Generation Technologies The Evolution of Electricity Networks Renewable Energy and Distributed Generation A Brief Political Diversion The Size of the Industry 11 Electricity Generation and the Environment 15 The Evolution of Environmental Awareness Power Generation: The Broader Environmental Impact The Carbon Cycle and Atmospheric Warming Greenhouse Gas Emissions and Power Generation Controlling Carbon Dioxide The Hydrogen Economy The Economics of Electricity Production Externalities Life Cycle Assessment The Bottom Line 16 17 18 21 24 25 26 27 28 31 Coal-Fired Power Plants 33 Types of Coal Coal Reserves Coal Cleaning and Processing Traditional Coal-Fired Power Generation Technology Boiler Technology Steam Turbine Design Generators Fluidised Bed Combustion Integrated Gasification Combined Cycle Emission Control for Coal-Fired Power Plants Coal Treatment Low NOx Combustion Strategies Sulphur Dioxide Removal NOx Capture 35 36 38 38 40 44 47 48 51 52 55 55 57 58 v vi Contents Combined Sulphur and Nitrogen Oxide Removal Particulate (Dust) Removal Mercury Removal Carbon Dioxide Biomass Cofiring Postcombustion Capture Oxyfuel Combustion Coal Gasification Carbon Dioxide Sequestration The Cost of Coal-Fired Power Generation 60 60 61 61 62 63 65 66 67 68 Natural GasÀFired Gas Turbine and Combined Cycle Power Plants 71 Natural Gas The Growth of Gas Turbine Technology The Gas Turbine Principle Modern Gas Turbine Design for Power Generation Gas Turbine Development Advanced Gas Turbine Cycles Reheating Intercooling Recuperation Mass Injection Combined Cycle Power Plants Microturbines Emission Control for Gas Turbine Power Plants The Cost of Gas TurbineÀBased Power Generation 72 75 76 78 80 82 83 83 85 86 87 89 91 95 Piston EngineÀBased Power Plants 99 The History of the Reciprocating Engine Engine Fuel Internal Combustion Engine Technology Engine Cycles Engine Size and Engine Speed Spark-Ignition Engines Diesel Engines (Compression Engines) Dual Fuel Engines Stirling Engines Cogeneration Combined Cycle Emission Control Nitrogen Oxide Emissions Carbon Monoxide, Volatile Organic Compounds and Particulates Sulphur Dioxide Carbon Dioxide The Cost of Reciprocating Engine-Based Power Generation 100 101 102 103 106 107 108 109 111 113 114 115 116 117 117 118 118 Contents vii Combined Heat and Power 121 The Historical Background to Combined Heat and Power Usage Global Combined Heat and Power Capacity Global Combined Heat and Power Potential Combined Heat and Power Principles and Applications Combined Heat and Power Technology Piston Engines Steam Turbines Gas Turbines Microturbines Fuel Cells Nuclear Power The Cost of Combined Heat and Power 122 124 126 129 131 133 134 136 138 138 140 141 Fuel Cells 145 The History of Fuel Cells Global Fuel Cell Capacity The Fuel Cell Principle Catalysts Hydrocarbon Gas Reformation Fuel Cell Efficiency Fuel Cell Types The Alkaline Fuel Cell The Phosphoric Acid Fuel Cell The Proton Exchange Membrane Fuel Cell The Molten Carbonate Fuel Cell The Solid Oxide Fuel Cell The Direct Methanol Fuel Cell Fuel Cell Costs 146 147 149 153 154 155 155 157 158 161 163 165 168 170 Hydropower 173 Global Hydropower Capacity and Production The Hydropower Resource Hydropower Sites Categories of Hydropower Plants Large Hydropower Plants: Dams and Barrages Run-of-River Project Dam and Reservoir Projects Dam Types Hydropower Turbines Impulse Turbines Reaction Turbines Francis Turbine Propeller and Kaplan Turbines Deriaz Turbine 175 177 179 180 181 181 183 184 186 186 188 189 190 191 viii Contents Generators Small Hydropower Environmental Considerations Environmental Assessment Resettlement Biodiversity Geological Effects Sedimentation and Downstream Effects Greenhouse Gases Interregional Effects Hydropower and Intermittent Renewable Generation The Cost of Electricity Generation From Hydropower Plants 191 192 195 196 196 197 197 198 198 199 199 200 Tidal Barrage Power Plants 203 The Tidal Resource Operating Tidal Barrage Power Plants Tidal Power Plant Design Two-Basin Projects Tidal Lagoons Tidal Barrage Construction Techniques Turbines Turbine Speed Regulation Sluices and Ship Locks Environmental Considerations The Cost of Electricity Generation From Tidal Barrage Power Plants 204 206 207 209 210 211 212 214 214 215 216 10 Power System Energy Storage Technologies Types of Energy Storage Global Energy Storage Capacity Pumped-Storage Hydropower Compressed Air Energy Storage Large-Scale Batteries Superconducting Magnetic Energy Storage Flywheels Capacitors Hydrogen Energy Storage 11 Wind Power Global Wind Power Capacity Wind Resources Wind Turbine Technology Offshore Wind Turbine Technology Wind Farms Environmental Effects of Wind Power 219 221 223 225 229 234 240 242 244 247 251 253 255 257 264 267 268 Contents Wind intermittency and grid issues Wind Capacity Limits Repowering The Cost of Wind Power 12 Geothermal Power Global Geothermal Capacity The Geothermal Resource Geothermal Fields Brine-Methane Reservoirs Hot Dry Rock Exploiting the Magma Location of Geothermal Resources The Size of the Resource Geothermal Energy Conversion Technologies Direct Steam Power Plants Flash Steam Plants Binary Cycle Power Plants Advanced Geothermal Technologies Geothermal Power and District Heating Finding and Exploiting Geothermal Sources The Cost of Geothermal Power 13 Solar Power Global Solar Power Generating Capacity The Solar Energy Resource Solar Sites and Land