0

Tuyển tập 43 đề thi vào lớp 10 có lời giải chi tiết, bo de on thi toan lop 9 vao lop 10 THPT co dap an

109 331 2

Đang tải.... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 25/10/2018, 09:46

A - PHẦN ĐỀ BÀI I - ĐỀ ÔN THI TUYỂN SINH LỚP 10 THPT ĐỀ SỐ Tính giá trị biểu thức: P = a + b – ab + b = − 3x + y = b) Giải hệ phương trình:   x - 2y = - Câu 1: a) Cho biết a =  x  + (với x > 0, x ≠ 1)  ÷: x −1  x - x +1 x- x a) Rút gọn biểu thức P b, Tìm giá trị x để P > Câu 2: Cho biểu thức P = Câu 3: Cho phương trình: x2 – 5x + m = (m tham số) a) Giải phương trình m = b) Tìm m để phương trình hai nghiệm x1, x2 thỏa mãn: x1 − x = Câu 4: Cho đường tròn tâm O đường kính AB Vẽ dây cung CD vng góc với AB I (I nằm A O ) Lấy điểm E cung nhỏ BC ( E khác B C ), AE cắt CD F Chứng minh: a) BEFI tứ giác nội tiếp đường tròn b) AE.AF = AC2 c) Khi E chạy cung nhỏ BC tâm đường tròn ngoại tiếp ∆CEF ln thuộc đường thẳng cố định Câu 5: Cho hai số dương a, b thỏa mãn: a + b P= ≤ 2 Tìm giá trị nhỏ biểu thức: 1 + a b ĐỀ SỐ Câu 1: a) Rút gọn biểu thức: 1 − b, Giải phương trình: x2 – 7x + = 3− 3+ Câu 2: a) Tìm tọa độ giao điểm đường thẳng d: y = - x + Parabol (P): y = x2 b) Cho hệ phương trình:  4x + ay = b   x - by = a Tìm a b để hệ cho nghiệm ( x;y ) = ( 2; - 1) Câu 3: Một xe lửa cần vận chuyển lượng hàng Người lái xe tính xếp toa 15 hàng thừa lại tấn, xếp toa 16 chở thêm Hỏi xe lửa toa phải chở hàng Câu 4: Từ điểm A nằm ngồi đường tròn (O;R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C tiếp điểm) Trên cung nhỏ BC lấy điểm M, vẽ MI ⊥ AB, MK ⊥ AC (I ∈ AB,K ∈ AC) a) Chứng minh: AIMK tứ giác nội tiếp đường tròn b) Vẽ MP ⊥ BC (P ∈ BC) Chứng minh: · · MPK = MBC c) Xác định vị trí điểm M cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn Câu 5: Giải phương trình: y - 2010 − x - 2009 − z - 2011 − + + = x - 2009 y - 2010 z - 2011 ĐỀ SỐ Câu 1: Giải phương trình hệ phương trình sau: a) x4 + 3x2 – = b)  2x + y =  3x + 4y = -1 Câu 2: Rút gọn biểu thức: a) A = b) B = − 2+ − 1− 1+   x+2 x  x−4 − ÷ x + x +4 x  ( với x > 0, x ≠ ) Câu 3: a) Vẽ đồ thị hàm số y = - x2 y = x – hệ trục tọa độ b) Tìm tọa độ giao điểm đồ thị vẽ phép tính Câu 4: Cho tam giác ABC ba góc nhọn nội tiếp đường tròn (O;R) Các đường cao BE CF cắt H a) Chứng minh: AEHF BCEF tứ giác nội tiếp đường tròn b) Gọi M N thứ tự giao điểm thứ hai đường tròn (O;R) với BE CF Chứng minh: MN // EF c) Chứng minh OA ⊥ EF Câu 5: Tìm giá trị nhỏ biểu thức: P= x2 - x y + x + y - y + ĐỀ SỐ Câu 1: a) Trục thức mẫu biểu thức sau: ; −1 b) Trong hệ trục tọa độ Oxy, biết đồ thị hàm số y = ax2 qua điểm M (- 2; ) Tìm hệ số a Câu 2: Giải phương trình hệ phương trình sau: a) 2x + = - x  2x + 3y =  b)   x - y = Câu 3: Cho phương trình ẩn x: x2 – 2mx + = (1) a) Giải phương trình cho m = b) Tìm giá trị m để phương trình (1) hai nghiệm x 1, x2 thỏa mãn: ( x1 + )2 + ( x2 + )2 = 2 Câu 4: Cho hình vng ABCD hai đường chéo cắt E Lấy I thuộc cạnh AB, M thuộc cạnh BC cho: a) · IEM = 900 (I M khơng trùng với đỉnh hình vng ) Chứng minh BIEM tứ giác nội tiếp đường tròn b) Tính số đo góc c) · IME Gọi N giao điểm tia AM tia DC; K giao điểm BN tia EM Chứng minh CK ⊥ BN Câu 5: Cho a, b, c độ dài cạnh tam giác Chứng minh: ab + bc + ca ≤ a2 + b2 + c2 < 2(ab + bc + ca ) ĐỀ SỐ Câu 1: a) Thực phép tính:  2 −  ÷ 3÷   b) Trong hệ trục tọa độ Oxy, biết đường thẳng y = ax + b qua điểm A( 2; ) điểm B(2;1) Tìm hệ số a b Câu 2: Giải phương trình sau: a) x2 – 3x + = b) x -2 + = x-1 x+1 x -1 Câu 3: Hai ô tô khởi hành lúc quãng đường từ A đến B dài 120 km Mỗi ô tô thứ chạy nhanh ô tô thứ hai 10 km nên đến B trước ô tơ thứ hai 0,4 Tính vận tốc tơ Câu 4: Cho đường tròn (O;R); AB CD hai đường kính khác đường tròn Tiếp tuyến B đường tròn (O;R) cắt đường thẳng AC, AD thứ tự E F a) Chứng minh tứ giác ACBD hình chữ nhật b) Chứng minh ∆ACD ~ ∆CBE c) Chứng minh tứ giác CDFE