Resources Solar Power Generation Technologies Solar Thermal Power Generation Parabolic Troughs Solar Towers Solar Dishes Fresnel Reflectors Other Solar Thermal Technologies Photovoltaic Devices Solar Photovoltaic Technology Types of Solar Cells Cell Structures Concentrating Solar Cells Third-Generation Solar Cells Modules, Inverters and Panels System Types Solar Photovoltaic Generation and Energy Storage The Cost of Solar Power Solar Thermal Costs Solar Photovoltaic Costs ix 269 270 271 272 275 276 278 279 281 281 283 283 284 284 284 286 287 289 289 290 290 293 294 295 297 298 298 299 303 306 308 309 311 312 313 314 316 316 317 318 319 319 320 321 436 Index Electricity generation industry (Continued) standardisation and growth of, Electricity generation plants, 124 Electricity networks evolution of, 6À7 hierarchical structure of, from power stations, in smart grid, standardisation of, system operator balancing, Electricity-using devices, Electrochemical capacitors, 246 Electrochemistry, 149À152 Electrodialysis, 348 Electrolysis, 146, 246 Electrolyte in AFCs, 157À158 DMFCs membrane, 169À170 of MCFCs, 163À165 PAFCs using, 158À159 SOFC using zirconia, 165À166 Electromagnetic radiation, 312 Electrostatic precipitators (ESPs), 60, 61f Elling, Aegidus, 77 Embankment dams, 184, 184f, 211À212 Emissions carbon dioxide, 29t carbon monoxide, 93, 116À117 CHP control strategy for, 124 coal-fired power plants control of, 52À55 controlling, 115À116 diesel engines range of, 110t, 133 EU power plants limits on, 54t flue gas levels of, 54 from fossil fuels, 15À17 gas turbine power plants, 91À95 of internal combustion engines, 115, 118 NOx standards for, 92 piston engines NOx, 116 power generation carbon dioxide, 29t of spark-ignition engines, 107À108 sulphur scrubbers and, 53 Energy CHP priorities of, 132À133 coal’s density of, 34À35 crops, 358À360, 360t, 373 fossil fuel’s density of, 35t hydropower’s potential of, 177 MSW content of, 384 payback ratios, 30, 30t regional urban waste content of, 384t tidal barrage power plants exploiting, 203 wind farm’s loss of, 267À268 Energy arbitrage, 219À220, 249 Energy conversion efficiency biomass and, 352, 361 of fossil fuel-burning power plants, 132À133 of fuels, 114 of gas turbine combined cycle plant, 71, 87À88 of gas turbine engines, 75, 136 of hydrogen, 247 of MCFCs, 164À165 of oxyfuel combustion, 66 of PEM fuel cells, 161À162 of power plants, 132t of solar dishes, 306 Energy Information Administration (EIA), 95, 291, 372, 428À429 Energy payback time, 30À31 Energy storage with batteries, 237, 319 of capacitors, 244À247 cost as obstacle to, 220 economics of, 219À220 efficiency of, 222, 222t flywheels for mechanical, 242À244, 243f global capacity, 223À225, 224t hydrogen, 247À249, 248f large-scale utility, 222À223 lead-acid batteries used in, 237 mechanical, 222, 242À244, 243f for off-peak periods, 219 purpose of, 220 response times of, 221 solar field determining, 302 of solar photovoltaic power, 319 types of, 222 wind power and, 269À270 Energy-intensive industries, 124 Energy-related emissions of carbon dioxide, 22 Engine fuel, 101À102 Enhanced Geothermal System (EGS), 283 Environment carbon dioxide influencing, 17 concern for, evolution of awareness about, 16 flue gas material and, 53 hydropower’s considerations toward, 195À196 nuclear power’s issues of, 424À425 Index power generation considerations of, 15, 17À18, 31 SO and NOx influencing, 16À17 tidal barrage power plants and, 216À217 waste issues to, 392À393 wind power’s influence on, 268À269 Environmental assessment biodiversity in, 197 geological influences and, 197À198 greenhouse gases in, 198À199 of hydropower, 196 resettlement in, 196À197 sedimentation in, 198 EPRI See Electric Power Research Institute (EPRI) ESPs See Electrostatic precipitators (ESPs) Ethanol, 371À372 EU See European Union (EU) Europe, 36, 371, 386À387 European Pressurised Water Reactor, 418 European pressurised water reactor, 418 European Union (EU), 27, 53, 53t, 54t, 354 Evolutionary Pressurised Water Reactor, 418 Exhaust gases from gas turbine engines, 79 recirculation of, 116 recycling of, 94 waste combustion causing, 388 Exhaust stroke, 104À105 Exothermic reactions, 149À150, 153 External combustion engine, 111 Externalities, 27, 28t F Faraday, Michael, FCE See FuelCell Energy (FCE) FGD See Flue gas desulphurisation (FGD) Financial institutions, 31 Fish gates, 215 Flash steam plants, 286À287 Flash-steam geothermal plant, 284 Floating OTEC, 330 Flow batteries, 234À236, 238À239 Flue gas desulphurisation (FGD), 57À58, 58f Flue gases carbon dioxide removal from, 61 of coal, 53 of coal-fired power plants, 40 emission levels of, 54 environment and materials in, 53 particulates in, 60À61 437 sorbent injection into, 57 treatment residues of, 394 waste combustion causing, 390 Fluidised bed combustion, 48À51, 364 boiler circulation in, 49f designs for, 49 efficiency of, 50 pressurised, 50f range of fuels used in, 48 sulphur and NOx from, 49, 51 Fluidised-bed gasifier, 366À367, 367f, 368f Fly ash, 394 Flywheel, 104 costs of systems using, 244 friction loss of, 243 functioning of, 243À244 as mechanical energy storage, 242À244, 243f performance characteristics of, 243À244 Fossil fuelÀbased generation technologies, 252 Fossil fuel-fired power plants, 5, 132À133 Fossil fuels carbon dioxide released by, 18, 21 emissions from, 15À16, 21 energy densities of, 35t replacing, 24À25 Four pole generator, 47 Four-stroke cycle, 102À105, 103f, 108t, 109f Francia, Giovanni, 308 Francis, James Bichens, 189 Francis turbine, 189À192, 189f, 226 Franklin, Benjamin, Free-market rules, 11 Fresnel lens thermal power plants, 309f Fresnel reflectors, 308À309 Friction loss, 243 Fritts, Charles, 293À294 Fuel cells, 6, 129, 138À140, 142, 152f advantages of, 146 carbon monoxide and SO2 in, 153 catalysts used in, 153 chemical reactions in, 145À146, 149À150 in CHP, 140f costs of, 170À171, 171t efficiency of, 139, 145À146, 155, 247 electrochemistry of, 149, 152 exothermic reactions in, 149À150 first commercial, 147 flow battery similar to, 238À239 functioning of, 149À153 global capacity, 147À149 438 Index Fuel cells (Continued) high-temperature, 131, 156 history of, 146À147 hydrogen used in, 25, 154 PAFC, 138À139 PEM, 139, 161À162 types of, 152f, 155À156 Fuel rods, 408, 425À427 FuelCell Energy (FCE), 165 Fuels calorific value of, 359, 360t dual fuel engines burning, 110 electricity conversion efficiency with, 115 fluidsed bed combustion using, 48 gas turbines using varieties of, 136 handling of, 369 liquid, 371À372 piston engines using, 99 spark-ignition engine using, 107 Fuelwood, 357À358 Fukushima disaster, 5, 399, 401À402, 425 Full conversion generators, 263 Fuller, Calvin, 293À294 G Gallium arsenide, 313À314 Gas prices, 26À27 Gas turbine CHP plant, 136, 137f Gas turbine combined cycle plant, 71, 87, 88f, 89 Gas turbine engines, 71, 136À138 blade cooling in, 82f for CAES plants, 232 in CHP, 136f compression and temperatures of, 81 cross-section of, 78f development of, 80À82 efficiency of, 80 energy conversion efficiency of, 75, 136 exhaust gases from, 79 flexibility of, 82 fuel varieties used by, 136 growth of, 75À76 heat energy lost by, 87 natural gas used by, 72 NOx produced by, 91À93 power generation designs for, 78À80 power stations impacted by, power turbine stage in, 83 principles involved in, 76À77 recuperation in, 85f with reheater, 84f thermodynamic heat engine in, 78 turbine stages of, 79 Gas turbine modular helium reactor (GTMHR), 414À415 Gas turbine power plants carbon reduced at, 94 cost of, 80f, 95À97 emission control for, 91À95 Gas-cooled reactors, 413 Gas-fired combined cycle plants, 82f Gasification biomass, 366À369 coal, 51, 66À67 plasma, 392f process of, 51À52 waste, 389À391, 391f General Electric, 161 Generator stator, 341 Generators, 47À48 in coal-fired power plants, 47À48 direct-drive, 259 efficiency of, 48 four pole, 47 full conversion, 263 heat-recovery steam, 86À87, 92, 93f for hydropower plants, 191À192 propeller turbine with, 192f variable-speed, 214, 263 of wind turbines, 262À264 Geographical averaging, 270 Geological survey, 180, 183 Geology, 197À198 Geothermal electricity global, 276À278 power generating capacity, 277t, 278t Geothermal energy advanced technologies, 289 conversion technologies for, 284 costs of, 290À291 countries exploiting, 278t direct steam power plants and, 284À286 district heating from, 289 Earth’s core temperature and, 275 exploiting sources of, 290 flash steam plants for, 286À287 hot dry rock for, 281À283, 282f Larderello, Italy exploiting, 276 locating resources for, 283 resources suitable for, 278À279 Geothermal fields, 279À281 Index Geothermal power plants, 280f, 284, 287À289, 288f Geothermal reservoir, 278À281, 283, 287, 289À290 Geysers, 276, 281, 286, 290 Global biomass electricity production, 353À354, 354t Global capacity of biomass, 352 of hydropower, 175À177 of nuclear power, 401À404, 403t, 404t of small hydropower plants, 193 solar power generation, 294, 295t of wind power, 253À256, 253t Global combined heat and power capacity, 124À125 Global combined heat and power potential, 126À129 Global electricity production, 11t Global energy storage capacity, 223À225, 224t Global fuel cell capacity, 147À149 Global geothermal electricity, 276À278, 277t Global warming, 15, 20À21 Grand Coulee Dam, 197 Grasses, 359, 373 Gravity base structure, 265À266 Gravity dams, 184À185, 185f Greenhouse effect, 20 Greenhouse gas emissions breakdown, by economic sector, 23t and power generation, 21À24, 21t Greenhouse gases, 198À199 Grid system computer and electrical network in, national, offshore, 267 operating frequency, 106 rooftop solar panels connected to, 318f synchronisation, 262 wind power issues and, 269À270 Grid-based delivery, 220, 241f Grove, William, 146 GT-MHR See Gas turbine modular helium reactor (GT-MHR) Gulf Stream, 325 H HAT See Humid-air turbine (HAT) cycle Head of water, 190, 346 hydropower site with, 179 439 overtopping devices and, 333À334 Pelton turbine with, 187 run-of-river scheme with, 181À184 tidal barrage power plant and, 207À208 turbines and, 212À213 two-basin projects with, 209À210 Headrace, 181À184 Heat energy, 39, 87 Heat exchangers, 289, 300À301, 305, 328À329 Heat storage system, 301 Heat-recovery steam generator, 86À87, 92, 93f Heavy metals, 395 Heavy water, 411À412 Heliostats, 303À304 HHV See Higher heating value (HHV) Hierarchical network, High pressure (HP) turbine, 39 Higher energy efficiency, 122 Higher heating value (HHV), 107À108 High-performance materials, 45 High-speed engines, 109 High-temperature gas-cooled reactors (HTGR), 414À415, 415f High-temperature reservoirs, 280 High-voltage DC (HVDC) transmission, 267 History of CHP, 122À124 of electricity generating industry, 2À3 of fuel cells, 146À147 of solar energy, 293À294 Horizontal-axis turbines, 257, 340À341, 342f Hot dry rock, 