nội tiếp đường tròn d) Gọi S, S1, S2 thứ tự diện tích ∆AEF, ∆BCE ∆BDF Chứng minh: S1 + S2 = S Câu 5: Giải phương trình: 10 ( x3 + = x + ) ĐỀ SỐ Câu 1: Rút gọn biểu thức sau:  3+   3−   −  + ÷ ÷ ÷ +1   −1 ÷    b a  b) B =   a - ab - ab - b ÷ ÷ a b - b a   a) A = ( ) ( với a > 0, b > 0, a ≠ b) x - y = -  Câu 2: a) Giải hệ phương trình:  x + y =  ( 1) ( 2) b) Gọi x 1, x2 hai nghiệm phương trình: x – x – = Tính giá trị biểu thức: P = x 12 + x2 Câu 3: a) Biết đường thẳng y = ax + b qua điểm M ( 2; ) song song với đường thẳng 2x + y = Tìm hệ số a b b) Tính kích thước hình chữ nhật diện tích 40 cm 2, biết tăng kích thước thêm cm diện tích tăng thêm 48 cm2 Câu 4: Cho tam giác ABC vuông A, M điểm thuộc cạnh AC (M khác A C ) Đường tròn đường kính MC cắt BC N cắt tia BM I Chứng minh rằng: a) ABNM ABCI tứ giác nội tiếp đường tròn b) NM tia phân giác góc · ANI c) BM.BI + CM.CA = AB2 + AC2 Câu 5: Cho biểu thức A = 2x - xy + y - x + Hỏi A giá trị nhỏ hay khơng? Vì sao? ĐỀ SỐ Câu 1: a) Tìm điều kiện x biểu thức sau nghĩa: A = b) Tính: x-1+ 3-x 1 − 3− 5 +1 Câu 2: Giải phương trình bất phương trình sau: a) ( x – )2 = b) x-1 < 2x + Câu 3: Cho phương trình ẩn x: x2 – 2mx - = (1) a) Chứng minh phương trình cho ln hai nghiệm phân biệt x1 x2 b) Tìm giá trị m để: x12 + x22 – x1x2 = Câu 4: Cho đường tròn (O;R) đường kính AB Vẽ dây cung CD vng góc với AB (CD không qua tâm O) Trên tia đối tia BA lấy điểm S; SC cắt (O; R) điểm thứ hai M a) Chứng minh ∆SMA đồng dạng với ∆SBC b) Gọi H giao điểm MA BC; K giao điểm MD AB Chứng minh BMHK tứ giác nội tiếp HK // CD c) Chứng minh: OK.OS = R2 Câu 5: Giải hệ phương trình:  x + = 2y   y + = 2x ĐỀ SỐ Câu 1: a) Giải hệ phương trình:  2x + y =   x - 3y = - b) Gọi x 1,x2 hai nghiệm phương trình:3x – x – = Tính giá trị biểu thức: = P 1 + x1 x2 Câu 2: Cho biểu thức A =  a a  a +1 −  ÷ ÷: a - với a > 0, a ≠ a − a a   a) Rút gọn biểu thức A b) Tìm giá trị a để A < Câu 3: Cho phương trình ẩn x: x2 – x + + m = (1) a) Giải phương trình cho với m = b) Tìm giá trị m để phương trình (1) hai nghiệm x 1, x2 thỏa mãn: x1x2.( x1x2 – ) = 3( x1 + x2 ) Câu 4: Cho nửa đường tròn tâm O đường kính AB = 2R tia tiếp tuyến Ax phía với nửa đường tròn AB Từ điểm M Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C tiếp điểm) AC cắt OM E; MB cắt nửa đường tròn (O) D (D khác B) a) Chứng minh: AMCO AMDE tứ giác nội tiếp đường tròn · · ADE = ACO c) Vẽ CH vuông góc với AB (H ∈ AB) Chứng minh MB qua trung điểm CH Câu 5: Cho số a, b, c ∈ [ ; 1] Chứng minh rằng: a + b2 + c3 – ab – bc – ca ≤ b) Chứng minh ĐỀ SỐ Câu 1: a) Cho hàm số y = ( ) − x + Tính giá trị hàm số x = 3+2 b) Tìm m để đường thẳng y = 2x – đường thẳng y = 3x + m cắt điểm nằm trục hoành Câu 2: a) Rút gọn biểu thức: x ≥ 0, x ≠ 4, x ≠ b) Giải phương trình: Câu 3: Cho hệ phương trình: A = 3 x +6 x  x-9 +  ÷ ÷: x − x x −   với x - 3x + = ( x + ) ( x - 3) x - 3x - y = 2m - (1)   x + 2y = 3m + a) Giải hệ phương trình cho m = b) Tìm m để hệ (1) nghiệm (x; y) thỏa mãn: x2 + y2 = 10 Câu 4: Cho nửa đường tròn tâm O đường kính AB Lấy điểm M thuộc đoạn thẳng OA, điểm N thuộc nửa đường tròn (O) Từ A B vẽ tiếp tuyến Ax By Đường thẳng qua N vng góc với NM cắt Ax, By thứ tự C D a) Chứng minh ACNM BDNM tứ giác nội tiếp đường tròn b) Chứng minh ∆ANB đồng dạng với ∆CMD c) Gọi I giao điểm AN CM, K giao điểm BN DM Chứng minh IK //AB a+b Câu 5: Chứng minh rằng: a ( 3a + b ) + b ( 3b + a ) ≥ với a, b số dương ĐỀ SỐ 10 Câu 1: Rút gọn biểu thức: ( ) −1 a) A = − 50 − b) B = x - 2x + , với < x < x-1 4x Câu 2:Giải hệ phương trình phương trình sau: a)  ( x - 1) + y =   x - 3y = - b) x + x −4 =0 Câu 3: Một xí nghiệp sản xuất 120 sản phẩm loại I 120 sản phẩm loại II thời gian Mỗi sản xuất số sản phẩm loại I số sản phẩm loại II 10 sản phẩm Hỏi xí nghiệp sản xuất sản phẩm loại Câu 4: Cho hai đường tròn (O) (O′) cắt A B Vẽ AC, AD thứ tự