281À283, 282f Hot rock, 279, 281À283 Hot springs, 283 Hot-gas cleanup technologies, 51À52 HP turbine See High pressure (HP) turbine H-shaped rotors, 342À343 HTGR See High-temperature gas-cooled reactors (HTGR) Humid-air turbine (HAT) cycle, 86 HVDC See High-voltage DC (HVDC) transmission Hybrid solar fossil fuel power plant, 302À303 Hydrocarbon gas, 154À155 Hydrocratic power, 348 Hydrofoils, 344, 345f Hydrogen, 423 bomb, 401 carbon dioxide mixture with, 66 carbon monoxide converted to, 366 440 Index Hydrogen (Continued) conversion efficiency of, 247À248 costs, 249 deuterium produced from, 407 energy storage, 247À249, 248f fuel cells using, 25, 154 generation and use of, 25À26 oxygen’s reaction with, 150, 153 PAFCs using oxygen and, 159À160 PEMs using oxygen and, 161 performance characteristics of, 249 SOFCs using oxygen and, 166 storage of, 247, 249 sulfide, 91 sulphide, 285 Hydrogen economy, 25À26, 145À146 Hydropower, 4À5, 12, 17 See also Pumpedstorage hydropower economics of, 200 energy potential of, 177 environmental assessment of, 196 environmental considerations in, 195À196 geological survey for, 180 global capacity of, 175À177 greenhouse gases from, 198À199 head of water for, 179 project design and, 174 regional capacity of, 175t, 178À179, 178t as renewable energy, 173 renewable generation in, 199À200 river’s hydrological conditions for, 179À180 suitable sites for, 179À180 turbine types for, 44, 186À191 wind power backup using, 270 Hydropower plants categories of, 180À181 costs of, 200À201 dams and barrages for, 181 dams and reservoir projects for, 183À184, 184f generators for, 191À192 large, 173À174, 179À181 pumped storage, 199À200 run-of-river scheme for, 181À182, 182f size of, 180À181 small, 192À195 I IEA See International Energy Agency (IEA) IGCC See Integrated gasification combined cycle (IGCC) plant Ihrig, Harry, 146À147 Impulse turbines, 44, 186À188 Incineration plants, 387À389 Industrial revolution, 18, 76 Inertial confinement, 407À408, 421À424, 423f Intake stroke, 104À105 Integrated gasification combined cycle (IGCC) plant, 51À52, 368 carbon capture and storage in, 69 carbon dioxide removal in, 53 efficiency of, 51À52 Intercooling, 83À85 Intermediate pressure (IP) turbine, 39 Internal combustion engines emissions of, 115, 118 heat exhaust from, 113 Otto building first, 103 rotary motion of early, 103 technology, 102À103 types of, 102 waste heat from, 114 International Atomic Energy Agency, 424À425 International Energy Agency (IEA), 73, 251, 271, 324 International Fuel Cells, 147 International reactor innovative and secure (IRIS), 419 International terrorism, 425 International thermonuclear experimental reactor (ITER), 422 Interregional disputes, 199 Inverted pendulum converter See Oscillating flaps Inverters, 317À318 IP turbine See Intermediate pressure (IP) turbine IRIS See International reactor innovative and secure (IRIS) ITER See International thermonuclear experimental reactor (ITER) Ivanpah project, in California, 306 K Kalina cycle, 288, 328 Kaplan, Viktor, 190À191 Kaplan turbines, 190À191, 212, 334 L La Rance (in France), 206À207, 211À213, 216 Land resources, 297 Index Landfill gas, 124 Landfills gas methane from, 373 waste sent to, 375À377 Landslips, 198 Larderello, Italy, 276, 284À285 Large engines, 118À119 Large hydropower plants, 173À174, 179À181 Large-scale batteries, 234À240 Large-scale utility energy storage, 222À223 Laser Inertial Fusion Energy (LIFE), 419À420 LCOE See Levelized cost of electricity (LCOE) Lead-acid batteries, 236À237, 236f Leakage, 246 Lean-burn engines, 107À108 Lenoir, Jean Joseph Etienne, 100 Levelized cost of electricity (LCOE), 26, 28, 142À143 LHV See Lower heating value (LHV) LIFE See Laser Inertial Fusion Energy (LIFE) Life cycle assessments, 28À31 Lifetime of carbon dioxide, 29t of geothermal fields, 281 of PEMs, 162 of SOFC, 167 Light, from electricity, 2À3 Lignite coal, 36, 38 Line-focusing solar thermal power plant, 299 Liquefied natural gas (LNG), 74, 101 Liquid air energy storage, 233 Liquid fuels, 101, 371À372 Lithium batteries, 238 Livestock residue, 356À357 LNG See Liquefied natural gas (LNG) Local generation, Loeb, Sidney, 346 Low nitrogen oxide burners, 92À93 Low nitrogen oxide pulverised-coal boiler, 56f Low pressure (LP) turbine, 39 Low-capacity reactors, 420 Lower heating value (LHV), 107À108 Low-level waste, 426À427 LP turbine See Low pressure (LP) turbine LPG, 101 M Magma plumes, 283 Magnetic confinement, 421À423, 422f 441 Magnetohydrodynamic effect, 344À345 Magnox reactor, 413 Maricopa power plant, 308 Marine current energy, 338À339 See also Wave power converters, 340À341 cross-flow turbines for, 343À344 current designs for, 345À346 horizontal-axis turbines for, 340À341, 342f hydrofoils for, 344, 345f vertical-axis turbines for, 340, 342À343, 343f water wheels for, 343À344 Marine power generation costs of, 348À349 energy resources for, 324À326, 324t Mass burning, 387 Mass injection, 86 Mass-feed stoker, 363 MCFC See Molten carbonate fuel cell (MCFC) MEA See Monoethylamine (MEA) Mechanical energy, 102 Mechanical energy storage, 222, 242À244, 243f Mercury, 61 Methane (CH4), 72À73, 154À155, 198À199 Methane-rich gas, 101 Methanol, 154 Micro hydropower plants, 180À181 Microturbines, 89À91, 130, 142 cogeneration applications of, 138 recuperated, 90 rotational speeds of, 89À90 schematic of, 90f simple, 90 Moderator, 407À408 Modular reactors, small, 419À420 Modules, 317À318 