đường kính hai đường tròn (O) (O′) a) Chứng minh ba điểm C, B, D thẳng hàng b) Đường thẳng AC cắt đường tròn (O′) E; đường thẳng AD cắt đường tròn (O) F (E, F khác A) Chứng minh điểm C, D, E, F nằm đường tròn c) Một đường thẳng d thay đổi qua A cắt (O) (O′) thứ tự M N Xác định vị trí d để CM + DN đạt giá trị lớn Câu 5: Cho hai số x, y thỏa mãn đẳng thức: (x+ )( x + 2011 y + ) y + 2011 = 2011 Tính: x + y ĐỀ SỐ 11 Câu 1: 1) Rút gọn biểu thức: 1 - a a A =  + 1- a  - a  với a ≥ a ≠ a ÷ ÷ - a ÷ ÷   2) Giải phương trình: 2x2 - 5x + = Câu 2: 1) Với giá trị k, hàm số y = (3 - k) x + nghịch biến R 2) Giải hệ phương trình:  4x + y =  3x - 2y = - 12 Câu 3: Cho phương trình x2 - 6x + m = 1) Với giá trị m phương trình nghiệm trái dấu 2) Tìm m để phương trình nghiệm x 1, x2 thoả mãn điều kiện x - x2 = Câu 4: Cho đường tròn (O; R), đường kính AB Dây BC = R Từ B kẻ tiếp tuyến Bx với đường tròn Tia AC cắt Bx M Gọi E trung điểm AC 1) Chứng minh tứ giác OBME nội tiếp đường tròn 2) Gọi I giao điểm BE với OM Chứng minh: IB.IE = IM.IO Câu 5: Cho x > 0, y > x + y ≥ Tìm giá trị nhỏ biểu thức : P = 3x + 2y + + x y ĐỀ SỐ 12 Câu 1: Tính gọn biểu thức: 1) A = 2) B = 20 - 45 + 18 + 72  a + a  a- a  +  + ÷ ÷ với a ≥ 0, a ≠ a + ÷ 1- a ÷   Câu 2: 1) Cho hàm số y = ax2, biết đồ thị hàm số qua điểm A (- ; -12) Tìm a 2) Cho phương trình: x2 + (m + 1)x + m2 = (1) a Giải phương trình với m = b Tìm m để phương trình (1) nghiệm phân biệt, nghiệm - Câu 3: Một ruộng hình chữ nhật, tăng chiều dài thêm 2m, chiều rộng thêm 3m diện tích tăng thêm 100m2 Nếu giảm chiều dài chiều rộng 2m diện tích giảm 68m Tính diện tích ruộng Câu 4: Cho tam giác ABC vuông A Trên cạnh AC lấy điểm M, dựng đường tròn tâm (O) đường kính MC Đường thẳng BM cắt đường tròn tâm (O) D, đường thẳng AD cắt đường tròn tâm (O) S 1) Chứng minh tứ giác ABCD tứ giác nội tiếp CA tia phân giác góc · BCS 2) Gọi E giao điểm BC với đường tròn (O) Chứng minh đường thẳng BA, EM, CD đồng quy 3) Chứng minh M tâm đường tròn nội tiếp tam giác ADE Câu 5: Giải phương trình x - 3x + + x+3 = x-2 + x + 2x - ĐỀ SỐ 13 Câu 1: Cho biểu thức: P =  a a - a a +  a +2 với a > 0, a ≠ 1, a ≠  ÷: a+ a ÷  a- a  a-2 1) Rút gọn P 2) Tìm giá trị nguyên a để P giá trị nguyên Câu 2: 1) Cho đường thẳng d phương trình: ax + (2a - 1) y + = Tìm a để đường thẳng d qua điểm M (1, -1) Khi đó, tìm hệ số góc đường thẳng d 2) Cho phương trình bậc 2: (m - 1)x2 - 2mx + m + = a) Tìm m, biết phương trình nghiệm x = b) Xác định giá trị m để phương trình tích nghiệm 5, từ tính tổng nghiệm phương trình Câu 3: Giải hệ phương trình:  4x + 7y = 18  3x - y = Câu 4: Cho ∆ABC cân A, I tâm đường tròn nội tiếp, K tâm đường tròn bàng tiếp góc A, O trung điểm IK 1) Chứng minh điểm B, I, C, K thuộc đường tròn tâm O 2) Chứng minh AC tiếp tuyến đường tròn tâm (O) 3) Tính bán kính đường tròn (O), biết AB = AC = 20cm, BC = 24cm Câu 5: Giải phương trình: x2 + x + 2010 = 2010 ĐỀ SỐ 14 Câu 1: Cho biểu thức P= x +1 + x -2 x 2+5 x với x ≥ 0, x ≠ + 4-x x +2 1) Rút gọn P 2) Tìm x để P = Câu 2: Trong mặt phẳng, với hệ tọa độ Oxy, cho đường thẳng d phương trình: y = (m − 1)x + n 1) Với giá trị m n d song song với trục Ox 2) Xác định phương trình d, biết d qua điểm A(1; - 1) hệ số góc -3 Câu 3: Cho phương trình: x2 - (m - 1)x - m - = (1) 1) Giải phương trình với m = -3 2) Tìm m để phương trình (1) nghiệm thoả mãn hệ thức x12 + x 22 = 10 3) Tìm hệ thức liên hệ nghiệm không phụ thuộc giá trị m Câu 4: Cho tam giác ABC vuông A (AB > AC), đường cao AH Trên nửa mặt phẳng bờ BC chứa điểm A, vẽ nửa đường tròn đường kính BH cắt AB E, nửa đường tròn đường kính HC cắt AC F Chứng minh: 1) Tứ giác AFHE hình chữ nhật 2) Tứ giác BEFC tứ giác nội tiếp đường tròn 3) EF tiếp tuyến chung nửa đường tròn đường kính BH HC Câu 5: Các số thực x, a, b, c thay đổi, thỏa mãn hệ: x + a + b + c =  2 2  x + a + b + c = 13 (1) (2) Tìm