Moisture, 38 Molten carbonate fuel cell (MCFC), 139, 163À165 applications for, 165 conversion efficiency of, 164À165 electrolyte used in, 163À164 high operating temperatures of, 164 Monoethylamine (MEA), 63 Mouchet, August, 306À307 MSW See Municipal solid waste (MSW) Municipal power plants, 130 442 Index Municipal solid waste (MSW), 124, 376À377, 382À383 energy content, 384 recycling important in, 385À386 N Nacelle, 259, 265 National grid system, National Ignition Facility (NIF), 423 National Renewable Energy Laboratory, 326 Nationalisation, 9À10 Natural gas, 12, 72À75, 101, 124, 154 burning of, 92 calorific value of, 366 carbon dioxide from, 93À95 cost of, 71 countries with, 73 gas turbines using, 72 global consumption of, 74t oxy-fuel combustion burning of, 94À95 recoverable reserves of, 73t reforming of, 160 transportation of, 74 Natural gasÀbased power generation, 96À97 Natural gasÀfired cogeneration, 125 Natural gas-fired combined cycle power plant, 26 Natural gasÀfired spark-ignition engine, 109À110 Neutrons, 405À407 New York Transit System, 244 Newcomen, Thomas, 100 NickelÀcadmium batteries, 237 NIF See National Ignition Facility (NIF) Nitrogen oxide (NOx), 79, 107, 116À117 capture of, 58À60 coal-fired power plants producing, 52 combustion strategies for, 55À56 diesel engine’s production of, 108 emission standards for, 92 environment influence by, 16À17 fluidised bed combustion and, 49, 51 from gas turbine CHP plant, 138 gas turbine engines producing, 91À93 piston engines emissions of, 115 reburning of, 56 removal of, 60 Norsk Hydro, 247À248 NOx See Nitrogen oxide (NOx) Nuclear fast (breeder) reactors, 415À417, 416f Nuclear fission, 399, 401, 404, 407À408 ABWR for, 417 BWR for, 409À410 CANDU reactor for, 411À412 gas-cooled reactors for, 413 HTGR for, 414À415 nuclear fast (breeder) reactors for, 415À417 principles of, 405À406 PWR for, 411 RBMK reactor for, 414 reactor designs for, 408À409 third-generation reactors for, 417, 418t Nuclear fusion, 6, 399, 401, 404À405, 407À408, 421 inertial confinement in, 421À423, 423f magnetic confinement in, 421À423, 422f tritium production in, 424 Nuclear island, 408À409 Nuclear power, 7, 13 as base load power station, 13 as best-performing technology, 30 challenges facing, 17 with CHP, 131 controlled nuclear reaction in, 406À407 costs of, 428À429 countries with, 4À5 decommissioning plants in, 427À428 disasters with, 15 environmental issues in, 424À425 in France, 129 fundamentals of, 404À405 generating capacity of, 13 global capacity of, 401À404, 403t, 404t global uptake of, power generation from, 399, 401À404, 403t progress slowed in, radioactive waste from, 425À426 in Russia, 123À124 systems supporting, 409 waste categories in, 426À427 Nuclear power reactors, 402, 402t Nuclear power stations, 404 O Ocean thermal energy technology (OTEC), 324À327 closed cycle, 328À330, 328f drinking water from, 326À327 floating, 330 land-based plant for, 326 open cycle, 329, 329f technology used in, 327À330 Off-peak periods, 219, 240 Index Offshore construction advantages of, 265 gravity base structure in, 265À266 stabilisation in, 266 for wind power, 251À252, 256À257 Offshore devices, 335À338 Offshore grids, 267 Offshore lagoon construction, 212 Offshore wind farms, Ohl, Russell, 293À294 Onshore wind turbines, 259À260 Open cycle OTEC, 329, 329f Open-cycle gas turbine, 80 Operating temperatures MCFCs high, 164 of SOFCs, 166 Organic urban waste, 356, 388 Organisation for Economic Co-operation and Development (OECD), 127À128 Organisation for Economic Development and Cooperation (OECD) countries, 321 Oscillating flaps, 334À335, 335f Oscillating water columns (OWC), 332À333 Osmotic power, 346À347 Ossberger turbine, 343 OTEC See Ocean thermal energy technology (OTEC) Otto, Nikolaus, 100, 103 Otto cycle engine, 100, 103, 110 Overtopping devices, 333À334, 335f OWC See Oscillating water columns (OWC) Oxyfuel combustion, 62 coal burning with, 62À63 costs of, 69 energy conversion efficiency of, 66 schematic of, 65f Oxy-fuel combustion natural gas burning with, 94À95 Oxygen hydrogen’s reaction with, 150, 153 PAFCs using hydrogen and, 159À160 PEMs using hydrogen and, 161 restricting, 55À56 separation plant, 62À63 SOFCs using hydrogen and, 166 Oyster, 335 P Paddled wheel, 340 PAFC See Phosphoric acid fuel cells (PAFC) Paper mills, 123À124 443 Parabolic reflector, 300 Parabolic troughs, 299À303, 299f Parallel co-firing, 366 Parsons, Charles, 4, 38À39 Particulates, 60À61, 117, 388 Part-load conditions, 106À107 PATs See Pumps-for-turbines (PATs) PBMR See Pebble-bed modular reactor (PBMR) PC See Pulverised coal (PC) PC plant See Pulverised coal-fired power plants (PC plant) Peak-load power plants, Pearson, Gerald, 294 Pebble-bed modular reactor (PBMR), 419 Pelamis, 338 Pellets, 360À361 Pelton, Lester Allen, 187 Pelton turbine, 187À188, 188f, 191À192, 334À335 PEM See Proton exchange membrane (PEM) fuel cells Penstock, 181À182 Phosphoric acid fuel cells (PAFC), 138À139, 152À153, 158À161, 159f electrolyte used in, 158À159 hydrogen and oxygen in, 159À160 Photovoltaic cell, 293À294, 298, 311 Piezoelectric devices, 338 Pile burner, 363 Pipeline system, 68, 74 Piston engine-based power plants cost of, 118À119, 119t efficiency of, 113, 119t grid operating frequency and, 106 Piston engines, 133À134 in CHP, 134f efficiency of, 107, 133 fuels used in, 99 heat sources in, 133 history of, 100À101 NOx emissions of, 116 part-load conditions and, 106À107 power generation using, 99À100 speed and size classifications of, 106, 106t Plants, 20 Plasma, 407À408, 421 Plasma gasification, 392f Platinum, 153 Platte, R., 348 Plutonium, 415À416, 424 Point absorber, 331À332, 337 444 Index Point-focussing solar thermal plant, 303 Political diversion, 9À11 Politics of waste, 380À381 Polycrystalline silicon, 313À314 Poly-perfluorocarbon sulphonate, 161 Post-combustion capture, 62À65, 64f Potassium hydroxide, 156À157 Power generation greenhouse gas emissions and, 21À24, 21t Power plants See also specific power plants binary cycle, 287À289, 288f biomass efficiency used in, 370 CHP adapted to, 131 countries with differing costs of, 70 direct steam, 284À286 direct-firing system, 362f, 364 energy conversion efficiencies of, 132t EU emission limits of, 54t fossil fuel-fired, 5, 132À133 Fresnel lens thermal, 309f hybrid solar fossil fuel, 302À303 line-focusing solar thermal, 299 Maricopa, 308 municipal, 130 natural gas-fired combined-cycle, 26 output of conventional, peak-load, solar parabolic trough, 301, 301f, 302f, 303 solar pond, 311f solar trough, 320 two-basin, 209À210 ultra-supercritical, 42 urban mass-burn, 388f Power stations electricity networks from, gas turbine engines impact in, impact of, 18 nuclear, 404 steam engine used at first, tidal, 212À213 Power turbine stage, 83 Powerbuoy, 337 Power-from-waste plants, 376À377, 385À386, 393, 395À397 Pratt and Whitney Aircraft Corporation, 147 Pre-combustion capture, 62, 67f, 94 Prefabricated caissons, 212 Preignition chamber, 107 Pressure differences, 255 Pressurised bed plant, 50À51 Pressurised fluidised bed combustion, 50f Pressurised heavy water reactor See Canadian deuterium uranium (CANDU) reactor Pressurised volumetric air solar tower system, 305f Pressurised water reactor (PWR), 402, 410À411, 410f Primary cells, 234, 236À237 Private sector, 10, 31 Process heat, 114, 136À137 Propeller turbines, 190À191, 191f, 192f, 213 Proton exchange membrane (PEM) fuel cells, 139, 147À148, 161À162 conversion efficiency of, 161À162 hydrogen and oxygen used in, 161 lifetime of, 162 Public utility, Pulverised coal (PC), 365 Pulverised coal-fired power plants (PC plant), 39f, 40À41, 41f Pumped-storage hydropower, 199À200, 225À229, 226f costs of, 228À229 layout and technology of, 226À227 performance of, 228 suitable sites of, 227À228 variable-speed operation of, 227 Pumps-for-turbines (PATs), 193À194 PWR See Pressurised water reactor (PWR) Pyrolysis, 389À391 R Radiant heat, 42 Radioactive waste, 425À426 Rainforests, 16 Rankine cycle turbine system, 328, 368 RBMK reactor, 414, 420 RDF See Refuse-derived fuel (RDF) Reaction turbines, 44, 186, 188À189 Reactor designs, 408À409 Reburning, 56 Rechargeable batteries, 221 Reciprocating engines See Piston enginebased power plants; Piston engines Recovery systems, 138 Recuperation in advanced gas turbine cycles, 85À86 in gas turbine engines, 85f micro-turbines, 90 Recycling, 94, 385À386, 393 Redox batteries, 239 Reformation, 154À155 Reforming, 145, 154, 160 Refuse-derived fuel (RDF), 376À377, 391À392 Index Regeneration process, 64 Regional capacity, 175t, 178À179, 178t, 254t Regional reserves, 37t Reheating, 83, 84f Renewable energy, 10 carbon dioxide release and, 28 distributed generation and, 8À9 efficiency of, 29 energy payback ratios of, 30 hydropower as, 173 switching to, 25 Renewable generation, 199À200 Renewable integration, 220 Renewable resources, 247 Repowering wind farms, 270À271 Reservoirs brine-methane, 281 geological influence of, 197À198 geothermal, 278À281, 283, 287, 289À290 high-temperature, 280 methane production from, 199 pumped-storage plant with, 225 Resettlement, 196À197 Residential sector, 318 Response times, 221 Return on investment, 31 Reverse electrodialysis, 348 Rich-burn engines, 107 River Mersey barrage, 211 River’s hydrological conditions, 179À180 Rooftop installation, cost of, 321 Rotary motion, 103 Rotating engines, 2À4 Rotational speed, 260À261 Rotor blades, 261À263 Rotors, 259À261, 265, 341 Run-of-river scheme, 181À182, 182f Russian EGP-6, 420 S Salinity gradient power generation, 346, 347f Salt caverns, 231 Salter, Stephen, 337 Salter’s Duck, 337 SCR See Selective catalytic reduction (SCR) Seagen, 345 Seawater, 57À58 Secondary cells, 234, 236À237 Security issue, 1À2 Sedimentation, 198, 215 445 Selective catalytic reduction (SCR), 59, 59f, 92, 93f, 116À117 Selective noncatalytic reduction (SNCR), 59 Semiconductors, organic, 316 Sequestration, 61À62, 64, 67À68, 68f Severn Barrage Development Project, 212, 216À217 Shale gas, 71À72 Shiplocks, 214À215 Shoreline devices, 331À332 Shroud, 341 Siemens, Werner, 3À4 Sihwa tidal plant, 213, 216 Simple micro-turbines, 90 Sintering process, 394 Slow-speed engines, 109 Sluices, 215 Slurry, 370 Small hydropower plants, 192À195 costs of, 194À195 design of, 193 global installed capacity of, 193 turbine types used in, 193À194 Small modular reactors, 419À420 Smeaton, John, 186 SMES See Superconducting magnetic energy storage (SMES) Smog, 16 Smokejack, 76 SNCR See Selective noncatalytic reduction (SNCR) SO2 See Sulphur dioxide (SO2) Sodium sulphur batteries, 238, 239f SOFC See Solid oxide fuel cell (SOFC) Solar cells concentrating, 316 dye-sensitised, 316À317 efficiency of, 313À314, 317 first-generation, 316 modern, 315f module, 317f second-generation, 316 semiconductors, 312t, 313 structures for, 314À316 third-generation, 316À317 types of, 313À314 Solar chimneys, 