giá trị lớn giá trị nhỏ x ĐỀ SỐ 15 Câu 1: Cho M =  x   x -1 x- x    với x > 0, x ≠ ÷ ÷ :  x + + x - ÷   a) Rút gọn M b) Tìm x cho M > Câu 2: Cho phương trình x2 - 2mx - = (m tham số) a) Chứng minh phương trình ln hai nghiệm phân biệt b) Gọi x1, x2 hai nghiệm phương trình Tìm m để x12 + x 22 - x1x2 = Câu 3: Một đoàn xe chở 480 hàng Khi khởi hành thêm xe nên xe chở Hỏi lúc đầu đồn xe chiếc, biết xe chở khối lượng hàng Câu 4: Cho đường tròn (O) đường kiính AB = 2R Điểm M thuộc đường tròn cho MA < MB Tiếp tuyến B M cắt N, MN cắt AB K, tia MO cắt tia NB H a) Tứ giác OAMN hình ? b) Chứng minh KH // MB x (2 + y) + y2 + = Câu 5: Tìm x, y thoả mãn 5x - ĐỀ SỐ 16 Câu 1: Cho biểu thức: K = x 2x - x x -1 x - x với x >0 x ≠ 1) Rút gọn biểu thức K 2) Tìm giá trị biểu thức K x = + Câu 2: 1) Trong mặt phẳng tọa độ Oxy, đường thẳng y = ax + b qua điểm M (-1; 2) song song với đường thẳng y = 3x + Tìm hệ số a b 3x + 2y =  x - 3y = 2) Giải hệ phương trình:  Câu 3: Một đội xe nhận vận chuyển 96 hàng Nhưng khởi hành thêm xe nữa, nên xe chở lúc đầu 1,6 hàng Hỏi lúc đầu đội xe Câu 4: Cho đường tròn (O) với dây BC cố định điểm A thay đổi cung lớn BC cho AC > AB AC> BC Gọi D điểm cung nhỏ BC Các tiếp tuyến (O) D C cắt E Gọi P, Q giao điểm cặp đường thẳng AB với CD; AD với CE 1) Chứng minh rằng: DE//BC 2) Chứng minh tứ giác PACQ nội tiếp đường tròn 3) Gọi giao điểm dây AD BC F Chứng minh hệ thức: 1 = + CQ CE CF Câu 5: Cho số dương a, b, c Chứng minh rằng: 1< a b c + + + x x +2 Câu 2: Một vườn hình chữ nhật chu vi 72m Nếu tăng chiều rộng lên gấp đôi chiều dài lên gấp ba chu vi vườn 194m Hãy tìm diện tích vườn cho lúc ban đầu Câu 3: Cho phương trình: x2- 4x + m +1 = (1) 1) Giải phương trình (1) m = 2) Tìm giá trị m để phương trình (1) nghiệm x 1, x2 thỏa mãn đẳng thức x12 + x 22 = (x1 + x2) (O′) cắt hai điểm A, B phân biệt Đường thẳng OA cắt (O), (O′) điểm thứ hai C, D Đường thẳng O′ A cắt (O), (O′) điểm thứ Câu 4: Cho đường tròn (O) hai E, F Chứng minh đường thẳng AB, CE DF đồng quy điểm I Chứng minh tứ giác BEIF nội tiếp đường tròn Cho PQ tiếp tuyến chung (O) (O′) (P ∈ (O), Q ∈ (O′) ) Chứng minh đường thẳng AB qua trung điểm đoạn thẳng PQ Câu 5: Giải phương trình: + x − x2 =2 ĐỀ SỐ 19 Câu 1: Cho biểu thức A = 5+7 a) Rút gọn biểu thức A b) Chứng minh: A - B = 10 + 11 + 11 + 11 , B= 5: 5 + 55 b) Đk: x ≥ - (1) Đặt x + = b ( a ≥ 0; b ≥ ) (2) x + = a; x + 7x + 10 = Ta có: a2 – b2 = 3; ( x + 5) ( x + ) = ab Thay vào phương trình cho ta được: (a – b)(1 + ab) = a2 – b2 ⇔ (a – b)(1 – a)(1 – b) = a - b = ⇔ 1 - a = 1 - b =  x + = x + (VN)  x = - ⇔ nên  x + =  x = - x + =  Đối chiếu với (1) suy phương trình cho nghiệm x = - Câu 2:  b3 a  x =  =  b3 x a  b  c3  y = ⇒ a) Đặt  , abc = nên xyz = (1)  = c  y b c  1 a3 z =   = a3  z c 1 Từ đề suy x + y + z = + + ⇒ x + y + z = yz + xz + xy (2) x y z Từ (1) (2) suy ra: xyz + (x + y + z) – (xy + yz + zx) – = ⇔ (x – 1)(y – 1)(z – 1) = Vậy tồn x =1 chẳng hạn, suy a = b3, đpcm b) Đặt 84 84 = a; − = b ⇒ x = a + b; a3 + b3 = 2; ab = − 9 1+ Ta có: x3 = (a + b)3 = a3 + b3 + 3ab(a + b) Suy ra: x3 = – x ( ) ⇔ x3 + x – = ⇔ ( x - 1) x + x + = ⇔ x = Vì x2 + x + =  x + ÷ + > Từ suy điều phải chứng minh 2  Câu 3: Áp dụng BĐT: ( ) ( a + b ≤ a + b ; a + b + c ≤ a + b2 + c2 ) (được suy từ bất đẳng thức Bunhiacôpski) Ta có: ( ) ( + y + 2y ) = ( y + 1) ( + z + 2z ) = ( z + 1) + x + 2x ≤ + x + 2x = ( x + 1) + y + 2y ≤ + z + 2z ≤ 2 x + y + z ≤ 3( x + y + z) 95 Lại có: A = + ( 2− 2) ( + x + + y + + z + 2x + 2y + 2z x+ y+ z ) ( ⇒ A ≤ ( x + y + z + 3) + − ) 3( x + y + z) ⇒ A ≤ + (do x + y + z ≤ 3) Dấu “=” xảy x = y = z = Vậy maxA = + Câu 4: a) Ta có: AB = AC · · ABO = ACO = 900 (tính chất tiếp tuyến) (1) = OA − OB2 = R = OB = OC (2) Từ (1) (2) suy ABOC hình vng b) Theo ta có: AD + DE + AE = 2R (3) A Suy ra: DE = BD + CE (4) x Vẽ OM ⊥ DE (M ∈ DE) (5) M D Trên tia đối tia CA lấy điểm F cho CF = BD; suy ∆BDO = ∆COF (c-g-c) B ⇒ OD = OF; lại DE = FE nên ∆ODE = ∆OFE (c-c-c) ⇒ OM = OC = R R (hai đường cao tương ứng) (6) Từ (5) (6) suy DE tiếp tuyến đường tròn (O;R) ⇒ SADE = c) Đặt: AD = x; AE = y Ta có: DE = y E C F O xy (x, y > 0) AD2 + AE = x + y (định lí Pitago) Vì AD + DE + AE = 2R ⇒ x+y+ x + y = 2R (6) Áp dụng BĐT – Côsi cho hai số không âm ta có: x + y ≥ xy x + y ≥ 2xy (7) Dấu “=” xảy x = y Từ (6) (7) suy ra: ⇔ xy ≤ 2R ( ) xy + 2xy ≤ 2R ⇔ xy + ≤ 2R ( 2+ ) = ( 3− 2) R ⇔ xy ≤ Vậy max SADE ( ⇔ x = y ⇔ ∆ADE cân A Câu 5: Xét điểm A hình tròn (C1) tâm A, bán kính C C1 96 A ) 2R R2 ⇒ SADE ≤ ⇔ SADE ≤ - 2 R 3+ 2 3+ 2 B C2 - Nếu tất 98 điểm lại nằm (C1) hiển nhiên toán chứng minh - Xét trường hợp điểm B nằm ngồi (C1) Ta có: AB > (1) Vẽ hình tròn (C2) tâm B, bán kính + Giả sử C điểm khác A B Khi điểm C thuộc hai hình tròn (C1) (C2) Thật vậy, giả sử C khơng thuộc hai hình tròn nói Suy ra: AC > BC > (2) Từ (1) (2) suy điểm A, B, C khơng hai điểm khoảng cách nhỏ (vơ lí trái với giả thiết) Chứng tỏ C∈ (C1) C∈ (C2) Như 99 điểm cho thuộc (C1) (C2) Mặt khác 99 = 49.2 + nên theo nguyên tắc Dirichle phải hình tròn chứa khơng 50 điểm ĐỀ SỐ Câu 1: a) Theo ta có: 2011 ( x + y − 2011) = 2010 ( y − x + 2010)  x − y = 2010 2x = 4021 ⇔ ⇔  x + y = 2011 2y = + Nếu x + y - 2011 = y - x + 2010 = ⇒   x = 2010,5   y = 0,5 + Nếu y - x + 2010 = x + y - 2011 = 0, ta kết + Nếu x + y - 2011 ≠ 2011 y − x + 2010 vơ lý (vì VP số hữu tỉ, VT số vô tỉ) = 2010 x + y − 2011 Vậy x = 2010,5 y = 0,5 cặp số thoả mãn đề b) Ta xy (z + 1) + y(z + 1) + x(z + 1) + (z + 1) = 2012 (z + 1)(xy + y + x + 1) = 2012 (z + 1)[x(y + 1)+(y + 1)] = 2012 (x + 1)(y + 1)(z + 1) = 1.2.2.503 = 503.4.1 Chỉ sau thoả mãn: x = 502, y = 1, z = x = 1005, y = 1, z = x = 2011, y = 0, z = Câu 2: a) Điều kiện: x > -1 Đặt a = x +1 ; b = x2 − x +1 Ta có: 2(a2 + b2) = 5ab (2a - b)(2b - a) = b = 2a ; a = 2b Do đó: 1) x +1 = x − x + 4(x + 1) = x - x + − 37 + 37 (loại); x2 = 2 2 x + = x − x + ⇔ x + = 4(x − x + 1) ⇔ 4x − 5x + = vô nghiệm x2 - 5x - = x1 = 2) Vậy phương trình nghiệm: x = + 37 b) Vì a, b, c ∈ [0; 2] nên: (2 - a)(2 - b)(2 - c) > - 4(a + b + c) + 2(ab + bc + ca) - abc > 2(ab + bc + ca) > 4(a + b + c) - + abc nên 2(ab + bc + ca) > (vì a + b + c = abc ≥ 0) 97 Suy (a + b + c)2 - (a2 + b2 + c2) > a2 + b2 + c2 ≤ (vì (a + b + c)2 = 9) Dấu “=” xẩy số a, b, c số 2, số số Câu 3: Giả sử x = p (p, q ∈ Z, q > 0) (p, q) = q  p p Ta   + + = n (n ∈ N) p2 = q(-P - 6q + n2q) q q   => q ước p2 (p, q) = => q = lúc x = p => p2 + p + = n2 (p, n ∈ Z) (2p + 1)2 + 23 = 4n2 (2n)2 - (2p + 1)2 = 23 (2n - 2p - 1)(2n + 2p + 1) = 23 Do 2n - 2p - = 2n + 2p + = 23 ; 2n - 2p - = 23 2n + 2p + = (vì 23 ∈ P 2n + 2p + > 2n - 2p - > 0) p = (t/m) ; p = - (t/m) Vậy số hữu tỉ x cần tìm – Câu 4: µ +N µ = a) Tứ giác MNKB nội tiếp (vì K 180 ) Tứ giác MNCI nội tiếp (vì · · MNC = 900) MNC = MIC A · · · · => BNK , INC (1) = BMK = IMC (vì góc nội tiếp chắn cung) · · Mặt khác BMK (2) = IMC · · · · (vì BMK + KMC = KMC + IMC bù với góc A tam giác ABC) · · Từ (1), (2) suy BNK = INC nên điểm K, N, I thẳng hàng S H P O K C B N I M Q b) Vì · · MAK = MCN = β (vì góc nội tiếpcùng chắn cung BM) AK CN AB − BK CN AB BK CN = = cot gβ => = hay − = (1) MK MN MK MN MK MK MN AC CI BN AI BN Tương tự có: = hay + = (2) MI MN MI MI MN IC BK · · Mà = = tgα ( α = BMK ) (3) = IMC MI MK AB AC BC Từ (1), (2), (3) => + = (đpcm) MK MI MN => c) Gọi giao AH, MN với đường tròn (O) thứ tự Q, S => AQMS hình thang cân (vì AQ // MS => AS = QM) Vẽ HP // AS (P ∈ MS) => HQMP hình thang cân, BN trục đối xứng (vì Q H đối xứng qua BC) => N trung điểm PM mà HP // KN (vì KN // AS KN qua trung điểm HM (đpcm) 98 · · · NMC ) => SAC = AIN 2  2x − xy − y = p Câu 5: Đưa tốn tìm P để hệ phương trình:  2  x + 2xy + 3y = nghiệm 2 (1) 8x − 4xy − 4y = 4p Hệ ⇔  Lấy (1) - (2), ta có: px + 2pxy + 3py = 4p (2) (8 - p)x2 - 2y(2 + p)x - (4 + 3p)y2 = (3) ⇒ p = 0; p = - Nếu y = => (8 - p)x = x = p = ≠ chia vế pt (3) cho y2 ta : - Nếu y (8 - p)t2 - 2(2 + p)t - (4 + 3p) = + Nếu p = t = - (4) với t = x y ≠ 8: Phương trình (2) nghiệm ∆' = (2 + p)2 + (8 - p)(4 + 3p) > p2 - 12p - 18 < - ≤ p ≤ + Dấu “=” xảy + Nếu p Vậy P = - , max P = +3 ĐỀ SỐ Câu 1: a) Từ giả thiết ta có: a b c ab - b - ac + c = = b-c a-c a-b ( a - b) ( a - c) Nhân vế đẳng thức với ta có: b-c a ( b - c) = ab - b - ac + c ( a - b) ( a - c) ( b - c) Vai trò a, b, c nhau, thực hốn vị vòng quanh a, b, c ta có: b ( c - a) = cb - c - ab + a , ( a - b) ( a - c) ( b - c) Cộng vế với vế đẳng thức trên, ta b) Đặt 2010 = x ⇒ ( a - b) = ac - a - bc + b ( a - b) ( a - c) ( b - c) a b c + + = (đpcm) 2 (b - c) (c - a) (a - b) 2010 = x ; 2010 = x Thay vào ta có:  x2 - x + x2  A=  + ÷ x   1-x c 1+ + x x =  2  ÷ 1+x x   1 + ÷ x   + x2 1 1 =  ÷ -  ÷ =0 x x Câu 2: a) Vì a, b, c độ dài cạnh tam giác nên a, b, c > 99 Áp dụng BĐT Cơ-si ta có: a2 + bc ≥ 2a Do = bc, b + ac ≥ 2b ac ; c + ab ≥ 2c ab 1 1 1  + + ≤  + + ÷ a + bc b + ac c + ab  a bc b ac c ab  a +b b+c c+a + + ab + bc + ca 2 = a + b + c , đpcm ≤ abc abc 2abc Dấu xẩy a = b = c, tức tam giác cho tam giác b) Điều kiện x ≥ 0; y ≥ Ta có: A = (x - xy + y) + 2y - x +1 ( =( x - y x - y - + (2y - y + ( x - y -1 =[ = ) -2 ) ) ( x - 2 ( + ) y + 1] - y + 2y 1 )2 2 1 y − ≥2 )  x=  x y =   A= ⇔  ⇔  2 y - = y =  Vậy minA = − 4 Câu 3: a) Điều kiện : ≤ x ≤ Áp dụng BĐT Bunhiacốpski ta có: (2 x-1+3 5-x ) ≤ (2 + 32 ) ( x - + - x) = 13.4 ⇒ x - + - x ≤ 13 Dấu xẩy x-1=2 5-x ⇔ x= Thay vào pt cho thử lại thỏa mãn Vậy pt nghiệm x= 29 13 1 ÷ = x ∀x ≠ (1) x b) Xét đẳng thức: f(x) + 3f  Thay x = vào (1) ta có: f(2) + f 100 1  ÷ = 2 29 13 Thay x = vào (1) ta có: 1 f  ÷ + 3.f(2) = 2 1 Đặt f(2) = a, f  ÷ = b ta 2 Vậy f(2) = - a + 3b = 13   Giải hệ, ta a = 32 3a + b = 13 32 a Câu 4: b Gọi O tâm đường tròn ngoại tiếp lục giác A, O, D thẳng hàng OK = 1 AB Vì FM = EF mà EF 2 = AB FM = OK o f · ⇒ AF = OA AFM = 120 · · · · AOK + AOB = 1800 = AOK + 60 ⇒ AOK = 120 Do m · ⇒ AM = AK, MAK = 600 ⇒ ∆AMK e Ta lại AF = R k c đó: ∆AFM = ∆AOK (c.g.c) d Câu 5: Gọi BH đường cao ∆ABO Ta 2SAOB = OA BH b Nhưng BH ≤ BO nên 2SAOB ≤ OA OB mà OA.OB OA + OB2 ≤ o OA + OB2 Do 2SAOB ≤ Dấu “=” xảy ⇔ OA ⊥ OB OA = OB c h a Chứng minh tương tự ta có: 2SBOC 2SAOD OB2 + OC OC2 + OD ; 2SCOD ≤ ≤ 2 2 OD + OA ≤ 2 OA + OB2 + OC + OD Vậy 2S = 2(SAOB + SBOC + SCOD + SDOA) ≤ 2 Hay 2S ≤ OA + OB + OC + OD ( d ) 2 Dấu xẩy OA = OB = OC = OD · · · · AOB = BOC = COD = DOA = 900 ⇒ ABCD hình vng tâm O Lời bình: 101 Câu III.b 1) Chắc chắn bạn hỏi x= từ đâu mà ra? Gọi A(x), B(x), P(x), Q(x), C(x) đa thức biến x f(x) hàm số xác định phương trình A(x).f[P(x)] + B(x).f[Q(x)] = C(x) (1) Để tình giá trị hàm số f(x) điểm x = a ta làm sau Bước 1: Giải phương trình Q(x) = P(a) (2) Giả sử x = b nghiệm (2) Bước 2: Thay x = a, x = b vào phương trình (1), đặt x = f(a), y = f(b) ta hệ  A(a ) x + B( a) y = C (a)   B (b) x + A(b) y = C (b) (3) Giải hệ phương trình (3) (đó hệ phương trình bậc hai ẩn x, y) • Trong toán trên: A(x) = 1, B(x) = 3, P(x) = x, Q(x) = , C(x) = x2, a = x Phương trình Q(x) = P(a) ⇔ Số x= 1 = ⇔ x = , tức b = x 2 nghĩ 2) Chú ý: Khơng cần biết phương trình (2) nghiệm Chỉ cần biết (có thể đốn) nghiệm đủ cho lời giải thành công 3) Một số tập tương tự a) Tính giá trị hàm số f(x) x = f(x) + 3.f(−x) = + 3x (với x ∈ b) Tính giá trị hàm số f(x) x = c) Tính giá trị hàm số f(x) x =   f ( x) + f  ÷ = x (với ≠ x ≠ 1)  1− x  1 ( x − 1) f ( x) + f  ÷ = (với ≠ x ≠  x  x −1 1) ĐỀ SỐ ⇒ 2xy = (x + y)2 - = (x + y + 2) (x + y - 2) xy x+y = -1 Vì x + y + ≠ nên x+y+2 Câu 1: a) Từ x2 + y2 = (1) Áp dụng BĐT Bunhiacopski, ta có: x+y≤ 102 ( x + y2 ) ⇒ x+y≤ 2 ¡ ) (2) xy ≤ Từ (1), (2) ta được: x+y+2 Vậy maxA =  x ≥ 0, y ≥  - Dấu "="  x = y ⇔ x=y= x + y2 =  -1 b) Vì x2 + y2 + z2 = nên: 2 x + y2 + z2 x + y2 + z2 x + y2 + z2 + + = + + x + y2 y2 + z2 z2 + x x + y2 y2 + z2 z2 + x z2 x2 y2 = + + +3 x + y2 y2 + z2 x + z2 z2 z2 2 Ta x + y ≥ 2xy ⇒ ≤ , x + y2 2xy x2 x2 y2 y2 Tương tự ≤ , ≤ y + z2 2yz x + z 2xz 2 z x z2 x2 y y2 Vậy + + ≤ + + +3 + x + y2 y2 + z2 2xy 2yz 2xz x + z2 2 x + y3 + z3 ⇔ + + ≤ + , đpcm x + y2 y2 + z2 z2 + x 2xyz 10 Câu 2: a) x2 + 9x + 20 = 3x + 10 (1) Điều kiện: x ≥ − (2) (1) ⇔ (3x + 10 - 3x + 10 + 1) + (x2 + 6x + 9) = ⇔ ( 3x + 10 - 1)2 + (x + 3)2 =  3x + 10 - = ⇔  ⇔ x = - (thỏa mãn đk (2)  x + = Vậy phương trình (1) nghiệm x = -3 2x   x y - 2x + y = (1) y = ⇔ x + b)    2x - 4x + = - y  y3 = - (x - 1) -  2x ≤ ⇒ y2 ≤ ⇒ - ≤ y ≤ (1) 1+x Mặt khác: - (x - 1)2 - ≤ - ⇒ y3 ≤ - ⇒ y ≤ - (2) Từ (1) (2) ⇒ y = - nên x = Thay vào hệ cho thử lại thỏa mãn Ta có: Vậy x = y = -1 số cần tìm Câu 3: a) Đặt x = b > y = c > ta x2 = b3 y2 = c3 103 Thay vào gt ta b3 + b c + c3 + bc = a ⇒ a2 = b3 + b2c + c3 + bc2 + b c ( b + c ) a2 = (b + c)3 ⇒ a = b + c hay x2 + y = a , đpcm b) Giả sử x0 nghiệm phương trình, dễ thấy Suy x 02 + ax0 + b + Đặt x0 + x0 ≠ a  1  + = ⇔ x 02 + + a  x + ÷+b=0 x0 x0 x0 x0   1 = y0 ⇒ x 02 + = y02 - , y ≥ ⇒ y 02 - = - ay - b x0 x0 Áp dụng bất đẳng thức Bunhiacốpxki ta có: (y - ) = ( ay0 + b ) Ta chứng minh Thực vậy: (2) (y 02 − 2) (1) ≤ ( a + b ) ( y + 1) ⇒ a + b ≥ y 02 + 2 2 (y 02 − 2) ≥ (2) y 02 + ⇔ 5(y04 − 4y02 + 4) ≥ 4(y02 + 1) ⇔ 5y 04 − 24y 02 + 16 ≥ ⇔ 5(y02 − 4)(y 02 − ) ≥ với y ≥ nên (1) Từ (1), (2) suy a + b2 ≥ ⇒ 5(a + b ) ≥ , đpcm c Câu 4: Đặt AH = x Ta · AMB = 900 (OA = OB = OM) m k Trong ∆ vng AMB ta MA = AH AB = 2Rx (H chân đường vng góc hạ từ M xuống BC) Mặt khác: MK2 = OH2 = (R - x)2 (vì MKOH hình chữ nhật) Theo ta có: 4Rx = 15(R - x)2 a Do H ∈ AB ⇒ O ≤ x ≤ 2R Phương trình trở thành: 15x2 - 34Rx + 15R2 = ⇔ (5x - 3R) (3x - 5R) = ⇔ x = h o h' b 3R 5R ;x= Cả giá trị thoả mãn Vậy ta tìm điểm H H’ ⇒ điểm M M’ giao điểm nửa đường tròn với a b đường vng góc với AB dựng từ H H’ Câu 5: Gọi I trung điểm CD Nối EF, EI, IF, ta IE đường trung bình ∆BDC ⇒ IE // BC d 104 e f g i c Mà GF ⊥BC ⇒ IE⊥ GF (1) Chứng minh tương tự EG ⊥IF (2) Từ (1) (2) ⇒ G trực tâm ∆EIF ⇒ IG ⊥ EF (3) Dễ chứng minh EF // DC (4) ⇒ IG ⊥ DC Vậy ∆ DGC cân G ⇒ DG = GC Từ (3) (4) ĐỀ SỐ Câu 1: 1) Trừ vào vế phương trình với 2x 9x x+9 2  x2  18x 9x  18x  Ta có:  x ⇔ + - 40 = (1)  ÷ ÷ = 40 x + x + x + 9 x+9    x Đặt = y (2), phương trình (1) trở thành y2 + 18y - 40 = x+9 ⇔ (y + 20) (y - 2) = ⇔ y = -20 ; y = Thay vào (2), ta  x = - 20(x + 9)  x + 20x +180 = (3) ⇔    x = 2(x + 9) =  x - 2x - 18 = (4) Phương trình (3) vơ nghiệm, phương trình (4) nghiệm là: Vậy phương trình cho nghiệm là: 2) Điều kiện x = ± 19 x = ± 19 x > x+1 ≥ ⇔ (*) x-3 x ≤ - Phương trình cho ⇔ (x - 3) (x + 1) + 3(x - 3) x+1 =4 x-3 x+1 ⇒ t = (x - 3) (x + 1) x-3 Phương trình trở thành: t2 + 3t - = ⇔ t = 1; t = - Đặt t = ( x - 3) Ta có: (x -3) x + = (1) ; ( x − 3) x - x + = − (2) x− + (1) x > x > ⇔ ⇔ ⇔ x = 1+ (x − 3)(x + 1) =  x − 2x − = + (2) x < x < ⇔ ⇔ ⇔ x = − (t/m (*)) x − 2x − 19 = (x − 3)(x + 1) = 16  (t/m (*)) x = 1+ ; x = 1− Câu 2: 1) Điều kiện: - x2 > ⇔ - < x < ⇒ - 3x > ⇒ A ≥ Vậy phương trình cho nghiệm là: 105 25 - 30x + 9x (3 - 5x) = +16 ≥ 16 - x2 - x2 Dấu xẩy - 5x = ⇔ x = Vậy A2 = Vậy minA = 2) Chứng minh: a + b + b + c + c + a ≥ (a + b + c) (1) Sử dụng bất đẳng thức: 2(x + y ) ≥ (x + y) , ta có: 2(a + b ) ≥ (a + b) ⇒ a + b ≥ a + b (2) Tương tự, ta được: b + c ≥ b + c c + a ≥ c + a (3) (4) Lấy (2) + (3) + (4) theo vế rút gọn, suy (1) đúng, đpcm Câu 3: (1) nghiệm (2) ⇔ ∆ y = x − ≥ ⇔ x ≤ −2; x ≥ (3) ⇔ (y + 1) = − x − 2x nghiệm ⇔ − x − 2x ≥ ⇔ −2 ≤ x ≤ (4) Từ (3), (4) ta có: x = - 2, từ ta y = - Vậy hệ nghiệm (- ; - 1) Câu 4: Kẻ MP // BD (P ∈ AD) MD cắt AC K Nối NP cắt BD H AM AP AM CM = mà = (gt) e AB AD AB CD i AP CN ⇒ = ⇒ PN // AC Gọi O giao điểm AD CD a o BO CO MK OC AC BD Ta = , = n OD OA PK OA NH OC NH MK = Suy ra: = ⇒ KH // MN PH OA PH PK m k Ta Các tứ giác KENH, MFHK hình bình hành nên MF = KH EN = KH NF f h b ⇒ MF = EN ⇒ ME = · · MEH + MFH = 1800 · · · · ⇒ AMB = 1800 - EHF = EHA + FHB (1) Câu 5: 1) Tứ giác MEHF nội tiếpvì · · » ) (góc nội tiếp chắn MF MHF = MEF · · · · Lại MHF + FHB = 900 = MEF + EMD Ta · · ⇒ FHB = EMD (2) · · , Gọi N giao điểm MD với đường tròn (O) ta ⇒ EHA = DMB · · » ) ⇒ EHA · · (góc nội tiếp chắn NB AN // EH mà HE ⊥ MA nên NA DMB = NAB = NAB · ⊥ MA hay MAN = 90 ⇒ AN đường kính đường tròn Vậy MD qua O cố định Từ (1) (2) 106 ⊥ MA, DK ⊥ MB, ta AH S AM HE AD S AM DI = MAD = ; = MAD = BD SMBD BM DK BH SMBH BM HF 2) Kẻ DI AH AD MA HE DI (1) = BD BH MB2 DK HF · · · · · Ta HMB (cùng phụ với MHF ) mà FHB (CMT) = FHB = EMD · · · · EHF ⇒ EFH = DIK = DMH Vậy · · · · AMH = EFH vµ EHF = 1800 - AMB · · · · Tứ giác MIDK nội tiếp nên DMB = DIK vµ IDK = 1800 - AMB Tứ giác MEHF nội tiếp nên · · · · ⇒ ∆DIK ∆HFE (g.g) ⇒ EFH = DIK vµ EHF = IDK ID DK HE.DI ⇒ ID HE = DK HF ⇒ suy = = (2) HF HE DK.HF MA AH AD Từ (1), (2) ⇒ = MB BD BH ĐỀ SỐ Câu 1: Ta có: =-1+ A= 1- 2- + + + -1 -1 24 - 25 -1 - + - + + 25 = - + = Câu 2: a) Từ giả thiết suy ra:  x2   y2   z2  x2 y2 z2 + + =0    2 2 ÷ 2 ÷ 2 ÷ a +b +c  b a +b +c  c a +b +c  a 1 1    1  ⇔ x  - 2 ÷ + y  - 2 ÷ + z  - 2 ÷ = (*) a a +b +c  b a +b +c  c a +b +c  1 1 1 > 0; - > 0; - >0 Do - 2 2 a a +b +c b a +b +c c a + b2 + c2 Nên từ (*) suy x = y = z = 0, M = b) x3 = 2a +  a +   8a -  x a -  ÷  ÷     ⇔ x3 = 2a + 3x ( - 2a ) 3 ⇔ x = 2a + x(1 - 2a) ⇔ x3 + (2a - 1) x - 2a = ⇔ (x - 1) (x2 + x + 2a) = 107   x - =  ⇔ ⇔x =  x + x + 2a = (v« nghiÖmdo a > )  nên x mét sè ngun du¬ng Câu 3: a) Ta có: 4c 35 35 ≥ + ≥ >0 4c + 57 1+a 35 + 2b ( + a ) ( 2b + 35 ) Mặt khác 4c 35 4c 35 ≤ ⇔ ≤ 1+a 4c + 57 35 + 2b + a 4c + 57 35 + 2b ⇔ 4c 35 2b +1 ≤ 1= +a 4c + 57 35 + 2b 35 + 2b ⇔ 2b 57 57 ≥ + ≥ >0 35 + 2b 1+a 4c + 57 ( + a ) ( 4c + 57 ) Ta có: - ⇔ 35 57 >0 ( 4c + 57 ) ( 35 + 2b ) Từ (1), (2), (3) ta có: 8abc 35 57 ≥ ( + a ) ( 4c + 57 ) ( 2b + 35 ) ( + a ) ( 2b + 35 ) ( 4c + 57 ) Do abc ≥ 35.57 = 1995 Dấu “=” xảy a = 2, b = 35 c = 57 Vậy (abc) = 1995 t= A B C D = = = ⇒ A = ta, B = tb, C = tc, D = td a b c d A+B+C+D a+b+c+d Vì aA + bB + cC + dD = a t + b t + c t + d t = (a + b + c + d) = t = (a + b + c + d) (a + b + c +d)(A + B + C + D) 108 (2) 4c 35 ≥ 1+ 1+a 4c + 57 35 + 2b a 57 35 ≥ + ≥ 1+a 4c + 57 35 + 2b b) Đặt t = (1) A+B+C+D a+b+c+d (3) Câu 4: A a) Xét ∆ABC PQ // BC Xét ∆BAH QM // AH AQ QP = AB BC ⇒ ⇒ BQ QM = BA AH Q P Cộng vế ta có: AQ BQ QP QM QP QM B M H + = + ⇒ 1= + AB AB BC AH BC AH 2SMNPQ QM  QP QM  QP ⇒ 1=  + = ÷ ≥ AH  BC AH SABC  BC S ⇒ SMNPQ ≤ ABC SABC QP QM BC max SMNPQ = = = ⇔ QP = BC AH 2 N C Tức PQ đường trung bình ∆ABC, PQ qua trung điểm AH b) Vì = QP QM QP + QM + mà BC = AH ⇒ = ⇔ QP + QM = BC BC AH BC Do chu vi (MNPQ) = 2BC (khơng đổi) Câu 5: ∆HCD đồng dạng với ∆ ABM (g.g) mà B AB = 2AM nên HC = 2HD Đặt HD = x HC = 2x Ta có: DH2 = HM HC hay x2 = HM 2x ⇒ HM = 0,5x; MC = 2,5x; AM = 2,5x; AH = 3x Vậy AH = 3HD A H M C D 109 ... MNPQ có chu vi Câu 5: Cho tam giác ABC vuông cân A, đường trung tuyến BM Gọi D hình chi u C tia BM, H hình chi u D AC Chứng minh AH = 3HD B - PHẦN LỜI GIẢI I - LỚP 10 THPT ĐỀ SỐ Câu 1: a) Ta có: ... thức P = x + y 22 II - ĐỀ ÔN THI TUYỂN SINH LỚP 10 CHUYÊN TỐN ĐỀ SỐ Câu 1: Giải phương trình: a) 2     x + ÷−  x - ÷ − = x   x  ) )( ( b) x + − x + + x + 7x + 10 = Câu 2: a) Cho số a,... hai tổ sản xuất 90 0 chi tiết máy; tháng hai cải tiến kỹ thuật tổ I vượt mức 15% tổ II vượt mức 10% so với tháng giêng, hai tổ sản xuất 101 0 chi tiết máy Hỏi tháng giêng tổ sản xuất chi tiết máy?
- Xem thêm -

Xem thêm: Tuyển tập 43 đề thi vào lớp 10 có lời giải chi tiết, bo de on thi toan lop 9 vao lop 10 THPT co dap an,

Từ khóa liên quan