299 Solar dishes, 306À308, 306f, 320 electricity generation with, 308 energy conversion efficiency of, 306 sectional mirrors of, 307f Solar energy 446 Index Solar energy (Continued) cost of, 319À321 earth and, 296t history of, 293 land resources and sites for, 297 power generation technologies for, 298 process of, 295À297 Stirling engines exploiting, 113 Solar field, 302 Solar molten-salt system, 320 Solar panels, 317À318, 318f Solar parabolic trough power plant, 301, 301f, 302f, 303 Solar photovoltaic power, 131, 297 costs of, 321 energy storage of, 319 system types of, 318À319 technologies for, 312À313 Solar pond, 299, 310, 311f Solar power, 8, 13 Solar power generation cost estimates for, 320t global capacity, 294, 295t Solar radiation, 296, 298À299 Solar thermal power generation, 298À299, 320À321 costs of, 320 Fresnel reflectors in, 308À309 parabolic troughs in, 299À303 solar dishes in, 306À308, 306f solar tower in, 303À306 technologies for, 309À311 Solar towers, 310, 320 with directÀsteam energy capture system, 304f direct-steam systems used in, 305 maximum size of, 304 power generation of, 303À306 Spain using, 303À305 Solar trough power plants, 320 Solid oxide fuel cell (SOFC), 139, 147À148, 165À168, 167f, 168f designs of, 166 efficiency of, 167 high operating temperatures of, 166 high-temperature, 152À153 hydrogen and oxygen used in, 166 lifetime of, 167 zirconia electrolyte in, 165À166 Solid-state devices, 311 Sorbent injection, 57 Spark-ignition engines, 4, 100 compression ratio of, 108 emissions of, 107 natural gas-fired, 109À110 various fuels used in, 107 Speed and size classifications, 106 Speed regulation, 214 Spillway, 184 Spool, 83 Spreader stoker, 363 St Malo project, 210 Stacks, 159, 168 Stages, of steam turbine, 45 Stalling, 260À261 Statkraft, 347 Steam boilers, 43À44 Steam engines, Steam generation, 134 Steam power, Steam reforming, 154 Steam turbine-based CHP system, 135 Steam turbines, 134À135 back-pressure, 135 in CHP, 135f coal-fired power plants with, 44À47, 46f designs of, 44À47 efficiency of, 133 functioning of, 45 heat energy from, 39 high-performance materials in, 45 stages of, 45 sunlight creating electricity from, 300À303 types of, 44À47 Steam-injected gas turbine (STIG), 86 STIG See Steam-injected gas turbine (STIG) Stirling, Robert, 111 Stirling engines, 100, 102, 111À113 cost of, 119 as external combustion engine, 111 functioning of, 111À113 solar energy exploited with, 111 stroke cycles of, 112f Stoker combustor, 363 Stolze, F., 76À77 Storage technologies See Energy storage Straflo turbines, 213, 214f Stroke cycles in diesel engines, 104 of four-stroke cycle, 103À105, 103f, 109f of Stirling engines, 112f of two-stroke cycle, 105f Sub-bituminous coal, 36 Substations, 267 Index Sugarcane processing, 356 Sulphur co-firing reducing, 365 from fluidised bed combustion, 51 removal of, 60 scrubbers, 53 Sulphur dioxide (SO2), 34À35, 117 coal-fired power plants producing, 52 from diesel engines, 117 environment influenced by, 16À17 in fuel cells, 153 removal of, 57À58 sorbent injection in, 57 wet scrubbing systems for, 57 Sulphur trioxide (SO3), 59À60 Supercapacitor, 245f Superconducting magnetic energy storage (SMES), 240À242 costs of, 242 DC current stored in, 240 grid-connected, 241f Superconductivity, 240À242 Supercritical point, 42 Swan, Joseph, 2À3 Swansea Bay scheme, 210 Syngas, 66 System operator, T Tailrace, 181À182 Tapchannel, 333 Tapered channels, 333À334 TBC See Ceramic thermal barrier coating (TBC) Technologies biomass, 361, 372À373 CAES and turbine, 231À233 CHP using, 131À133 coal-fired power plants components and, 38À40 direct steam, 303 direct-firing, 362À364 double-flash, 286À287 Europe’s combustion, 387 geothermal energy conversion, 284 hot gas cleanup, 52 OTEC use of, 327À330 power generation waste, 386À387 pumped-storage hydropower layout and, 226À227 solar energy, 298 447 for solar photovoltaic power, 312À313 for solar thermal power generation, 309À311 waste combustion, 386À387 waste power generation, 386À387 wave power using, 331À332 wind power, 257À264 wind turbine, 257À264, 258f wind turbine’s offshore, 264À267, 266f Telegraph, Temperature See also specific hightemperature entries earth’s core, 275 of gas turbine engines, 80À81 operating, 164, 166 Tethered buoy, 337 TFTR See Tokamak Fusion Test Reactor (TFTR) Thermal breeder reactor, 417 Thermodynamic heat engine, 78 Third-generation nuclear reactors, 417, 418t Three Gorges Dam, 196À197 Three Mile Island, 400À401, 425 Tidal barrage power plants, 204f, 208f bulb turbine used in, 213f construction techniques for, 211À212 costs of, 216À217 countries with, 207t design of, 207À209 ebb-flow generation in, 207À209 energy exploitation with, 203 environmental considerations when planning, 215À216 head of water and, 208À209 operation of, 206À207 sluices and shiplocks in, 214À215 tidal lagoons, 210À211 turbines used in, 212À213 two-basin, 209À210 Tidal lagoons, 210À211, 217 Tidal mills, 343 Tidal power amplitude in, 204À206 countries’ potential for, 205À206 recoverable, 205 Tidal reach, 204À206, 210, 212, 215 Tidal stream, 324À325 Tidal stream converters See Marine current energy Tidal stream turbines, 340À341 Tip speed ratio (TSR), 260 Tipping fee, 378 448 Index Tokamak Fusion Test Reactor (TFTR), 422 Tokamak reactor, 422 Tooele Army Base, 308 Topping cycle, 87 Towers, wind turbine, 264 Transmission network, Transportation, 74 Transuranic waste, 426À427 Trees, fast-growing, 358 Tritium production, 424 TSR See Tip speed ratio (TSR) Turbines, 187f bulb, 190, 212À213, 213f CAES and technologies for, 231À233 Deriaz, 191 efficiency of, 186À187 Francis, 189À192, 189f, 226 head of water and, 212À213 horizontal-axis, 257 impulse, 186À188 Kaplan, 190À191, 212À213 Pelton, 187À188, 188f, 191À192 propeller, 190À191, 191f, 192f, 213 reaction, 186, 188À189 small hydropower plants types of, 193À194 speed regulation of, 214 stages of, 79 Straflo, 213, 214f in tidal power stations, 212À213 tidal stream, 342 Turgo, 188 vertical-axis, 257 wind power technology using, 257À264 Turbochargers, 89, 113 Turgo turbines, 188 Twenty Thousand Leagues Under the Sea (Verne), 327 Two-basin power plants, 209À210 Two-stroke cycle, 100, 102, 104À105, 105f U UEK See Underwater Electric Kite (UEK) Ultra-supercritical power plants, 42 Underground caverns, 231 Underwater Electric Kite (UEK), 346 Underwater turbines, 323 United Kingdom, 396t United States air quality standards of, 53t mercury regulations in, 61 WTE costs in, 396t Unpredictable resource, 255À256 Uranium, 405À406, 410À411, 415À417 Uranium-oxide fuel, 414 Urban mass-burn power plant, 388f Urban waste, 355À356, 375, 376f, 384t US Energy Information Administration, 273 Utility sector, 318 V Valves, 104 Vapor compression, 347À348 Variable-speed generators, 214, 263 Variable-speed operation, 227 Venturi effect, 340, 344 Venturi tube, 214À215 Verne, Jules, 327 Vertical-axis turbines, 257, 340, 342À343, 343f Volatile organic compounds (VOCs), 115, 117 Volta, Alessandro, W Waste agricultural, 351, 356 animal, 370 ash, 394 collection and recycling of, 385À386 combustion technologies for, 386À387 composition of, 383À385 dioxins in, 395 environmental issues, 392À393 Europe’s combustion technology for, 386À387 exhaust gases from combustion of, 388 flue gases from burning, 390 gasification, 389À391, 391f global power production from, 378À380 heavy metals in, 395 high-level, 426À427 incineration plants for, 387À389 landfill disposal of, 375, 377À378 low-level, 426À427 nuclear power’s categories of, 426À427 organic urban, 356, 388 politics of, 380À381 power generation technologies for, 386À387 pyrolysis, 389À391 radioactive, 425À426 recycling and, 392À393 regional urban, 384t sources of, 382À383 Index transuranic, 426À427 urban, 375, 376f, 384t urban mass-burn power from, 388f Waste heat cogeneration using, 114 from internal combustion engines, 114 power generation using, 131 recovery systems for, 138 utilising, 121À122 Waste Hierarchy, 381À382 disposal, 382 energy recovery, 382 prevention, 381À382 recycling, 382 reuse, 382 Waste plants, 393 Waste-to-energy plants (WTE), 375À376, 379t, 386À387, 396t Water shift reaction, 66, 154 Water wheel, 173, 194f, 203 and cross-flow turbines, 343À344 Wave Dragon, 334 Wave energy converters, 332À335, 333f, 337f buoyancy-based devices for, 335À336, 336f offshore devices for, 335À338 oscillating flaps for, 334À335, 335f overtopping devices for, 334, 335f OWC for, 332À333 piezoelectric devices for, 338 tapered channels for, 333À334 Wave power, 324À325, 348À349 See also Ocean thermal energy technology (OTEC) energy converters for, 333f sea and ocean, 323, 325À326 shoreline devices using, 331À332 technology used for, 331À332 of western shorelines, 330À331 Waveroller, 335 Weather forecasting, 270 Wells turbine, 332 Western shorelines, 330À331 Wet scrubbing systems, 57, 60 Wheatstone, Charles, 3À4 Wilkins, John, 76 Wind farms, 252, 256À257, 267À268 dedicated substation for, 267 energy loss in, 267À268 layout of, 268f offshore, repowering, 270À271 449 Wind power, 4, 8, 13 atmospheric generation of, 255f battery storage systems of, 269 capacity limits of, 270À271 costs of, 272À273 countries’ repowering, 270À271 energy storage and, 269À270 environmental influence of, 268À269 global capacity of, 253À256, 253t grid issues of, 269À270 height above earth’s surface influencing, 257 hydropower backup for, 270 offshore construction for, 251À252, 256À257 pressure differences causing, 255 regional disposition of global, 254t turbine technology for, 257À264 as unpredictable resource, 255À256 weather forecasting important in, 270 Wind turbines blades of, 260À261 components of, 259 Darrieus, 257, 258f downwind design of, 261 drivetrain and generator of, 262À264 grid synchronisation required for, 263 offshore technologies for, 264À267, 266f onshore, 259À260 rotational speed of, 260À261 rotors of, 259À261 stabilising offshore, 266 technology, 257À264, 258f tower, 264 yawing of, 261À262 Wood pellets, 360À361, 373 World Coal Association, 33 World Energy Council, 205, 278, 296, 355 World oil prices, WTE See Waste-to-energy plants (WTE) Y Yawing, 261À262 Z Zero waste, 380À381 Zirconia, 165À166 ... Geothermal Power 13 Solar Power Global Solar Power Generating Capacity The Solar Energy Resource Solar Sites and Land Resources Solar Power Generation Technologies Solar Thermal Power Generation. .. Projects Salinity Gradient Power Generation Osmotic Power Vapour Compression Hydrocratic Power Reverse Electrodialysis The Cost of Marine Power Generation 15 Biomass-Based Power Generation Global Biomass... 28 Power Generation Technologies TABLE 2.4 External Cost of Power Generation Technologies External Cost (h/MWh) Coal and lignite 20À150 Peat 20À30 Oil 20À111 Gas 10À40 Nuclear 2À7 Hydropower

Ngày đăng: 16/02/2021, 15:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN